
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Bit Logic and Floating Point, 9 September 2013

Anita Zhang, Section M

WELCOME TO THE FALL EDITION

 Data Lab due Thursday, 12 Sept 2013, 11:59 PM

 2 grace days per lab, 5 per semester

 Don‟t waste your late days

 Bomb Lab out Thursday, 13 Sept 2013, 12:00 AM

 After the relevant lecture(s)

 FAQ on the main site

 O‟Hallaron put love and care into updating it

 10/10 must read

ADDITIONAL PROBING

 Quick questions?

 Progress?

 Autolab?

 Shark?

 > ssh shark.ics.cs.cmu.edu

BECAUSE EVERYONE NEEDS A GUIDE..

 Getting Help

 Literature

 Bits and Bytes and Good Stuff

 IEEE Floating Point

 Data Lab Hints

 General Lab Information

 Question Time

I NEED HELP):

 Email us: 15-213-staff@cs.cmu.edu

 Please attach C files if you have a specific question

 Goes to TAs and Professors

 Autolab: autolab.cs.cmu.edu

 No Blackboard (woohoo?)

 Office Hours: Wean 5207, Sun-Thur, 5:30-8:30PM

 The only Linux cluster in Wean

 At least 2 (!!!) TAs at your service

 Depending on the day there may be a ton of students in line

 Tutoring: Mudge Reading Room, Tues 8:30-11PM

 Hosted by a smart cookie who is not a TA

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
autolab.cs.cmu.edu

BOOKS I LIKE

 Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective,
Second Edition, Prentice Hall, 2011

 Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

 Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

 Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

RANDOM MOTIVATIONAL STUFF

REPRESENTATION NUTSHELL

 Signed

 The most significant bit represents the sign

 0 for non-negative, 1 for negative

 On x86, the 31st bit (counting from 0)

 Focus on two‟s complement

 Unsigned

 Range from 0 to 2k – 1

 Where k is the number of bits used to represent this value

 Non-negative values

 Byte = 8 bits

 Only here because new people forget

WHAT ARE “INTS”?

 int ≠ integer

 Minimum and maximum values are capped by

the number of bits

CASTING MAGIC

 What happens when casting between signed and

unsigned?

 Signed ↔ Unsigned

 Values are “reinterpreted”

 Bits remain the same

 Mixing signed and unsigned values

 Values are casted to unsigned first (mostly)

WHAT IS THE SIZE OF….

C Data Type Typical 32-bit IA32 (x86) x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10 or 12 10 or 16

pointer 4 4 8

OPERATIONS

 Bitwise

 AND &

 OR |

 NOT ~

 XOR ^

 Logical

 AND &&

 OR ||

 NOT !

 Values

 False 0

 True nonzero

PRO-TIP

 Do not get bitwise and/or logical mixed up!!

 If you are getting weird results, look for this error

SPECIFIC OPERATION STUFF

 Shifting

 Arithmetic

 Preserves the sign bit (sometimes sign-extended)

 Logical

 Fills with zeros (on these machines)

 Other bits “fall off” (discarded)

 Both will result in the same left shift

 Undefined if negative shift amount (to be discussed)

SHIFTING MATH

 Multiplication/ division by 2k

 Multiply: left shift by k

 Division: right shift by k

 Shifting rounds towards negative infinity

 Math-performing humans round towards 0

 How do we round negative values toward 0?

DIVISION BY SHIFTING (NEGATIVES)

 Division of a negative number by 2k

 Needs a bias

 Bias will push the number up so it rounds towards 0

 Division looks like this: (x + ((1 << k) – 1)) >> k

 x is the value we are dividing

 (1 << k) – 1 is the value we are adding to bias

 Remember, only applies to negative values of x

FOR THE VISUAL/MATH INCLINED

Divisor:

Dividend:

0 0 1 0 0 0•••

x

2k/

 x / 2k

•••

k

1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

If this contains a 1…Notice: dividend is

negative

RANDOM NUMBER STUFF

 Endianness is real

 How bytes are ordered

 Representation in memory

 You‟ll see it in Bomb Lab (next week)

 Random example: 0x59645322

 Big: (lower) 59 64 53 22 (higher)

 Little: (lower) 22 53 64 59 (higher)

Endian
First byte

(lowest address)
Middle bytes

Last byte

(highest address)

big Most significant ... Least significant

little Least significant ... Most significant

FRACTIONAL BINARY

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

• • •

(QUICK AND DIRTY) FLOATING POINT

 What is this floating point stuff?

 Another type of data representation

 Enables support for a wide ranges of numbers

 Symmetric on its axis (has ±0)

(QUICK AND DIRTY) FLOATING POINT

 Consists of 3 parts

 Sign bit

 Exponent bits

 Fraction bits (the “mantissa”)

 Getting the floating point

 Value (-1)s x M x 2E

 S sign

 M mantissa

 E shift amount (exponent bits uses „e‟ or „exp‟)

 Bias 2k-1 – 1

 Used in the math to convert between actual values and

floating point values

(QUICK AND DIRTY) FLOATING POINT

 For single precision (32 bit) floating point:

 Fraction (frac): 23 bits

 Exponent (exp): 8 bits

 Sign (s): 1 bit

 Bias = 127

(QUICK AND DIRTY) FLOATING POINT

 exp ≠ 00…0

 exp ≠ 11…1

 E = exp – bias

 M = 1.xxxxxx

 xxxxxx is the frac

 Implied leading 1

 exp = 00..0

 E = 1 – bias

 M = 0.xxxxxx

 xxxxxx is the frac

 Leading 0

 frac = 0 means ±0

Normalized Denormalized

SPECIAL CASES

 exp = 11….1

 frac = 00…0

 Division by 0, ± ∞

 exp = 11….1

 frac ≠ 00…0

 sqrt(-1), ∞ - ∞, ∞ x 0

Infinity Not a Number

SPECIAL CASES

 BTW, infinity and NaN are not the same

 Infinity is “overflow”

 NaN is not a number

 “Mathematically undefined” in my book

LEGIT FLOATING POINT RULES

 Rounding

 Rounds to even

 Used to avoid statistical bias

 1.1011 1.11 (greater then1/2, up)

 1.1010 1.10 (equal to 1/2, down)

 1.0101 1.01 (less than 1/2, down)

 1.0110 1.10 (equal to 1/2, up)

 Addition and Multiplication…

 Are lies

 Associativity/ distributivity may not hold

 3.14 + (1e20 – 1e20) vs. (3.14 + 1e20) – 1e20

 Don‟t need to do this in this class

INSIGHT INTO ROUNDING

 Round to even

 How does it avoid statistical bias of rounding up or

down on half?

1.01002 truncate 1.012

1.01012 below half; round down 1.012

1.01102 interesting case; round to even 1.102

1.01112 above half; round up 1.102

1.10002 truncate 1.102

1.10012 below half; round down 1.102

1.10102 Interesting case; round to even 1.102

1.10112 above half; round up 1.112

1.11002 truncate 1.112

SAMPLE FLOATING POINT ON EXAMS

 Consider the following 5‐bit floating point representation

based on the IEEE floating point format. This format does

not have a sign bit – it can only represent nonnegative

numbers.

 There are k=3 exponent bits.

 There are n=2 fraction bits.

 What is the…

 Bias?

 Largest denormalized number?

 Smallest normalized number?

 Largest finite number it can represent?

 Smallest non-zero value it can represent?

SAMPLE FLOATING POINT ON EXAMS

 Consider the following 5‐bit floating point

representation based on the IEEE floating point

format. This format does not have a sign bit – it can

only represent nonnegative numbers.

 There are k=3 exponent bits.

 There are n=2 fraction bits.

 What is the…

 Bias? 0112 = 3

 Largest denormalized number? 000 112 = 0.00112 = 3/16

 Smallest normalized number? 001 002 = 0.01002 = 1/4

 Largest finite number? 110 112 = 1110.02 = 14

 Smallest non-zero value? 000 012 = 0.00012 = 1/16

SEMI-LARGE FLOATING POINT EXAM TIP

 When converting from float to int, assume

normalized first

 It will be normalized most of the time

 Easier to convert too

 If it is denormalized, you will be able to tell quickly

when doing the normalized math

 The exponent won‟t make sense, for example

FLOATING POINT ON EXAMS

 Let‟s pretend we have a 5-bit floating point representation

with no sign bit… (sadness)

 k = 3 exponent bits (bias = 3)

 n = 2 fraction bits

Value
Floating Point

Bits

(Rounded)

Value

9/32 001 00 1/4

3

9

3/16

15/2

FLOATING POINT ON EXAMS

 Let‟s pretend we have a 5-bit floating point representation

with no sign bit… (sadness)

 k = 3 exponent bits (bias = 3)

 n = 2 fraction bits

Floating Point Bits (Rounded) Value

001 00 1/4

100 10 3

110 00 8

000 11 3/16

111 11 NaN

Value
Floating Point

Bits

(Rounded)

Value

9/32 001 00 1/4

3 100 10 3

9 110 00 8

3/16 000 11 3/16

15/2 110 00 8

FLOATING POINT ON EXAMS

 Consider two 7 bit floating point representations based on the IEEE

format. Neither has a sign bit.

 Format A

 k = 3 exponent bits (bias = 3)

 n = 4 fraction bits

 Format B

 k = 4 exponent bits (bias = 7)

 n = 3 fraction bits

Format A Format B

011 0000 0111 000

101 1110

010 1001

110 1111

000 0001

FLOATING POINT ON EXAMS

 Consider two 7 bit floating point representations based on the IEEE

format. Neither has a sign bit.

 Format A

 k = 3 exponent bits (bias = 3)

 n = 4 fraction bits

 Format B

 k = 4 exponent bits (bias = 7)

 n = 3 fraction bits

Format A Format B

011 0000 0111 000

101 1110 1001 111

010 1001 0110 100

110 1111 1011 000

000 0001 0001 000

DATA LAB OTHER STUFF

 Use the tools

 ./driver.pl

 Exhaustive autograder (uses provided tools)

 ./bddcheck/check.pl

 Exhaustive

 ./btest

 Not exhaustive

 ./dlc

 This one will hate you if you‟re not writing C like it‟s 1989

 Declare all your variables at the beginning of the function

 Don‟t have whitespace before a closing curly brace

DATA LAB TOOLS

 Extra tools

 ./fshow value

 Where value is a hex or decimal number for a floating point

 Shows the hex for value and breaks it down into the floating

point parts (sign, exponent, fraction)

 Single precision floating point

 ./ishow value

 Where value is a hex or decimal number

 Outputs value in hex, signed, and unsigned

 32-bits

STARTING DATA LAB (NEWB EDITION)

 Untar the lab handout

 > tar xvf labhandout.tar

 Solve puzzles provided in bits.c

 Only file to get turned in

 Test using provided tools

 You should not be using Autolab to check your work!

 Everything should be tested by the time you submit

 driver.pl assigns your final grade, NOT btest

DATALAB OTHER STUFF

 Operator precedence

 There are charts. Google them.

 Alternatively use parenthesis and never worry again.

 Hint: !, 0, and Tmin are cool and useful

 No bonus points for having smallest op count

 Other hints in no particular order or reference:

 Divide and conquer

 Round to even with floating points

 Undefined behavior

 Shifting by 32 and why you get strange results

 My small rant to follow

RANT ON UNDEFINED BEHAVIOR

“These instructions shift the bits in the first operand

(destination operand) to the left or right by the number of

bits specified in the second operand (count operand). Bits

shifted beyond the destination operand boundary are first

shifted into the CF flag, then discarded. At the end of the

shift operation, the CF flag contains the last bit shifted out

of the destination operand.

The destination operand can be a register or a memory

location. The count operand can be an immediate value or

register CL. The count is masked to five bits, which limits

the count range to 0 to 31. A special opcode encoding is

provided for a count of 1.”

LABS, IN GENERAL

 Aim to do all your work on our Shark machines

 Obtain a terminal/ SSH client of sorts

 Use the following command

 ssh andrewID@shark.ics.cs.cmu.edu

 andrewID is your Andrew ID

 shark can be replaced with a specific shark hostname

 If left as shark, you will be assigned a random shark

 tar xvf labhandout.tar

 Untarring on the Unix machines may prevent headaches

 Work out of your private directory

 Use a text editor straight from the Shark machine

 Vim, emacs, gedit, nano, pico…

LABS, WARNINGS

 Permission denied

 Are you working on a Shark machine?

 Did you untar on a Linux machine?

 Learning basic commands can fix this

 > chmod +x executable

 Sets executable bits for executable

QUESTIONS & CREDITS PAGE

 http://www.superiorsilkscreen.com

 http://www.wikipedia.org/

 http://www.cs.cmu.edu/~213/

 http://jasss.soc.surrey.ac.uk/9/4/4/fig1.jpg

 Intel x86 Instruction Set Reference

http://www.superiorsilkscreen.com/
http://www.superiorsilkscreen.com/
http://www.wikipedia.org/
http://www.wikipedia.org/
http://www.cs.cmu.edu/~213/
http://www.cs.cmu.edu/~213/
http://jasss.soc.surrey.ac.uk/9/4/4/fig1.jpg

