15-213

“The course that gives CMU its Zip!”

Virtual Memory
Oct. 21, 2003

Topics
= Motivations for VM
= Address translation
= Accelerating translation with TLBs

classl7.ppt

Classic Motivations for Virtual Memory

Use Physical DRAM as a Cache for the Disk
= Address space of a process can exceed physical memory size
= Sum of address spaces of multiple processes can exceed
physical memory
Simplify Memory Management
= Multiple processes resident in main memory.
Each process has its own address space
= Only “active” code and data is actually in memory
Allocate more memory to process as needed.

Provide Protection
= One process can’t interfere with another.
Because they operate in different address spaces.
= User process cannot access privileged information
Different sections of address spaces have different permissions.

_2- 15-213, F'03

Modern Motivations for VM

® Memory sharing and control

= Copy on write: share physical memory among multiple
processes until a process tries to write to it. At that point
make a copy. For example, this eliminates the need for
vfork ()

= Shared libraries
= Protection (debugging) via Segment-Drivers (Solaris)

® Sparse address space support (64bit systems)

® Memory as a fast communication device
m Part of memory is shared by multiple processes

® Multiprocessing (beyond the scope of 15-213)

—3- 15-213, F'03

Why does VM Work?

It is not used!

—4- 15-213, F'03

Page 1

Motivation #1: DRAM a “Cache” for Disk

Full address space is quite large:

u 32-bit addresses: ~4,000,000,000 (4 billion) bytes
u 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

Disk storage is ~500X cheaper than DRAM storage
=80 GB of DRAM: ~ $25,000

Levels in Memory Hierarchy

cache virtual memory
>

[
CPU 88 @ 528 Memory 4KB
=80 GB of disk: ~ $50 M
e
To access large amounts of data in a cost-effective manner, Redi Cach " Disk M
the bulk of the data must be stored on disk egister ache emory isk Memory
Size: 328 32 KB-4MB 1024 MB 100 GB
Latency: <1ns ~2ns >50ns >8 ms
1GB: ~$300 160 GB: ~$100 $/Mbyte: $125/MB $0.20/MB $0.001/MB
: Y Y
4 MB: ~$500 < Line size: 8(16) B 32(64)B 4(64+) KB
¢ »| DRAM larger, slower, cheaper >
-5— 15-213, F'03 -6 — 15-213, F'03

DRAM vs. SRAM as a “Cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM
= Access latencies:
© DRAM ~10X slower than SRAM
® Disk ~160,000X slower than DRAM

= Importance of exploiting spatial locality:

® First byte is ~160,000X slower than successive bytes on disk
vs. ~4X improvement for pag

de vs. regular
= Bottom line:

to DRAM

® Design decisions made for DRAM caches driven by enormous cost
of misses

DRAM

15-213, F'03

Impact of Properties on Design

If DRAM was to be organized similar to an SRAM cache, how
would we set the following design parameters?
u Line size?

Large, since disk better at transferring large blocks
m Associativity?
High, to minimize miss rate
= Write through or write back?
Write back, since can’t afford to perform small writes to disk
What would the impact of these choices be on:
= miss rate
Extremely low. <<1%
m hit time
Must match cache/DRAM performance
= miss latency
Very high. ~20ms
= tag storage overhead
Low, relative to block size

15-213, F'03

Page 2

Locating an Object in a “Cache”

SRAM Cache

= Tag stored with cache line

= Maps from cache block to memory blocks
® From cached to uncached form
® Save a few bits by only storing tag

= No tag for block not in cache

= Hardware retrieves information
® can quickly match against multiple tags

“Cache”

Object Name

=7

—9- 15-213, F'03

Locating an Object in “Cache” (cont.)

DRAM Cache
= Each allocated page of virtual memory has entry in page table
= Mapping from virtual pages to physical pages
©® From uncached form to cached form
= Page table entry even if page not in memory
® Specifies disk address
® Only way to indicate where to find page

= OS retrieves information

Page Table “Cache”

10— 15-213, F'03

A System with Physical Memory Only

Examples:
Most Cray machines, early PCs, nearly all embedded systems, etc.

Memory

Physical
Addresses

= Addresses generated by the CPU correspond directly to bytes in
physical memory

—11- 15-213, F'03

A System with Virtual Memory

Examples:
Workstations, servers, modern PCs, etc.

Memory

Page Table
Virtual

Addresses Physical

Addresses

= Address Translation: Hardware converts virtual addresses to
physical addresses via OS-managed lookup table (page table)

12— 15-213, F'03

Page 3

Page Faults (like “Cache Misses”)

Servicing a Page Fault

1) Initiate Block Read

B - .
What if an object |s.orT disk I:ather than in m.emory. Processor Signals Controller A
= Page table entry indicates virtual address not in memory = Read block of length P rocesor
= OS exception handler invoked to move data from disk into starting at disk address X and ([;3) Read
memory store starting at memory one
® current process suspends, others can resume address Y
® OS has full control over placement, etc.
Read Occurs \
Before fault Memory After fault " = Direct Memory Access (DMA) ‘ MAeTOTyHO-bug ‘
lemol
= = Under control of I/O controller (2) DMA ‘ v
Virtual Page Table Page Table Transfer[|
lirtual i — .
el Virtual physical | ——] 1/ O Controller Signals Memory cdfftroller
— Completion
—— = Interrupt processor Dick| | Disk
IS
— = OS resumes suspended —_— —
process
-13- 15-213, F'03 — 14— 15-213, F'03

Motivation #2: Memory Management

Multiple processes can reside in physical memory.

How do we resolve address conflicts?
= what if two processes access something at the same

address?

%esp

Linux/x86
process

memory
image

15—

Kernel virtual memory

&

Stack

A

Memory mapped region
for shared libraries

A

memory invisible to
user code

Runtime heap
(via malloc)

Uninitialized data (.bss)

I d data (.data)

Program text (.text)

forbidden

the “brk” ptr

15-213, F'03

Solution: Separate Virt. Addr. Spaces

= Virtual and physical address spaces divided into equal-sized

blocks

Blocks are called “pages” (both virtual and physical)
= Each process has its own virtual address space
Operating system controls how virtual pages as assigned to

physical memory

0
Virtual 0 — | AddressTi Physical
Address VP1 PP2 Address
Space for VEZ (SE?;ZE;\A)
Process 1:]

(e.g., y

PP7 ¥

libi d
Virtual (Y — forary code)
Address o PP 10
Space for
Process 2: N1 [M-1

T

15-213, F'03

Page 4

Contrast: Macintosh Memory Model
MAC OS 1-9

= Does not use traditional virtual memory
P1 Pointer Table Shared Address Space

Pro:@, A
-/

[
B
“Handles” P2 Pointer T: c
Process P |
'.é D
«—
E

All program objects accessed through “handles
= Indirect reference through pointer table
= Objects stored in shared global address space

17— 15-213, F'03

Macintosh Memory Management

Allocation / Deallocation
= Similar to free-list management of malloc/free

Compaction

= Can move any object and just update the (unique) pointer in
pointer table

P1 Pointer Table Shared Address Space
B
Pro:@ .l
Handles '7 A
P2 Pointgr c
Process P
D
|
E
-18- 15-213, F'03

Mac vs. VM-Based Memory Mgmt

Allocating, deallocating, and moving memory:
= can be accomplished by both techniques

Block sizes:

= Mac: variable-sized
© may be very small or very large

u VM: fixed-size
® size is equal to one page (4KB on x86 Linux systems)

Allocating contiguous chunks of memory:

= Mac: contiguous allocation is required

= VM: can map contiguous range of virtual addresses to

disjoint ranges of physical addresses

Protection

= Mac: “wild write” by one process can corrupt another’s data

19— 15-213, F'03

MAC OS X

“Modern” Operating System
= Virtual memory with protection

= Preemptive multitasking
® Other versions of MAC OS require processes to voluntarily
relinquish control

Based on MACH OS
= Developed at CMU in late 1980’s

20— 15-213, F'03

Page 5

Motivation #3: Protection

Page table entry contains access rights information
mhardware enforces this protection (trap into OS if violation occurs)

VM Address Translation

Virtual Address Space
= V={0,1,...,N-1}

Page Tables Memory
Physical Address Space

] = P={0,1,...,M-1}

Process i: = = M<N (usually, but >=4 Gbyte on an IA32 possible)
] .
] Address Translation
—— = MAP: Vo P U {2}
= = For virtual address a:
| ® MAP(a) = a’ if data at virtual address a at physical address a’

i] in P
Process j: | ® MAP(a) = if data at virtual address a not in physical memory
» Either invalid or stored on disk
—21— 15-213, F'03 22— 15-213, F'03

VM Address Translation: Hit

Processor

Hardware Mai
Addr Trans ain
a Meachani — 3| Memory

a'

e \

virtual address part of the physical address
on-chip
Memory
Management
Unit
(MMU)

23— 15-213, F'03

VM Address Translation: Miss

page fault
r—l
%]
;‘d&gf Trans Main Secondary
a Mechanism | ——|Memory «—| memory
/ a'
virtual address part of the physical address gl?spti;f:srf':rs
&2}:2','; (only if miss)
Management
Unit
(MMU)

—24- 15-213, F'03

Page 6

VM Address Translation

Parameters
m P = 2° = page size (bytes).
= N =2" = Virtual address limit
s M =2m = Physical address limit

n-1 p p-1 0
‘ virtual page number | page offset

virtual address

Unchanged

address translation

p p-1 0
page offset

m-1

‘ physical page number | physical address

Page offset bits don’t change as a result of translation

—25- 15-213, F'03

Page Tables
Virtual Page Memory resident
Number page table
|:| (physical page .
Valid or disk address) Physical Memory
1 o
1 LN
0 LY
1 o _—|
L el
ClN
0 *
1 [<
0 & <1 Disk Storage
1 () e (swap file or
N N \\ regular file system file)
SO\
\\\\\ X
MY
N\ E—
S
b
_26-

15-213, F'03

Address Translation via Page Table

VPN acts

virtual address
n-1 p p-1 0
‘ virtual page number (VPN) | page offset

as
tableinde valid access physical page number (PPN|

if valid=0
then page
not in memory

«—

m-1 p p-1 v

page offset

lphysical page number (PPN)‘

physical address

27— 15-213, F'03

Page Table Operation

Translation
= Separate (set of) page table(s) per process

virtual address

page table base register

n-1 p p-1 0
VPNacts [virtual page number (VPN) | page offset
as
table index~"_ 14 access physical page number (PPN)
[I I]
[I []
if valid=0
then page
notin memory m-1 p p-1 0

[physical page number (PPN] page offset

physical address

_28-

= VPN forms index into page table (points to a page table entry)

15-213, F'03

Page 7

Page Table Operation

Computing Physical Address
= Page Table Entry (PTE) provides information about page
o if (valid bit = 1) then the page is in memory.
Use physical page number (PPN) to construct address
o if (valid bit = 0) then the page is on disk

Page fault
page table base register virtual address
n-1 p p-1 0
VPNacts [virtual page number (VPN) | page offset
as
table index—"_ 14 access physical page number (PPN
I I | |
L I |]
if valid=0
then page
notinmemory m-1 p p-1 [
physical page number (PPN]__page offset
physical address
29— 15-213, F'03

Page Table Operation

Checking Protection
= Access rights field indicate allowable access
® e.g., read-only, read-write, execute-only
® typically support multiple protection modes (e.g., kernel vs. user)
= Protection violation fault if user doesn’t have necessary

permission
page table base register virtual address
E— n1 p p-t 0
VPNacts [virtual page number (VPN) | page offset
as
table Iindex~"_ _\i4 access physical page number (PPN|
T —]
[I | |
[| | |
if valid=0
then page
notinmemory m-1 p p-1 0

[physical page number (PPN) __page offset

physical address

—30- 15-213, F'03

Integrating VM and Cache

VA PA miss
——|

CPU Trans- Cache Main
lation Memory

T e]

Most Caches were “Physically Addressed”
= Accessed by physical addresses
= Allows multiple processes to have blocks in cache at same time
= Allows multiple processes to share pages

= Cache doesn’t need to be concerned with protection issues
® Access rights checked as part of address translation

Perform Address Translation Before Cache Lookup
= But this could involve a memory access itself (of the PTE)
= Of course, page table entries can also become cached

—31- 15-213, F'03

Speeding up Translation with a TLB

“Translation Lookaside Buffer” (TLB)
= Small hardware cache in MMU
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of

pages
hit i
LVA i PA miss
AN]
cPU LB Cache Main
Lookup Memory
e
miss LT hit
Trans-
lation
data
32— 15-213, F'03

Page 8

Address Translation with a TLB Simple Memory System Example
n-1 p p-1 0
[Lvirtual page number | page offset] virtual address Addressing
m 14-bit virtual addresses
}%’ﬂmﬂm TLB = 12-bit physical address
[= Page size = 64 bytes
[‘# T 13 12 11 10 9 8 7 6 5 4 3 2 1 0
& I N N N O I
TLB hite— v VPN VPO
[physical address] X
tag ndex i byte offset (Virtual Page Number) (Virtual Page Offset)
alid_tag data 1 10 9o 8 7 6 5 4 3 2 1 0
: Cache N Y I I O O
I PPN PPO
[, %r) (Physical Page Number) (Physical Page Offset)
cache hite—C— | v data
- 33— 15-213, F'03 — 34— 15-213, F'03

Simple Memory System Page Table

= Only show first 16 entries

Simple Memory System TLB

TLB
= 16 entries
= 4-way associative

VPN | PPN | Valid | VPN | PPN | Valid TLBT TLBI >
00 | 28 1 08 | 13 1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ot | - [0 |09 |47 | 1 N Y N O I O
02 33 1 0A 09 1
VPN VPO

03 02 1 0B - 0
04 - 0 oc - 0
05 16 1 0D | 2D 1 Set | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid
06 - 0 0E | 11 1 0 03 - 0 09 | oD | 1 00 - 0 07 | 02 1
07 | - 0 J OF | oD | 1 1 Jos [20| 1 Joz| - [oo | -0 Joa] - 0

2 o2 [- 0 08 | - 0o | o | - o | o3| - 0

3 o7 | - 0 03 | o0 | 1 oA | 34 | 1 02 | - 0

-35- 15-213, F'03 -36— 15-213, F'03

Page 9

Simple Memory System Cache

Cache
= 16 lines
m 4-byte line size
= Direct mapped

PPN PPO
Idx | Tag |Valid| BO | B1 | B2 | B3 | ldx | Tag |Valid] BO | B1 | B2 | B3
o [19] 1 [oo | 11|23 11| 8 [24 1 [3a o0 | 51| 8
115 0 - -1 -1- 9 [[o [- [- -1-
2 [1B | 1 [oo [02| o4 [08| A [20 | 1 [93| 15 | DA | 3B
3 [36| o - -1 -1T-188Jowe o[-T-1-171-
4 [32 1 [4 [eo |8 oo c|12]o]| -] -17-7-
5 oo | 1 [3 [72| Fo || D [16 1 [o04 | 96 |34]15
6 [31 | 0 - | -1 -1 -1€e 3] 1 [8 |77]18]D0D3
7 [16 | 1+ [11 [c2|oF o3| F [14 o[-] -1]-1-
37— 15-213, F'03

Address Translation Example #1

Virtual Address 0x03D4

TLBT TLBI >
13 12 11 10 9 8 7 6

VPN VPO

VPN__ TLBI___ TLBT TLBHit? __ Page Fault? __ PPN:

Physical Address

—38— 15-213, F'03

Address Translation Example #2

Virtual Address 0x0OB8F

TLBT TLBI >
13 12 11 10 9 8 7 6

VPN VPO

VPN__ TLBI__ TLBT TLBHit? __ Page Fault? __ PPN:

Physical Address

39— 15-213, F'03

Address Translation Example #3

Virtual Address 0x0040

TLBT TLBI >
13 12 11 10 9 8 7 6

VPN VPO

VPN__ TLBI__ TLBT TLBHit? __ Page Fault? __ PPN:

Physical Address

-40- 15-213, F'03

Page 10

Multi-Level Page Tables

Given:
= 4KB (2%?) page size
= 32-bit address space

= 4-byte PTE Level 1

Problem: Table
= Would need a 4 MB page table!

® 220*4 pytes

Common solution
= multi-level page tables

= e.g., 2-level table (P6)
o Level 1 table: 1024 entries, each of
which points to a Level 2 page table.
® Level 2 table: 1024 entries, each of
which points to a page
_41-

Level 2
Tables

15-213, F'03

Main Themes
Programmer’s View
= Large “flat” address space
® Can allocate large blocks of contiguous addresses
= Processor “owns” machine

® Has private address space
® Unaffected by beh

of other pr
System View
= User virtual address space created by mapping to set of
pages
© Need not be contiguous
® Allocated dynamically
® Enforce protection during address translation
= OS manages many processes simultaneously
e Continually switching among processes
® Especially when one must wait for resource
» E.g., disk I/O to handle page fault

—42- 15-213, F'03

Page 11

