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Weekly Update

m Malloc lab is out
® Due Thursday, Nov. 14

= Start early
= Seriously... start early.

= “Itis possible to write an efficient malloc package with a few pages
of code. However, we can guarantee that it will be some of the
most difficult and sophisticated code you have written so far in
your career.”
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Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan
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Dynamic Memory Allocators

m Are used to acquire
memory for data
structures whose size is

known only at run time. f "

Heap (via malloc)

User stack

«Top of heap
(brk ptr)

m Manage area in a part of
memory known as the Uninitialized data (.bss)

heap. Initialized data (.data)

Program text (.text)
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Allocation Example

pl = malloc(4)

p2 = malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)
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Malloc Lab

m Create a general-purpose allocator that dynamically
modifies the size of the heap as required.

m The driver calls your functions on various trace files to
simulate placing data in memory.

m Gradeis based on:
= Space utilization (minimizing fragmentation)
" Throughput (processing requests quickly)
" Your heap checker
= Style & correctness, hand-graded as always
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Functions You Will Implement

m mm_init initializes the heap before malloc is called.
m malloc returns a pointer to a free block (>=req. size).
m calloc same, but zeros the memory first.

m realloc changesthe size of a previously allocated
block. (May move it to another location.)

m free marks allocated memory available again.

m mm_checkheap debugging function (more on this later)
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Functions You May Use

m mem_sbrk
= Used for expanding the size of the heap.

= Allows you to dynamically increase your heap size as required.
= Helpful to initialize your heap.

= Returns a pointer to first byte in newly allocated heap area.
@ mem_heap_lo

= Pointer to first byte of heap
m mem_heap_hi

= Pointer to last byte of heap
m mem_heapsize

@ mem_pagesize
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Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan
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Pointer Arithmetic

m *(arr + i) isequivalentto arr[i]

m Thus the result of arithmetic involving pointers depends on
the type of the data the pointer points at.

int *arr = 9x1000 short *arr = 0x1000
arr + 1 = 0x1004 arr + 1 = 0x1002
T 1000 --—— arr arr[O]__ 1000 -« arr
arr[0] [1]__ 1002 --—— arr + 1
arr
1T 1004 --—— gpr + 1 arr[Z]—_ 1004 -«— arr + 2
arr[1l] arr[3]—_ 1006 .«———— arr + 3
1T 1008 -« arr + 2 arr[4]__ 1008 -«——— arr + 4
arr[2] -
arr[5] 100 -«— arr + 5

m Soptr + iisreallyptr + (i * sizeof(ptr-type))

example and pictures from http://www.cs.umd.edu/class/spring2003/cmsc311/Notes/BitOp/pointer.html 10
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Pointer Casting

m Pointer casting can thus be used to make sure the pointer
arithmetic comes out right.

m Since chars are 1 byte, casting a pointer as a char pointer
then makes arithmetic on it work “normally.”

int *ptr = 0x10203040

(char *)ptr + 2 = 0x10203042

char *ptr2

0x10203048

char *ptr3 = (char *) (ptr + 2)

1
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Examples

1. int *ptr = (int *) 0x12341234,;
int *ptr2 = ptr + 1; = 0x12341238

2. char *ptr = (char *) 0x12341234;
char *ptr2 = ptr + 1; = 0x12341235

3. void *ptr
void *ptr2

(int *) 0x12341234;
ptr + 1; = 0x12341235

4. int *ptr = (int *) 0x12341234;
int *ptr2 = ((int *) (((char *) ptr) + 1)));

= 0x12341235 ©®

12
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Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan
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Macros

#define  NAME replacement-text

m Maps “name” to a definition or instruction.

m Macros are expanded by the preprocessor, i.e., before
compile time.

m They’re faster than function calls.

m For malloc lab: use macros to give you quick (and reliable)
access to header information — payload size, valid bit,
pointers, etc.

14



Carnegie Mellon

Macros

m Useful for “magic number” constants — acts like a naive
search-and-replace
= #define ALIGNMENT 8
m Useful for simple accesses and computations

= Use parentheses for computations.
#define multByTwoA(x) 2%x
#define multByTwoB(x) 2*(x)

" multByTwoA(5+1) =2%5+1 =11
" multByTwoB(5+1) =2*(5+1) =12

15
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Macros

m Useful for debugging
=  FILE__ isthe file name (%s)
=  LINE__ isthe line number (%d)
=  func__ isthe functionit’sin (%s)

#include <stdio.h>

int hello(){ Output:
printf("hello from function %¥s\n", __func__);

}

| e hello from function hello

1Nt mawn . s .
hello0): This is line 9. _ |
printf("This is line %d.\n", __LINE__); Belongs to function: main
printf("Belongs to function: %s\n", __func__); In filename: macros.c
printf("In filename: %s\n", __FILE__);

16
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Macros

m Useful for debugging: conditional printfs
// #define DEBUG

# ifdef DEBUG

#define dbg printf(...) printf(_ VA ARGS )
#else

#define dbg printf(...)

#endif

17
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Inline Functions

m Alternative to macros: still more efficient than a function
call, and easier to get right!

#define max(A,B) ((A) > (B) ? (A) : (B))
VS.
inline int max(int a, int b) {

return a > b ? a : b?

}

m The compiler replaces each call to the function with the
code for the function itself.

(So, no stack setup, no call/ret.)

m Useful for small, frequently called functions.

18
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Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan
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Malloc Design

m You have a ton of design decisions to make! ©
m Thinking about fragmentation
m Method of managing free blocks

" |mplicit List

= Explicit List

= Segregated Free List

m Policy for finding free blocks
= First fit
= Next fit
= Best fit

m Free-block insertion policy
m Coalescing (or not)

20
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Fragmentation

m Internal fragmentation
= Result of payload being smaller than block size.
= Header & footer
= Padding for alignment
= Mostly unavoidable.

21
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Fragmentation

m External fragmentation

® QOccurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc (4)
p2 = malloc (5)
p3 = malloc(6)
free (p2)

p4 = malloc(6) Oops! (what would happen now?)

= Some policies are better than others at minimizing external
fragmentation.

22
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Managing free blocks

m Implicit list 1 word
= Uses block length to find the next block. —
= Connects all blocks (free and allocated). Size a

= All blocks have a 1-word header before the
payload that tells you:

o Payload
= jts size (so you know where to look for the
next header) and
= whether or not it’s allocated Optional
padding

" You may also want a 1-word footer so that you

can crawl the list in both directions to coalesce. Format of allocated
and free blocks

— N N
5 1| a| | | |s HENRE
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Managing free blocks

m Explicit list

1 word 1 word
= A list of free blocks, each of which A A
. e N an N
stores a pointer to the next free X X
Size a Size a
block.
= Since only free blocks store this N
info, the pointers can be stored Payload and Prev
where the payload would be. padding
" This allows you to search the free
blocks much more quickly. Size a Size a

= Requires an insertion policy.
Allocated blocks Free blocks

/\
s| AL [ e 1 Jel T 1T T I2
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Managing free blocks

m Segregated free list
= Each size class has its own free list.

" Finding an appropriate block is much faster (so next fit may
become good enough); coalescing and reinsertion are harder.

1-2 —> —> —> —
3 — — — — —
4 — — .
5-8 —> —
9-inf .

25
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Finding free blocks

m First fit
= Start from the beginning.
® Find the first free block.
" Linear time.
m Next fit
= Search starting from where previous search finished.
= Often faster than first fit.
m Best fit

" Choose the free block closet in size to what you need.

= Better memory utilization (less fragmentation), but it’s very slow to
traverse the full list.

m What if no blocks are large enough?
= Extend the heap

26
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Insertion policy

m Where should free blocks go?
= Blocks that have just been free()d.
= “Leftovers” when allocating part of a block.

m LIFO (Last In First Out)

" |nsert the free block at the beginning of the list.
= Simple and constant time.

= Studies suggest potentially worse fragmentation.

m Address-Ordered

= Keep free blocks list sorted in address order.
= Studies suggest better fragmentation.
= Slower since you have to find where it belongs.

27
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Coalescing policy

m Use the block size in the header to look left & right.

Case 1 Case 2 Case 3 Case 4
Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

m Implicit list:

= Write new size in the header of first block & footer of last block.
m Explicit list:

= Must also relink the new block according to your insertion policy.

m Segregated list:

" Must also use the new block size to figure out which bucket to put
the new block in.

28
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Agenda

Malloc Overview

Casting & Pointer Review
Macros & Inline Functions
Malloc Design

Debugging & an Action Plan
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Debugging

m Debugging malloc lab is hard!
" rubber duck debugging
= GDB
" valgrind
" mm_checkheap

30
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mm_checkheap

m mm_checkheap
= A consistency checker to check the correctness of your heap.

= Write it early and update as needed.
= What to check for? Anything that could go wrong!

= address alignment = consistency of linked list pointers
= consistency of header & footer = whether blocks are being placed in
= whether free blocks are coalescing the right segregated list

= Focus on correctness, not efficiency.

" Once you get it working, it should be silent and only output when
your heap has messed up.

" You can insert a call to it before & after functions to pin down
exactly where things are going wrong.

= Do not request debugging help from a TA without a working
checkheap.

3



Carnegie Mellon

Suggested action plan

1. Start early — make the most use of empty office hours.

2. Keep consulting the handout (e.g. the “rules”)
throughout your coding process.

Understand and implement a basic implicit list design.
Write your heap checker.

Come up with something faster/more memory efficient.
Implement it.

Debug it.

Git commit and/or submit.

Goto 5.

0 % NS U R W
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Questions?

m GOOD LUCK!!
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