15-213, Fall 2010
Lab Assignment L3: The Buffer Bomb
Assigned: Thu, Sep 16, Due: Thu, Sep 23, 11:59PM
Last Possible Time to Turn in: Sun, Sep 26, 11:59PM

All course staff (5- 213- st af f @s. cmu. edu) is the lead person for this assignment.

Introduction

This assignment will help you develop a detailed understandf 1A-32 calling conventions and stack
organization. It involves applying a serieshafffer overflow attacken an executable filbuf bornb in the
lab directory.

Note: In this lab, you will gain firsthand experience with one of thethods commonly used to exploit

security weaknesses in operating systems and networkrse®@er purpose is to help you learn about the
runtime operation of programs and to understand the nafutleisoform of security weakness so that you
can avoid it when you write system code. We do not condone gheotithis or any other form of attack to

gain unauthorized access to any system resources. Thergraneal statutes governing such activities.

Logistics

As usual, this is an individual project.

Even though you will be exploiting a program that uses Ist8R-bit calling convention, you will be running
this lab on one of the class’s 64-bit Shark machines (the saawhines you used for Lab 2). We generated
the lab usingycc’s - B2 flag, so all code produced by the compiler follows 1A-32 rul@éis should be
enough to convince you that the compiler can use any callimgention it wants, so long as it's consistent.

Hand Out Instructions
You can obtain your buffer bomb from the Autolab site

http://autol ab. cs. crmu. edu

After logging in to Autolab, seleduf f er| ab - > Downl oad Lab Materi al s. The Autolab server
will return at ar file calledbuf | ab- handout . t ar to your browser.

Start by copyingbuf | ab- handout . t ar to a (protected) directory in which you plan to do your work.
Then give the command ‘ar xvf bufl ab- handout . tar”. As usual, donot untar the handout on
a machine other than an Andrew Linux machine or Shark machitess you know you're using tools
that don’t mangle line endings or file permissions. This witate a directory callebduf | ab- handout
containing the following three executable files:

bufbomb: The program you will attack.
makecookie Generates a “cookie” based on your userid.

hex2raw: A utility to help convert between string formats.

In the following instructions, we will assume that you hawpied the three programs to a protected local
directory, and that you are executing them in that localadogy.

Userids and Cookies

Phases of this lab will require a slightly different solutiom each student. The correct solution will be
based on your Andrew ID.

A cookieis a string of eight hexadecimal digits that is (with high Ipability) unique to your userid (i.e.,
Andrew user name). You can generate your cookie withnthileec ooki e program giving your user name
as the argument. For example:

uni x> ./ makecooki e bovi k
0x1005b2b7

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

The BUFBOMB program reads a string from standard input. It does so wighfiinctionget buf defined
below:

1 int getbuf()

2 {

3 char buf[32];
4 Get s(buf);

5 return 1;

6}

The functionGet s is similar to the standard library functiapet s—it reads a string from standard input
(terminated by\ n’ or end-of-file) and stores it (along with a null terminatetf)the specified destination.
In this code, you can see that the destination is an dredyhaving sufficient space for 32 characters.

Get s (andget s) grabs a string off the input stream and stores it into itsidason address (in this case
buf). However,Get s() has no way of determining whethleuf is large enough to store the whole input.
It simply copies the entire input string, possibly overringnthe bounds of the storage allocated at the
destination.

If the string typed by the user et buf is no more than 31 characters long, it is clear that buf will
return 1, as shown by the following execution example:

uni x> ./ bufbonb -t bovik
Type string: | |ove 15-213.
Dud: getbuf returned 0Ox1

Typically an error occurs if we type a longer string:

uni x> ./ bufbonb -t bovik
Type string: It is easier to love this class when you are a TA.
Quch!: You caused a segrmentation fault!

As the error message indicates, overrunning the buffecaiyi causes the program state to be corrupted,
leading to a memory access error. Your task is to be more icleitie the strings you feeduFBOMB so that
it does more interesting things. These are cadieploitstrings.

BurFBoOMB takes several different command line arguments:

-t userid Operate the bomb for the indicated userid. You should alyagsgide this argument for several
reasons:

e Itis required to log your successful attacks to the Autolatver.

e BUFBOMB determines the cookie you will be using based on your usagdijoes the program
MAKECOOKIE.

e We have built features intBUFBOMB so that some of the key stack addresses you will need to
use depend on your userid’s cookie.

- h: Print list of possible command line arguments

- n: Operate in “Nitro” mode, as is used in Level 4 below.

At this point, you should think about the x86 stack structutmst and figure out what entries of the stack you
will be targeting. You may also want to think abcexactlywhy the last example created a segmentation
fault, although this is less clear.

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for printing
characters. The programex2RAwW can help you generate thesaw strings. It takes as input hex-
formattedstring. In this format, each byte value is represented byhewodigits. For example, the string
“012345” could be entered in hex format a80 31 32 33 34 35.” (Recall that the ASCII code for
decimal digitx is 0x3x.)

The hex characters you passx2rRAw should be separated by whitespace (blanks or newlinesg.ohre
mend separating different parts of your exploit string wiwlines while you're working on itHEX2RAW
also supports C-style block comments, so you can mark offosecof your exploit string. For example:

bf 66 7b 32 78 /* nov $0x78327b66, Yedi */

Be sure to leave space around both the starting and endingeotrstrings (/*, */) so they will be properly
ignored.

If you generate a hex-formatted exploit string in the &bepl oi t . t xt , you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string thraggli2rRAW.
uni x> cat exploit.txt | ./hex2raw | ./bufbomb -t bovik
2. You can store the raw string in a file and use I/O redirectiosupply it toBUFBOMB:

uni x> ./ hex2raw < exploit.txt > exploit-raw txt
uni x> ./ bufbonb -t bovik < exploit-rawtxt

This approach can also be used when runmngsomB from within GDB:

uni x> gdb buf bonb
(gdb) run -t bovik < exploit-rawtxt

Important points:

e Your exploit string must not contain byte valOx0A at any intermediate position, since this is the
ASCII code for newline { n’). When Get s encounters this byte, it will assume you intended to
terminate the string.

e HEX2RAW expects two-digit hex values separated by a whitespacef y®w iwant to create a byte
with a hex value of 0, you need to specify 00. To create the WadEADBEEF you should pass DE
AD BE EF toHEX2RAW.

When you correctly solve one of the levesjFBoMB will automatically send a notification to the Autolab
server. The server will test your exploit string to make sitireally works, and it will update the Autolab
Web status page indicating that your userid (listed by racke) has completed this level.

Unlike the Bomb Lab, there is no penalty for making mistakethis lab. Feel free to fire away BUFBOMB
with any string you like. Of course, you shouldn’t brute fettis lab either, since it would take longer than
you have to do the assignment and probably cause networkepnsb

4

Level O: Candle (10 pts)

The functionget buf is called withinBuFBOMB by a functiont est having the following C code:

1 void test()

2 {

3 int val;

4 vol atile int local = Oxdeadbeef;

5 val = getbuf();

6 [+ Check for corrupted stack =/

7 if (local !'= Oxdeadbeef) {

8 printf("Sabotaged!: the stack has been corrupted\n);
9 }

10 else if (val == cookie) {

11 printf("Boom : getbuf returned Ox%\n", val);
12 val i dat e(3);

13 }

14 el se {

15 printf("Dud: getbuf returned Ox%\n", val);
16 }

17 }

Whenget buf executes its return statement (line Sgaft buf), the program ordinarily resumes execution
within functiont est (atline 7 of this function). We want to change this behawtiithin the filebuf bornb,
there is a functiorsmok e having the following C code:

voi d snoke()

{
printf("Snoke!: You called smoke()\n");
val i dat e(0)
exit(0);

}

Your task is to geBUFBOMB to execute the code famoke whenget buf executes its return statement,
rather than returning tbest . Note that your exploit string may also corrupt parts of tteck not directly
related to this stage, but this will not cause a problem,essmoke causes the program to exit directly.

Some Advice

¢ All the information you need to devise your exploit string this level can be determined by exam-
ining a disassembled version ®FBOMB. Useobj dunp - d to get this dissembled version.

e Be careful about byte ordering.

e You might want to useDB to step the program through the last few instructiongeff buf to make
sure it is doing the right thing.

e The placement obuf within the stack frame foget buf depends on which version @fcc was
used to compiléuf bonb, so you will have to read some assembly to figure out its traation.

Level 1: Sparkler (10 pts)
Within the filebuf bonb there is also a functiohi zz having the following C code:

void fizz(int val)

{
if (val == cookie) {
printf("Fizz!: You called fizz(Ox%)\n", val);
val i date(1);
} else
printf("Msfire: You called fizz(0Ox%)\n", val);
exit(0);
}

Similar to Level 0, your task is to g&@UFBOMB to execute the code fdri zz rather than returning to
t est . In this case, however, you must make it appearitaz as if you have passed your cookie as its
argument. How can you do this?

Some Advice

¢ Note that the program won't really cdili zz—it will simply execute its code. This has important
implications for where on the stack you want to place yourke@o

Level 2: Firecracker (15 pts)

A much more sophisticated form of buffer attack involvesyimg a string that encodes actual machine
instructions. The exploit string then overwrites the ratpointer with the starting address of these instruc-
tions. When the calling function (in this caget buf) executes it$ et instruction, the program will start
executing the instructions on the stack rather than ratgcnWith this form of attack, you can get the pro-
gram to do almost anything. The code you place on the stacKlexictheexploitcode. This style of attack
is tricky, though, because you must get machine code ontst#ol and set the return pointer to the start of
this code.

Within the filebuf bonb there is a functiolang having the following C code:

i nt gl obal _value = 0;

voi d bang(int val)

{
i f (global_value == cookie) {
printf("Bang!: You set gl obal _value to Ox%\n", gl obal_val ue);
val i dat e(2);
} else
printf("Msfire: gl obal _value = 0x%\n", gl obal val ue);
exit(0);
}

Similar to Levels 0 and 1, your task is to gaiFBOMB to execute the code fdrang rather than returning
tot est . Before this, however, you must set global variajpleobal _val ue to your userid’s cookie. Your
exploit code should sefl obal _val ue, push the address biang on the stack, and then execute et
instruction to cause a jump to the code bang.

Some Advice

e You can useGDB to get the information you need to construct your exploiingtr Set a break-
point within get buf and run to this breakpoint. Determine parameters such asddeess of
gl obal _val ue and the location of the buffer.

e Determining the byte encoding of instruction sequencesangdhs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code didataining the instructions and data
you want to put on the stack. Assemble this file withc -m32 -c and disassemble it withBJDUMP
-D. You should be able to get the exact byte sequence that yduyyd at the prompt. (A brief
example of how to do this is included at the end of this writgup

e Keep in mind that your exploit string depends on your machyoer compiler, and even your userid’s
cookie. Do all of your work on a Shark machine, and make suteigclude the proper userid on the
command line t8UFBOMB.

e Watch your use of address modes when writing assembly codge tHatnmovl $0x4, %ax
moves thevalue 0x00000004 into register¥eax; whereasmovl 0x4, % eax moves the value
at memory locatiorOx00000004 into %gax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjarp or acal | instruction to jump to the code fdrang. These
instructions uses PC-relative addressing, which is veckytrto set up correctly. Instead, push an
address on the stack and usettle instruction.

Level 3: Dynamite (20 pts)

Our preceding attacks have all caused the program to jumpeadde for some other function, which
then causes the program to exit. As a result, it was acceptahise exploit strings that corrupt the stack,
overwriting saved values.

The most sophisticated form of buffer overflow attack caulsegprogram to execute some exploit code that
changes the program’s register/memory state, but makgwtigegam return to the original calling function
(t est in this case). The calling function is oblivious to the aktad his style of attack is tricky, though,
since you must: 1) get machine code onto the stack, 2) seeéthenrpointer to the start of this code, and 3)
undo any corruptions made to the stack state.

Your job for this level is to supply an exploit string that iglauseget buf to return your cookie back to

t est, rather than the value 1. You can see in the code st that this will cause the program to go
“Boonl .” Your exploit code should set your cookie as the return @ahestore any corrupted state, push
the correct return location on the stack, and executetainstruction to really return to est .

Some Advice

e You can usesDB to get the information you need to construct your exploiingtr Set a breakpoint
within get buf and run to this breakpoint. Determine parameters such asatlesl return address.

e Determining the byte encoding of instruction sequencesandhs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code did@taining the instructions and data
you want to put on the stack. Assembile this file withc and disassemble it witbBibuMP. You
should be able to get the exact byte sequence that you wél &ayphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your machyoer compiler, and even your userid’'s
cookie. Do all of your work on a Shark machine, and make suteigclude the proper userid on the
command line t8UFBOMB.

Once you complete this level, pause to reflect on what you hagemplished. You caused a program to
execute machine code of your own design. You have done sauffieiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

Please note: You'll need to use therf,” command-line flag in order to run this stage.

From one run to another, especially by different users, Haetestack positions used by a given procedure
will vary. One reason for this variation is that the valuesatbfenvironment variables are placed near the
base of the stack when a program starts executing. Envimhwagiables are stored as strings, requiring
different amounts of storage depending on their values.sTthe stack space allocated for a given user
depends on the settings of his or her environment variabBtack positions also differ when running a

program undeGDB, SinceGDB uses stack space for some of its own state.

In the code that callget buf , we have incorporated features that stabilize the stacthagdhe position of
get buf 's stack frame will be consistent between runs. This madessible for you to write an exploit
string knowing the exact starting addressooff . If you tried to use such an exploit on a normal program,
you would find that it works some times, but it causes segntientfaults at other times. Hence the name
“dynamite”—an explosive developed by Alfred Nobel that @ns stabilizing elements to make it less
prone to unexpected explosions.

For this level, we have gone the opposite direction, makimgstack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explodivat is notoriously unstable.

When you rumsuFBOMB with the command line flag-“n,” it will run in “Nitro” mode. Rather than calling
the functionget buf , the program calls a slightly different functi@ret buf n:

i nt getbufn()

{
char buf[512];
Get s(buf);

return 1;

This function is similar taget buf , except that it has a buffer of 512 characters. You will ndesl &ddi-
tional space to create a reliable exploit. The code thas gat buf n first allocates a random amount of
storage on the stack (using library functiahl oca) that ranges between 0 and 255 bytes. Thus, if you
were to sample the value éfebp during two successive executions @ét buf n, you would find they
differ by as much as-127.

In addition, when run in Nitro modeBUFBOMB requires you to supply your string 5 times, and it will
executeget buf n 5 times, each with a different stack offset. Your exploitrggrmust make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. ®m@gain, your job for this level is to supply an
exploit string that will causget buf n to return your cookie back to test, rather than the value L &&n
see in the code for test that this will cause the program toKEBOOM .” Your exploit code should set
your cookie as the return value, restore any corrupted,gpateh the correct return location on the stack,
and execute aet instruction to really return tb est n.

Some Advice

e You can use the programEeEX2rRAW to send multiple copies of your exploit string. If you have a
single copy in the filexpl oi t . t xt , then you can use the following command:

uni x> cat exploit.txt | ./hex2raw -n | ./bufbormb -n -t bovik

You must use the same string for all 5 executiong®f buf n. Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (cazte90). It may
be useful to read about "nop sleds” on page 262 of the textbook

Logistical Notes

Hand in occurs automatically to the Autolab server whengeer correctly solve a level. Upon receiving
your solution, the server will validate your string and ufgdthe class status web page. You should check
this page after your submission to make sure your string bas balidated. [If you really solved the level,
your stringshouldbe valid.]

Note that each level is graded individually. You do not needd them in the specified order, but you will
get credit only for the levels for which the server receiveslid message. You can check the class status
page to see how far you've gotten.

TheBuFBOMB utility usually only callsval i dat e once you have successfully completed a phasé.i dat e
forwards your exploit string to the Autolab server, wheris ithecked. If you calWal i dat e by some other
means, it will send a non-working exploit string. The Autokerver will generate an Invalid Answer error.

Invalid solutions are marked on the status page with anishien. Click on this icon to see the diagnostic
report generated by running your solution.

Furthermore, Autolab creates the status page using thst lesults it has for each phase. If you call
val i dat e and end up sending an incorrect exploit string to Autolalwiit mark your solution to that
phase as invalid, even if you solved it correctly at an eatliee. To fix this, send your correct solution
again.

Good luck and have fun!

"Hacking” Buflab

For many of these levels it is possible to make your explditrrepast conditional checks in our code. For
example, in Level 2: Firecracker, it is possible to have yaxploit return directly to the call to validate and
skip the check ofyl obal val ue == cooki e. This is not a valid solution to this level, through this
entire lab,returning anywhere except for the very beginning of any fundion is considered an invalid
submission and will receive zero points Autolab will check for this when grading your solution. We
will read your submissions after the deadline and subtratttp for any invalid submissions not caught by
Autloab.

Generating Byte Codes

UsingGccas an assembler amBJDUMPas a disassembler makes it convenient to generate the tgés co
for instruction sequences. For example, suppose we writke &fianpl e. S containing the following
assembly code:

Exanpl e of hand-generated assenbly code

push $0xabcdef # Push val ue onto stack

add $17, %eax # Add 17 to Y%ax

.align 4 # Following will be aligned on multiple of 4
.long Oxf edcba98 # A 4-byte constant

The code can contain a mixture of instructions and data. Wingtto the right of a#' character is a
comment.

We can now assemble and disassemble this file:

uni x> gcc -nB2 -c exanple.S
uni x> obj dunp -d exanple.o > exanple.d

The generated filexanpl e. d contains the following lines

0: 68 ef cd ab 00 push $0xabcdef
5: 83 c0 11 add $0x11, %eax

10

8: 98 cwt |
9: ba . byte Oxba
a:. dc fe fdivr 9%t, %t (6)

Each line shows a single instruction. The number on thenelitates the starting address (starting with 0),
while the hex digits after the * character indicate the byte codes for the instruction. sflwe can see that
the instructionppush $0x ABCDEF has hex-formatted byte co®8 ef cd ab 00.

Starting at address 8, the disassembler gets confuseigsltdrinterpret the bytes in the filecanpl e. o as
instructions, but these bytes actually correspond to ddédée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®8 ba dc fe. This is a byte-reversed version of the data woxd-EDCBA98.
This byte reversal represents the proper way to supply theskys a string, since a little endian machine
lists the least significant byte first.

Finally, we can read off the byte sequence for our code as:

68 ef cd ab 00 83 cO 11 98 ba dc fe

This string can then be passed throuwEx2RAW to generate a proper input string we can give tG-BOMB.
Alternatively, we can edit example.d to look like this:

68 ef cd ab 00 /+* push $0xabcdef =/
83 ¢0 11 /* add $0x11, %eax */

98

ba dc fe

which is also a valid input we can pass througbx2rRAW before sending tBUFBOMB.

11

