Carnegie Mellon

Malloc Lab

15-213: Introduction to Computer Systems
Recitation 11: Nov. 4, 2013

Marjorie Carlson
Recitation A

Carnegie Mellon

Weekly Update

m Malloc lab is out
® Due Thursday, Nov. 14

= Start early
= Seriously... start early.

= “Itis possible to write an efficient malloc package with a few pages
of code. However, we can guarantee that it will be some of the
most difficult and sophisticated code you have written so far in
your career.”

Carnegie Mellon

Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan

Carnegie Mellon

Dynamic Memory Allocators

m Are used to acquire
memory for data
structures whose size is

known only at run time. f "

Heap (via malloc)

User stack

«Top of heap
(brk ptr)

m Manage area in a part of
memory known as the Uninitialized data (.bss)

heap. Initialized data (.data)

Program text (.text)

Carnegie Mellon

Allocation Example

pl = malloc(4)

p2 = malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

Carnegie Mellon

Malloc Lab

m Create a general-purpose allocator that dynamically
modifies the size of the heap as required.

m The driver calls your functions on various trace files to
simulate placing data in memory.

m Gradeis based on:
= Space utilization (minimizing fragmentation)
" Throughput (processing requests quickly)
" Your heap checker
= Style & correctness, hand-graded as always

Carnegie Mellon

Functions You Will Implement

m mm_init initializes the heap before malloc is called.
m malloc returns a pointer to a free block (>=req. size).
m calloc same, but zeros the memory first.

m realloc changesthe size of a previously allocated
block. (May move it to another location.)

m free marks allocated memory available again.

m mm_checkheap debugging function (more on this later)

Carnegie Mellon

Functions You May Use

m mem_sbrk
= Used for expanding the size of the heap.

= Allows you to dynamically increase your heap size as required.
= Helpful to initialize your heap.

= Returns a pointer to first byte in newly allocated heap area.
@ mem_heap_lo

= Pointer to first byte of heap
m mem_heap_hi

= Pointer to last byte of heap
m mem_heapsize

@ mem_pagesize

Carnegie Mellon

Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan

Carnegie Mellon

Pointer Arithmetic

m *(arr + i) isequivalentto arr[i]

m Thus the result of arithmetic involving pointers depends on
the type of the data the pointer points at.

int *arr = 9x1000 short *arr = 0x1000
arr + 1 = 0x1004 arr + 1 = 0x1002
T 1000 --—— arr arr[O]__ 1000 -« arr
arr[0] [1]__ 1002 --—— arr + 1
arr
1T 1004 --—— gpr + 1 arr[Z]—_ 1004 -«— arr + 2
arr[1l] arr[3]—_ 1006 .«———— arr + 3
1T 1008 -« arr + 2 arr[4]__ 1008 -«——— arr + 4
arr[2] -
arr[5] 100 -«— arr + 5

m Soptr + iisreallyptr + (i * sizeof(ptr-type))

example and pictures from http://www.cs.umd.edu/class/spring2003/cmsc311/Notes/BitOp/pointer.html 10

Carnegie Mellon

Pointer Casting

m Pointer casting can thus be used to make sure the pointer
arithmetic comes out right.

m Since chars are 1 byte, casting a pointer as a char pointer
then makes arithmetic on it work “normally.”

int *ptr = 0x10203040

(char *)ptr + 2 = 0x10203042

char *ptr2

0x10203048

char *ptr3 = (char *) (ptr + 2)

1

Carnegie Mellon

Examples

1. int *ptr = (int *) 0x12341234,;
int *ptr2 = ptr + 1; = 0x12341238

2. char *ptr = (char *) 0x12341234;
char *ptr2 = ptr + 1; = 0x12341235

3. void *ptr
void *ptr2

(int *) 0x12341234;
ptr + 1; = 0x12341235

4. int *ptr = (int *) 0x12341234;
int *ptr2 = ((int *) (((char *) ptr) + 1)));

= 0x12341235 ©®

12

Carnegie Mellon

Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan

13

Carnegie Mellon

Macros

#define NAME replacement-text

m Maps “name” to a definition or instruction.

m Macros are expanded by the preprocessor, i.e., before
compile time.

m They’re faster than function calls.

m For malloc lab: use macros to give you quick (and reliable)
access to header information — payload size, valid bit,
pointers, etc.

14

Carnegie Mellon

Macros

m Useful for “magic number” constants — acts like a naive
search-and-replace
= #define ALIGNMENT 8
m Useful for simple accesses and computations

= Use parentheses for computations.
#define multByTwoA(x) 2%x
#define multByTwoB(x) 2*(x)

" multByTwoA(5+1) =2%5+1 =11
" multByTwoB(5+1) =2*(5+1) =12

15

Carnegie Mellon

Macros

m Useful for debugging
= FILE__ isthe file name (%s)
= LINE__ isthe line number (%d)
= func__ isthe functionit’sin (%s)

#include <stdio.h>

int hello(){ Output:
printf("hello from function %¥s\n", __func__);

}

| e hello from function hello

1Nt mawn . s .
hello0): This is line 9. _ |
printf("This is line %d.\n", __LINE__); Belongs to function: main
printf("Belongs to function: %s\n", __func__); In filename: macros.c
printf("In filename: %s\n", __FILE__);

16

Carnegie Mellon

Macros

m Useful for debugging: conditional printfs
// #define DEBUG

ifdef DEBUG

#define dbg printf(...) printf(_ VA ARGS)
#else

#define dbg printf(...)

#endif

17

Carnegie Mellon

Inline Functions

m Alternative to macros: still more efficient than a function
call, and easier to get right!

#define max(A,B) ((A) > (B) ? (A) : (B))
VS.
inline int max(int a, int b) {

return a > b ? a : b?

}

m The compiler replaces each call to the function with the
code for the function itself.

(So, no stack setup, no call/ret.)

m Useful for small, frequently called functions.

18

Carnegie Mellon

Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan

19

Carnegie Mellon

Malloc Design

m You have a ton of design decisions to make! ©
m Thinking about fragmentation
m Method of managing free blocks

" |mplicit List

= Explicit List

= Segregated Free List

m Policy for finding free blocks
= First fit
= Next fit
= Best fit

m Free-block insertion policy
m Coalescing (or not)

20

Carnegie Mellon

Fragmentation

m Internal fragmentation
= Result of payload being smaller than block size.
= Header & footer
= Padding for alignment
= Mostly unavoidable.

21

Carnegie Mellon

Fragmentation

m External fragmentation

® QOccurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc (4)
p2 = malloc (5)
p3 = malloc(6)
free (p2)

p4 = malloc(6) Oops! (what would happen now?)

= Some policies are better than others at minimizing external
fragmentation.

22

Carnegie Mellon

Managing free blocks

m Implicit list 1 word
= Uses block length to find the next block. —
= Connects all blocks (free and allocated). Size a

= All blocks have a 1-word header before the
payload that tells you:

o Payload
= jts size (so you know where to look for the
next header) and
= whether or not it’s allocated Optional
padding

" You may also want a 1-word footer so that you

can crawl the list in both directions to coalesce. Format of allocated
and free blocks

— N N
5 1| a| | | |s HENRE

23

Carnegie Mellon

Managing free blocks

m Explicit list

1 word 1 word
= A list of free blocks, each of which A A
. e N an N
stores a pointer to the next free X X
Size a Size a
block.
= Since only free blocks store this N
info, the pointers can be stored Payload and Prev
where the payload would be. padding
" This allows you to search the free
blocks much more quickly. Size a Size a

= Requires an insertion policy.
Allocated blocks Free blocks

/\
s| AL [e 1 Jel T 1T T I2

24

Carnegie Mellon

Managing free blocks

m Segregated free list
= Each size class has its own free list.

" Finding an appropriate block is much faster (so next fit may
become good enough); coalescing and reinsertion are harder.

1-2 —> —> —> —
3 — — — — —
4 — — .
5-8 —> —
9-inf .

25

Carnegie Mellon

Finding free blocks

m First fit
= Start from the beginning.
® Find the first free block.
" Linear time.
m Next fit
= Search starting from where previous search finished.
= Often faster than first fit.
m Best fit

" Choose the free block closet in size to what you need.

= Better memory utilization (less fragmentation), but it’s very slow to
traverse the full list.

m What if no blocks are large enough?
= Extend the heap

26

Carnegie Mellon

Insertion policy

m Where should free blocks go?
= Blocks that have just been free()d.
= “Leftovers” when allocating part of a block.

m LIFO (Last In First Out)

" |nsert the free block at the beginning of the list.
= Simple and constant time.

= Studies suggest potentially worse fragmentation.

m Address-Ordered

= Keep free blocks list sorted in address order.
= Studies suggest better fragmentation.
= Slower since you have to find where it belongs.

27

Carnegie Mellon

Coalescing policy

m Use the block size in the header to look left & right.

Case 1 Case 2 Case 3 Case 4
Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

m Implicit list:

= Write new size in the header of first block & footer of last block.
m Explicit list:

= Must also relink the new block according to your insertion policy.

m Segregated list:

" Must also use the new block size to figure out which bucket to put
the new block in.

28

Carnegie Mellon

Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan

29

Debugging

m Debugging malloc lab is hard!
" rubber duck debugging
= GDB
" valgrind
" mm_checkheap

30

Carnegie Mellon

mm_checkheap

m mm_checkheap
= A consistency checker to check the correctness of your heap.

= Write it early and update as needed.
= What to check for? Anything that could go wrong!

= address alignment = consistency of linked list pointers
= consistency of header & footer = whether blocks are being placed in
= whether free blocks are coalescing the right segregated list

= Focus on correctness, not efficiency.

" Once you get it working, it should be silent and only output when
your heap has messed up.

" You can insert a call to it before & after functions to pin down
exactly where things are going wrong.

= Do not request debugging help from a TA without a working
checkheap.

3

Carnegie Mellon

Suggested action plan

1. Start early — make the most use of empty office hours.

2. Keep consulting the handout (e.g. the “rules”)
throughout your coding process.

Understand and implement a basic implicit list design.
Write your heap checker.

Come up with something faster/more memory efficient.
Implement it.

Debug it.

Git commit and/or submit.

Goto 5.

0 % NS U R W

32

Carnegie Mellon

Questions?

m GOOD LUCK!!

33

