Carnegie Mellon

Final Exam Review

15-213: Introduction to Computer Systems
Recitation 15: Monday, Dec. 2"4, 2013

Marjorie Carlson
Section A

Carnegie Mellon

Agenda

m News & Exam Information

m Brief Review of Topics
" Important System Calls
= Virtual Address Translation
" Threading vs. Forking

m Practice Questions

Carnegie Mellon

News

m Proxylab is due Thursday Dec. 5t at 11:59 PM

= |Last day to submit late is Sunday Dec. 8t

= Make sure you’ve downloaded the tarball since your “Thanksgiving
gift” from Dr. O’Hallaron.

Carnegie Mellon

Exam Information

m Monday December 9t — Thursday December 12t
® Online, like the midterm.

= Exact times will be sent out in an email and updated on the website
later this week.

m You can bring 2 double-sided sheets of notes.
= No pre-worked problems.
= Must be your own work.

m What to study:

® Chapters 8-12 + everything from the first half!
m How to study:

= Read each chapter 3 (more?) times.

= Work practice problems from the book.

= Do problems from previous exams (including newly posted finals).

Carnegie Mellon

Agenda

m News & Exam Information

m Brief Review of Topics
" |mportant System Calls
= Virtual Address Translation
" Threading vs. Forking

m Practice Questions

Carnegie Mellon

Important System Calls

m fork
= Called once, returns twice (unless it fails)
= Returns 0 in the child process
= Returns the pid of the child in the parent process
= Returns -1 on failure
" Makes an exact copy of the entire address space
® Processes get unique copies of file descriptors, but share open files
= Execution order of parent and child is arbitrary

m execve

= Called once, doesn’t return (unless it fails)
= Returns -1 on failure
= Replaces the currently running process with the specified program

Carnegie Mellon

Important System Calls

m wait/waitpid
= Reaps one child process
= By default, blocks until a child process can be reaped
= wait will wait for any child
= waitpid waits for the specified child process
= Returns the pid of the child that was reaped, or -1 on error

= waitpid can be passed additional arguments to modify its
behavior

= WNOHANG will prevent waitpid from blocking
= WUNTRACED will report stopped children

m signal

= Asimplified (but easier to understand) interface to sigaction

" |nstalls a signal handler that is run when the specified signal is
triggered

Carnegie Mellon

Important System Calls

m sigprocmask
® Can block signals, unblock signals, or set the signal mask
= SIG_BLOCK adds the given signals to the set of blocked signals
= SIG_UNBLOCK removes the given signals
= SIG_SETMASK replaces the blocked signals with the given
signals
m sigsuspend
= Replaces the signal mask with the specified mask
= Blocks until one signal that isn’t masked is handled
= After the one signal is handled, the signal mask is restored

Carnegie Mellon

Agenda

m News & Exam Information

m Brief Review of Topics
" |mportant System Calls
= Virtual Address Translation
" Threading vs. Forking

m Practice Questions

Carnegie Mellon

Virtual Address Translation

m Translates a process’s virtual address into a physical
address in main memory.

m Page tables store mappings from virtual addresses to
physical addresses.

m Page directories store mappings from virtual addresses to

page table addresses, adding an additional layer of
indirection.

m Address translation is like cache lookup:

= Split up the binary representation of a virtual address.
= Use the parts as indices into pages, page tables, or the TLB.

10

Carnegie Mellon

Virtual Address Translation

m Know your acronyms (there are probably more in the book)
= TLB Translation lookaside buffer
= TLBI TLB Index
" TLBT TLB Tag
= VPO Virtual page offset
= VPN Virtual page number
= PPO Physical page offset
= PPN Physical page number
= PTBE Page table base address
= PTE Page table entry
= PDE Page directory entry
= CI Cache index

" CT Cache tag

1"

Carnegie Mellon

Virtual Address Translation

m Refer to this diagram, blatantly copied from recitation 10

TLBT TLBI
<€ > >

19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

VPN
VPO

12

Carnegie Mellon

Virtual Address Translation

m A simplified overview of the translation process

= Write out the virtual address in binary; divide it up into the
relevant offset, indexes and tags.

= Check the TLB (if there is one) to see if the page is in memory.

= |f there’s a TLB miss, check the top level page directory to see if the
page is in memory.

= |f the top level page directory entry is present, continue following
to the next page table. If not, a page fault is triggered.

= |f you make it all the way down to the deepest page table without
triggering a page fault, you will get a physical address.

= After you have a physical address, you may have to check a cache
to see if the requested data is already available.

13

Carnegie Mellon

Agenda

m News & Exam Information

m Brief Review of Topics
" |mportant System Calls
= Virtual Address Translation
" Threading vs. Forking

m Practice Questions

14

Carnegie Mellon

Threading vs. Forking

m How they’re the same

= Both allow you to run code concurrently

m How they’re different
" Threads in the same process share memory
" Threads share file descriptors

= |f you close a file descriptor in one thread, it’s closed for all of
the threads in the same process

® Threads share signal handlers and masks

= |f you install one signal handler in one thread, and a different
one in another, the most recent one will be the one that is
called.

15

Carnegie Mellon

Agenda

m News & Exam Information

m Brief Review of Topics
" |mportant System Calls
= Virtual Address Translation
" Threading vs. Forking

m Practice Questions

16

Carnegie Mellon

Process Control

What are the possible outputs

int main
O A for this program?

if (fork() == 0) {
printf("a");

}

else {
printf("b");
waitpid(-1, NULL, 0);

}

printf("c");

exit(9);

17

Carnegie Mellon

File 1/O

int main() { Assume that file.txt contains
char buf[3] = "ab"; the string of bytes 15213.
int r = open("file.txt", O_RDONLY); Also assume that all system
int ri1, pid; calls succeed.
rl = dup(r);
read(r, buf, 1); What will be the output
when this code is compiled

if((pid=fork())==0) and run?

rl = open("file.txt", O RDONLY);
else
waitpid(pid, NULL, ©);

read(rl, buf+l, 1);
printf("%s", buf);
return 0;

18

Carnegie Mellon

Code Snippet 1 Code Snippet 1 Code Snippet 3
int i = 9; int i = 0; int i = 9;
void handler(int sig) { void handler(int sig) { void handler(int sig) {
i=0; i=0; i=0;
} } sleep(1);
}
int main() { int main () { int main () {
int j; int j; int j;
signal(SIGINT, handler); sigset_t s; sigset_t s;
for (j=0; j < 100; j++) {
it++; /* Assume that s has been /* Assume that s has been
sleep(1); initialized and declared initialized and declared
} properly for SIGINT */ properly for SIGINT */
printf("i = %d\n", i);
exit(0); signal(SIGINT, handler); sigprocmask(SIG_BLOCK, &s, 0);
} sigprocmask(SIG_BLOCK, &s, 0); signal (SIGINT, handler);
for (j=0; j < 100; j++) { for (j=0; j < 100; j++) {
i++; i++;
sleep(1); sleep(1);
} }
sigprocmask(SIG_UNBLOCK, &s, @); printf("i = %d\n", 1);
printf("i = %d\n", i); sigprocmask(SIG_UNBLOCK, &s, 9);
exit(09); exit(0);
} }

For each of the above code snippets, assume an arbitrary number of SIGINTs—and only

SIGINTs—are sent to the process. What are the possible values of i that are printed out?
19

Carnegie Mellon

Processes vs. Threads

int main() {

int i;
#include "csapp.h" pthread_t tid[2];
/* Global variables */ sem_init(&mutex, ©, 1); /* mutex=1 */
int cnt;
sem_t mutex; /* Processes */
B cnt = 0;
for (i=0; i<2; i++) {
* Helper function */ incr(NULL);
void *incr(void *vargp) { if (fork() == 0) {
P(&mutex); incr(NULL);
cnt++; exit(09);
V(&mutex); }
return NULL; }
} for (i=0; i<2; i++)
wait(NULL);
printf("Procs: cnt = %d\n", cnt);
What is the output? /* Threads */
cnt = 0;
for (i=0; i<2; i++) {
incr(NULL);
Procs: cnt = pthread_create(&tid[i], NULL, incr, NULL);
}
for (i=0; i<2; i++)
pthread_join(tid[i], NULL);
Thr'eadS: Cnt = printf("Threads: cnt = %d\n", cnt);
- exit(Q);
}

20

Address Translation

32-bit machine; 4-byte words.
Memory is byte-addressable.

4 GB of virtual address space.
64 MB of physical memory.

4 KB page size.

Two-level page tables. Tables at both levels are 4096 bytes (one page) and
entries in both tables are 4 bytes, as shown to the right.

The page table base address for process 1 is 0x0021A000.
Translate virtual address OxBFCF0145 into a physical address.

The page table base address for process 2 is 0x0021B000.

Translate virtual address 0x0804A1FO0 into a physical address.

31 2 1 0 e P=1 = Present
Page Table Base Address P
Page Directory Entry e W =1= Writable
Page Address |U|W]|P _ i
Page Table Entry e U=1= User-mode

Address

Contents

001AC021

07693003

001ACO84

00142003

0021A020

0481C001

0021A080

04A95001

0021A2FF

06128001

0021A300

05711001

0021ABFC
0021AC00

05176001
001AC001

0021B020

01FACS9DA

0021B080O

052DB001

0021B2C0O

0B2B36C2

0021B2FF
0021B300

05A11001
01FCFO001

0021BBFC

06213001

0021BCOO
01FCFO021

001ACO001
00382003

0481C048
04A95048

0523A005
048B8005

04A95120

07D6A00S5

051760F0

OE33F007

051763C0

08BF1007

052DB0O4A
052DB128

09A62006
0D718006

05711021

00113003

O5A110F0

01133007

061280F0

0A114007

0614504A
062133C0

0B183006
052F1007

Carnegie Mellon

21

Carnegie Mellon

Synchronization

m A producer/consumer system with a FIFO queue of 10 data items.

m Producer threads call insert to add to the rear of the queue; consumer
threads call remove to put something at the front.

m The system uses three semaphores: mutex, items, and slots. Your task is to use
P and V semaphore operations to correctly synchronize access to the queue.

m Whatis the initial value of each semaphore?
mutex = items = slots =
m Write the pseudocode:

void insert(int item) void remove()
{ {

add_item(item) item = remove_item()
} return(item)

}

22

Carnegie Mellon

Questions?

m Good luck on proxy lab, and on your final exam!

m | hope you have learned half as much from me as | have
from TAing you. ©

23

