15-213

“The course that gives CMU its Zip!”

Code Optimization
Sept. 25, 2003

Topics
m Machine-Independent Optimizations
m Machine Dependent Optimizations
m Code Profiling

cl ass10. ppt

Harsh Reality

There's more to performance than asymptotic complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code is
written

m Must optimize at multiple levels:
® algorithm, data representations, procedures, and loops

Must understand system to optimize performance
m How programs are compiled and executed
m How to measure program performance and identify bottlenecks

m How to improve performance without destroying code
modularity and generality

—-2- 15-213, F'03

Limitations of Optimizing Compilers

Operate under fundamental constraint

m Must not cause any change in program behavior under any
possible condition

m Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Behavior that may be obvious to the programmer can be
obfuscated by languages and coding styles

m e.g., Dataranges may be more limited than variable types suggest

Most analysis is performed only within procedures
m Whole-program analysis is too expensive in most cases

Most analysis is based only on static information
m Compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservative

-3- 15-213, F'03

Machine-Independent Optimizations

Optimizations that you or compiler should do
regardless of processor / compiler

Code Motion

m Reduce frequency with which computation performed
e |f it will always produce same result
® Especially moving code out of loop

for (i =0; i <n; i++) {
for (i =0; i < n; i++) Int ni = n*i;

for (j =0; j < n; |j++) for (j =0; j < n; |j++4)
a[n*i +j] = Db[]j]; : a[ni +j] =Db[j];

-4 - 15-213, F'03

Compiler-Generated Code Motion

m Most compilers do a good job with array code + simple loop
structures

Code Generated by GCC
I < n; i++)
;] < n; |+t
+j] = b[j];

I < n; i++) {

n*i ;

a+ni ;

0;] < n; J++)
b[j];

o n o

i mul | %bx, Y%eax #i1*n
novl 8(%bp), Yedi #
| eal (%di, Y%eax, 4), Y%edx #
| nner Loop
. L40:
movl 12(%ebp), %edi
novl (%edi, %ecx, 4), Y%eax] (scaled by 4)
novl %eax, (Yedx) = b[j]
addl $4, %edx (scal ed by 4)
i ncl %ecx '

i1 .L40

[
a
p = a+ti*n (scaled by 4)

-5- 15-213, F'03

Reduction in Strength

m Replace costly operation with simpler one

m Shift, add instead of multiply or divide
16*x --> X << 4

e Utility machine dependent

® Depends on cost of multiply or divide instruction

® On Pentium Il or I, integer multiply only requires 4 CPU cycles
m Recognize sequence of products

for (i = 0; i < n; i++4) ;1< i+4) |
for (j =0; j <n; j++) 0; j < nj j++)

aln*i +J] =Db[]]; j1 =bljl;

-6 - 15-213, F'03

Share Common Subexpressions

m Reuse portions of expressions

m Compilers often not very sophisticated in exploiting
arithmetic properties

/* Sum nei ghbors of i,j */ int inj =1*n + j;
up = val[(i-1)*n + j]; up = val[in] - n];
down = wval[(i+1)*n + j]; down = wval[in] + n];
left = wval[i*n + j-1]; left = wval[inj - 1];
right = val[i*n + j+1]; right = val[in + 1];
sum = up + down + left + right; sum = up + down + left + right;
3 multiplications: i*n, (i-1)*n, (i+1)*n 1 multiplication: i*n

| eal -1(%dx),%ecx # i-1

i mul | %ebx, %ecx # (i-1)*n

| eal 1(%edx), %eax # 0+l

i mul | %bx, Y%eax # (1 +1)*n

I mul | %ebx, Yedx # 1i*n

-7 - 15-213, F'03

Time Scales

Absolute Time
m Typically use nanoseconds
® 109 seconds

m Time scale of computer instructions

Clock Cycles
m Most computers controlled by high frequency clock signal
m Typical Range
® 100 MHz
» 108 cycles per second
» Clock period = 10ns
® 2 GHz
» 2 X 10° cycles per second
» Clock period = 0.5ns

m Fish machines: 550 MHz (1.8 ns clock period)
_g-— 15-213, F'03

Cycles Per Element

m Convenient way to express performance of program that
operators on vectors or lists

m Length =n
m T =CPE*n + Overhead

Cycles

1000

900

800

700

600

500

400

300

200

100

0

vsumil
Slope =4.0

vsun
Slope =3.5

/

100

Elements

150

200

15-213, F'03

Vector Abstract Data Type (ADT)

| engt h 012 length—1
data e N ¢ o o
Procedures

vec_ptr new vec(int |en)
® Create vector of specified length
I nt get _vec elenent(vec ptr v, int index, int *dest)
® Retrieve vector element, store at *dest
® Return O if out of bounds, 1 if successful
I nt *get vec start(vec _ptr v)
® Return pointer to start of vector data
m Similar to array implementations in Pascal, ML, Java
® E.g., always do bounds checking

_ 10— 15-213, F'03

Optimization Example

voi d conbi nel(vec_ptr v, int *dest)
{ . .
int i;
*dest = O;
for (i =0; I <vec_ length(v); 1++) {
I nt val ;
get _vec elenent(v, i, &val);
*dest += val;
}
}
Procedure

m Compute sum of all elements of integer vector
m Store result at destination location
m Vector data structure and operations defined via abstract data
type
Pentium Il/lll Performance: Clock Cycles / Element
_11- m42.06 (Compiled -g) 31.25 (Compiled -02) 15-213, F'03

Understanding Loop

voi d conbi nel-goto(vec _ptr v,
{

int 1 = O;

I nt val ;

*dest = O;

I f (I >= vec_length(v))

got o done;
| oop:

*dest += val;
| ++;
I f (I < vec_ length(v))
got o | oop
done:

}

I nt *dest)

1 iteration

~

get _vec_elenment (v, i, &val);

>

Inefficiency

m Procedure vec_length called every iteration

m Even though result always the same

—12 —

15-213, F'03

Move vec_| engt h Call Out of Loop

voi d conbi ne2(vec_ptr v, int *dest)
{ . .
int i;
Int length = vec | ength(v);
*dest = O;
for (i =0; I <length; 1++) {
I nt val ;
get _vec elenent(v, i, &val);
*dest += val;
}
}

Optimization
m Move call to vec | engt h out of inner loop
eValue does not change from one iteration to next
e Code motion

m CPE: 20.66 (Compiled -O2)
® vec | engt h requires only constant time, but significant overhead

15-213, F'03

— 13—

Optimization Blocker: Procedure Calls

Why couldn’t compiler move vec_| en out of inner loop?

m Procedure may have side effects
® Alters global state each time called

m Function may not return same value for given arguments

® Depends on other parts of global state
® Procedure | ower could interact with strl en

Why doesn’t compiler look at code for vec_| en?
m Interprocedural optimization is not used extensively due to cost

Warning:
m Compiler treats procedure call as a black box
m Weak optimizations in and around them

- 14 - 15-213, F'03

Reduction in Strength

{ . .
int i;
int length = vec | ength(v);
Int *data = get vec start(v);
*dest = O;
for (i =0; I <length; 1++) {
*dest += datafi];

}

voi d conbi ne3(vec_ptr v, int *dest)

Optimization

— 15—

m Avoid procedure call to retrieve each vector element

® Get pointer to start of array before loop
e\Within loop just do pointer reference
o Not as clean in terms of data abstraction

m CPE: 6.00 (Compiled -02)

e®Procedure calls are expensive!
eBounds checking is expensive

15-213, F'03

Eliminate Unneeded Memory Refs

voi d conbi ne4(vec_ptr v, int *dest)
{ . .

int i;

int length = vec | ength(v);

Int *data = get vec start(v);

I nt sum = O;

for (i =0; I < length; i++)

sum += dataf[i];

*dest = sum

}

Optimization
m Don’t need to store in destination until end
m Local variable sumheld in register
m Avoids 1 memory read, 1 memory write per cycle

m CPE: 2.00 (Compiled -0O2)
eMemory references are expensive!

16— 15-213, F'03

Detecting Unneeded Memory Refs.

Combine3

Combine4

. L18:

movl (%ecx, Yedx, 4), Y%eax

addl %ax, (%edi)

. L24:

addl (%eax, Y%edx, 4), Yecx

I ncl % edx I ncl %edx
cnpl %esi , Y%edx cnpl %esi , Y%edx
il .L18 il .L24
Performance
m Combine3

®5 instructions in 6 clock cycles
® addl must read and write memory

m Combine4

—17 -

®4 instructions in 2 clock cycles

15-213, F'03

Optimization Blocker: Memory Aliasing

Aliasing

m Two different memory references specify single location
Example

mv: [3, 2, 17]

m conbi ne3(v, get _vec start(v)+2) --> 7

m conbi ne4(v, get _vec start(v)+2) --> 7

Observations

m Easy to have happen in C
® Since allowed to do address arithmetic
® Direct access to storage structures

m Get in habit of introducing local variables
® Accumulating within loops
® Your way of telling compiler not to check for aliasing

18 15-213, F'03

General Forms of Combining

{ . .
int i;
int length = vec | ength(v);
data t *data = get vec_start(v);
data_t t = | DENT;
for (i =0; I < length; i++)
t =t OP data[i];

voi d abstract conbi ned4(vec ptr v, data_t *dest)

*dest = t;
}
Data Types Operations
m Use different declarations = Use different definitions
for dat a_t of OP and | DENT
mint m+/0
m f| oat m* /1
m doubl e

~ 19—

15-213, F'03

Machine Independent Opt. Results

Optimizations
m Reduce function calls and memory references within loop

Method Integer Floating Point

+ * + *
Abstract -g 42.06 41.86 41.44 ~ 160.00
Abstract -O2 31.25 33.25 31.25 143.00
Move vec_length 20.66 21.25 21.15 [> 9 135.00
data access 6.00 9.00 8.00 _117.00
Accum. in temp 2.00 4.00 3.00) 5.00

Performance Anomaly
m Computing FP product of all elements exceptionally slow.
m Very large speedup when accumulate in temporary

m Caused by quirk of IA32 floating point
® Memory uses 64-bit format, register use 80
® Benchmark data caused overflow of 64 bits, but not 80

— 20— 15-213, F'03

Machine-Independent Opt. Summary

Code Motion
m Compilers are good at this for simple loop/array structures
m Don’t do well in presence of procedure calls and memory aliasing

Reduction in Strength

m Shift, add instead of multiply or divide
® compilers are (generally) good at this
® Exact trade-offs machine-dependent

m Keep data in registers rather than memory
® compilers are not good at this, since concerned with aliasing

Share Common Subexpressions
m compilers have limited algebraic reasoning capabilities

21— 15-213, F'03

Modern CPU Design

Instruction Control
Address

_ Fetch
Retirement Control

* ----- Unit Instruction
. Instruction Instrs. Cache

Decode
Operations

Register Updates Prediction OK?

Integer/gGeneral
Branch j§ Integer

v v
Operation Results

Addr. Addr.
Data Data

Execution

22 15-213, F'03

CPU Capabilities of Pentium llI

Multiple Instructions Can Execute in Parallel
m] load
m 1 store
m 2 integer (one may be branch)
m 1 FP Addition
m 1 FP Multiplication or Division

Some Instructions Take > 1 Cycle, but Can be Pipelined

m Instruction Latency Cycles/Issue
m Load / Store 3 1
m Integer Multiply 4 1
m Integer Divide 36 36
m Double/Single FP Multiply 5 2
m Double/Single FP Add 3 1
m Double/Single FP Divide 38 38

23 15-213, F'03

Instruction Control

Instruction Control
Address

_ Fetch
Retirement Control

Unit Instruction

Instruction Instrs. Cache
Decode
Operations

v

Grabs Instruction Bytes From Memory
m Based on current PC + predicted targets for predicted branches

m Hardware dynamically guesses whether branches taken/not taken and
(possibly) branch target

Translates Instructions Into Operations
m Primitive steps required to perform instruction
m Typical instruction requires 1-3 operations

Converts Register References Into Tags

m Abstract identifier linking destination of one operation with sources of
later operations

— 24 — 15-213, F'03

Translation Example

Version of Combine4
m Integer data, multiply operation

124 # Loop:
il mul |l (%eax, ¥%edx,4), Y%ecx # t *= datali]
| ncl %edx # 0 ++
cnpl %esi, Y%edx # i:length
il |24 # if < goto Loop

Translation of First Iteration

. L24:
| mul | (%ax, %edx, 4), Yecx | oad (%eax, Y%edx.0,4) = t.1
imull t.1, %cx.0 = %ecx. 1
| ncl %edx | ncl %edx. 0 = %dx. 1
cnpl %esi, Y%edx cnpl % esi, % edx.1 = cc.1
jl .L24 jl-taken cc.1
25 15-213, F'03

Translation Example #1

|| | mul | (%ax, %edx, 4) , Yecx

m Split into two operations

| oad (%eax, Y%edx.0,4) = t.1
lmull t.1, %cx.0 = %ecx. 1

® | oad reads from memory to generate temporary resultt. 1
® Multiply operation just operates on registers

m Operands

® Register Y%eax does not change in loop. Values will be retrieved
from register file during decoding

® Register ¥%e&cx changes on every iteration. Uniquely identify
different versions as %ecx. 0, %ecx. 1, %ecx. 2, ...

» Register renaming

» Values passed directly from producer to consumers

— 26—

15-213, F'03

Translation Example #2

|| | ncl %edx || ||| ncl %edx. 0 = %edx. 1 ||

m Register %&dx changes on each iteration. Rename as
%edx. 0, %edx. 1, %edx. 2, ...

o7 15-213, F'03

Translation Example #3

|| cnpl %esi , Y%edx || ||crrp| %esi, %edx.1 = cc.1l

m Condition codes are treated similar to registers

m Assign tag to define connection between producer and
consumer

_ 28— 15-213, F'03

Translation Example #4

| jl .L24 | |il-taken cc.1

—_29_

m Instruction control unit determines destination of jump
m Predicts whether will be taken and target
m Starts fetching instruction at predicted destination

m Execution unit simply checks whether or not prediction was
OK

m If not, it signals instruction control

® Instruction control then “invalidates” any operations generated
from misfetched instructions

® Begins fetching and decoding instructions at correct target

15-213, F'03

Visualizing Operations

%dx. 0

Time

i mul |

%ecx. 1

— 30—

| oad (%eax, Y%edx,4) = t.1
lmul | t.1, %cx.0 = %ecx.1
| ncl % edx. 0 = %dx. 1
cnpl % esi, %dx.1 = cc.1
jl-taken cc.1

Operations

m Vertical position denotes time at
which executed
e Cannot begin operation until
operands available

m Height denotes latency

Operands

m Arcs shown only for operands that
are passed within execution unit

15-213, F'03

Visualizing Operations (cont.)

| oad (%eax, %edx,4) = t.1
laddl t.1, %cx.0 = %ecx.1
I ncl %edx. 0 = %dx. 1
cnpl % esi, %dx.1 = cc.1
jl-taken cc.1

vecx. 1 Operations

m Same as before, except
v that add has latency of 1

31 15-213, F'03

3 Iterations of Combining Product

.................... . Unlimited Resource
____________________ Analysis

AAAAAAAAAAAAAAAAAAAA _ m Assume operation
can start as soon as
....................................... operands available

....................................... m Operations for
multiple iterations
overlap in time

Iteration 1

8

B e Performance

o e 1™ R = Limiting factor

a T A e becomes latency of
b eraionz I Y Integer mU|tIp|Iel’

o B a Gives CPE of 4.0

™

15

- 32 - Iteration 3 15-213, F'03

4 lterations of Combining Sum

%edx. 0

,,,,,,,,,,,,,,,,,,,,,,,,,,,, * i *
1 @,i) Y%edx. 1

............................ v v v
2 | oad |(cnpl (i ncl) ioeax 2

............................ : cc.1 v v
3 ecx. j 1 | oad cnpl i ncl Yede. 3

g it—1L— - N = [,) -_ -t = - = —_— -
4 |Caddl) =0 j! | oad |(cnpl

| "UETX BE 2 2 e 1 e b T
5 lteration 1 addl i=1 jl | oad
Yecx. 2 t.3
6 Cycle lteration 2 (addl) 1=2
Y%ecx. 3 t
7 Iteration 3 @,‘L)
VecX. 4 0 e
Iteration 4

Unlimited Resource Analysis

Performance

m Can begin a new iteration on each clock cycl
m Should give CPE of 1.0

e

m Would require executing 4 integer operations in parallel

—_ 33—

15-213, F'03

Combining Sum: Resource Constraints

%edx. 3
6
— - =
,,,,,,,,,,,,,,,,,,,,,,, v v
8%30x 3 (Cl‘i’p|) ui) %edx. 5
,,,,,,,,,,,,,,,,,,,,,,, cc.4
9 (addl)(JI)|| | oad
— T e o [e e
........................ t.5 yce. 5 '
Y%ecx. 4
M retond 2/:5:; LA sl
12 i =4 (addl Y (Ccnpl)| | oad
13 Iteration 5 jICC (ﬁ'cﬂ —
Yecx. 6 - v *t-7 v | v 1 |-
14 (addl) (Ccnpl)
; 7 v |
| | Mteration @ 0ad |(Tn¢) b s
m Only have two integer functional units , >
. | =6 Cn'p|
m Some operations delayed even though Loeer 5 vee, 8l
operands available e e
. . =7
m Set priority based on program order | R
B
Iteration 8

Performance

m Sustain CPE of 2.0

_ 34—

15-213, F'03

Loop Unrolling

voi d conbi ne5(vec_ptr v, int *dest)

{

int length = vec | ength(v);

Iint limt = 1ength-2;

Int *data = get vec start(v);
I nt sum = O;

int 1I;

[* Conbine 3 elenents at a tinme */
for (i =0; I <limt; i+=3) {
sum += data[i] + data[i +2]

+ datafi +1];
}
/[* Finish any remai ning el enents */
for (; I <length; 1++) {
sum += dataf[i];
}

*dest = sum

— 35 —

Optimization

m Combine multiple
iterations into single
loop body

m Amortizes loop
overhead across
multiple iterations

m Finish extras at end
m Measured CPE =1.33

15-213, F'03

Visualizing Unrolled Loop

m Loads can pipeline,

since don’t have
dependencies

m Only one set of loop

control operations

%ecx. Oc

%dx. 0

| oad (%eax, %edx. 0, 4)
| addl t.la, %ecx.Oc

| oad 4(%ax, %edx. 0, 4)
| addl t.1b, %ecx. 1la

| oad 8(%eax, %edx. 0, 4)
laddl t.1c, %ecx.1b

| addl $3, %edx. 0

cnpl % esi, % edx.1
jl-taken cc.1

A A A A

t.la
%Y€cCX.
t.1b
Y€cCX.
t.1c
Y&ecCX.
Yedx.
cc.1

— 36—

’ ‘ @ddl) sedx. 1
| oad cnpl
\ 4 _V_ccC. 1
| oad |(NYC il)
t.1la
addl S)| | oad
%ecx. 1la t.1b Time
addl))
%ecx. 1b t.1c
m %ecx. 1c
la \4
1b
1c
1
15-213, F'03

Executing with Loop Unrolling

10 %edx. 4

11

12

13 Iteration 3

m Predicted Performance | TS et
® Can complete iteration in 3 cycles
e Should give CPE of 1.0 lteration 4

m Measured Performance
e CPE of 1.33
® One iteration every 4 cycles

—-37— 15-213, F'03

Effect of Unrolling

Unrolling Degree 1 2 3 4 8 16
Integer | Sum 2.00 | 1.50 1.33 1.50 1.25 1.06
Integer | Product 4.00

FP Sum 3.00

FP Product 5.00

m Only helps integer sum for our examples
® Other cases constrained by functional unit latencies

m Effect is nonlinear with degree of unrolling
® Many subtle effects determine exact scheduling of operations

— 38 —

15-213, F'03

Parallel Loop Unrolling

voi d conbi ne6(vec _ptr v,

{

I nt *dest)

int length = vec | ength(v);
Iint limt = length-1;
Int *data = get _vec start(v);
i nt x0 = 1;
Iint x1 = 1;
int I
/[* Conmbine 2 elenents at a tinme */
for (i =0; I <limt; i+=2) {
X0 *= data[l];
x1 *= data[i +1];
}
/[* Finish any renmai ning el enents */
for (; I <length; i1++) {
X0 *= data[i];
}
*dest = x0 * x1;

— 39—

Code Version
m Integer product

Optimization

m Accumulate in two
different products

® Can be performed
simultaneously

m Combine at end
m 2-way parallism

Performance
m CPE=2.0
m 2X performance

15-213, F'03

Dual Product Computation

Computation

(CCCCCL ™ Xg) * X)) * X4) * Xg) * Xg) ¥
(CCCCCL ™ x3) * X3) * Xg) * X7) * Xg) *

Performance
1X, 1x, m N elements, D cycles/operation
m (N/2+1)*D cycles
m ~2X performance improvement

X19) *
X11)

—40 - 15-213, F'03

Requirements for Parallel Computation

Mathematical

m Combining operation must be associative & commutative
® OK for integer multiplication
® Not strictly true for floating point
» OK for most applications

Hardware
m Pipelined functional units
m Ability to dynamically extract parallelism from code

- 41 - 15-213, F'03

Visualizing Parallel Loop

m Two multiplies within Yedx. 0
loop no longer have ’ ‘ l dx.l
data depency
m Allows them to cc. 1

nali | oad
%ecx. 0
pipeline ecxjtv_\ﬁa

i mul | Time
i mul |
| oad (%ax, %edx.0,4) => t.1la R el v
lmull t.la, %cx.0 =2 %cx. 1) vebx.1
| oad 4(%ax, %edx.0,4) = t.1b
imul | t.1b, %bx.0 = %bx. 1
| addl $2, %edx. O = %dx. 1
cnpl % esi, % edx.1 = cc.1
jl-taken cc.1

—42 — 15-213, F'03

Executing with Parallel Loop

Iteration 1

m Predicted Performance |17 oe=r X2 R
e Can keep 4-cycle multiplier lteration 2
busy performing two
simultaneous multiplications
® Gives CPEof 2.0 =] [T

—45- lteration 85-213. F'03

Summary: Results for Pentium Il

Method Integer Floating Point
+ * + *

Abstract -g 42.06 41.86 41.44 160.00
Abstract -O2 31.25 33.25 31.25 143.00
Move vec_length 20.66 21.25 21.15 135.00
data access 6.00 9.00 8.00 117.00
Accum. in temp 2.00 4.00 3.00 5.00
Pointer 3.00 4.00 3.00 5.00
Unroll 4 1.50 4.00 3.00 5.00
Unroll 16 1.06 4.00 3.00 5.00
2 X2 1.50 2.00 2.00 2.50
4X4 1.50 2.00 1.50 2.50
8 X4 1.25 1.25 1.50 2.00
Theoretical Opt. 1.00 1.00 1.00 2.00
Worst : Best 39.7 33.5 27.6 80.0

— 44 —

15-213, F'03

Limitations of Parallel Execution

Need Lots of Registers
m To hold sums/products

m Only 6 usable integer registers
® Also needed for pointers, loop conditions

m 8 FP registers

m When not enough registers, must spill temporaries onto
stack
® Wipes out any performance gains
m Not helped by renaming
® Cannot reference more operands than instruction set allows
® Major drawback of IA32 instruction set

— 45— 15-213, F'03

Register Spilling Example

Example
m 8 X 8integer product

m 7/ local variables share 1
register

m See that are storing locals
on stack

m E.g., at - 8(%ebp)

_ 46 —

. L165:

addl $32, %eax

| mul | (%ax), %ecx
nmovl -4(%bp), Y%edi
| mul | 4(%ax) , Y%edi
novl %edi , - 4(%ebp)
nmovl -8(%ebp), Yedi
| mul | 8(%ax), %edi
novl %edi , - 8(%ebp)
nmovl -12(%bp), Yedi
lmul | 12(%eax), Yedi
novl %edi, -12(%bp)
novl -16(%bp), Yedi
lmul | 16(%eax), Yedi
novl %edi, - 16(%ebp)

addl $8, %edx
cmpl - 32(%bp), %edx
il .L165

15-213, F'03

Results for Alpha Processor

Method Integer Floating Point
+ * + *

Abstract -g 40.14 47.14 52.07 53.71
Abstract -O2 25.08 36.05 37.37 32.02
Move vec_length 19.19 32.18 28.73 32.73
data access 6.26 12.52 13.26 13.01
Accum. in temp 1.76 9.01 8.08 8.01
Unroll 4 1.51 9.01 6.32 6.32
Unroll 16 1.25 9.01 6.33 6.22
4 X2 1.19 4.69 4.44 4.45
8 X4 1.15 4.12 2.34 2.01
8 X8 1.11 4.24 2.36 2.08
Worst : Best 36.2 11.4 22.3 26.7

m Overall trends very similar to those for Pentium lll.

m Even though very different architecture and compiler

—47 —

15-213, F'03

Results for Pentium 4 Processor

Method Integer Floating Point
+ * + *

Abstract -g 35.25 35.34 35.85 38.00
Abstract -O2 26.52 30.26 31.55 32.00
Move vec_length 18.00 25.71 23.36 24.25
data access 3.39 31.56 27.50 28.35
Accum. in temp 2.00 14.00 5.00 7.00
Unroll 4 1.01 14.00 5.00 7.00
Unroll 16 1.00 14.00 5.00 7.00
4 X2 1.02 7.00 2.63 3.50
8 X4 1.01 3.98 1.82 2.00
8 X8 1.63 4.50 2.42 2.31
Worst : Best 35.2 8.9 19.7 19.0

_ 48 —

m Higher latencies (int*=14, fp + =5.0, fp *=7.0)

® Clock runs at 2.0 GHz

® Not an improvement over 1.0 GHz P3 for integer *

m Avoids FP multiplication anomaly

15-213, F'03

Machine-Dependent Opt. Summary

Loop Unrolling
m Some compilers do this automatically
m Generally not as clever as what can achieve by hand

Exposing Instruction-Level Parallelism

m Generally helps, but extent of improvement is machine
dependent

Warning:
m Benefits depend heavily on particular machine

m Best if performed by compiler
® But GCC on IA32/Linux is not very good

m Do only for performance-critical parts of code

—49 — 15-213, F'03

Important Tools

Observation

m Generating assembly code
el ets you see what optimizations compiler can make
eUnderstand capabilities/limitations of particular compiler

Measurement

m Accurately compute time taken by code
e Most modern machines have built in cycle counters
eUsing them to get reliable measurements is tricky
» Chapter 9 of the CS:APP textbook

m Profile procedure calling frequencies
eUnix tool gpr of

_ 50—

15-213, F'03

Code Profiling Example

Task
m Count word frequencies in text document

m Produce sorted list of words from most frequent to least

Steps
m Convert strings to lowercase
m Apply hash function

m Read words and insert into hash table
® Mostly list operations
® Maintain counter for each unique word

m Sort results

Data Set
m Collected works of Shakespeare
m 946,596 total words, 26,596 unique
m Initial implementation: 9.2 seconds

—51 -

Shakespeare’s

most frequent words

29,801 the
27,529 and
21,029 |
20,957 to
18,514 of
15,370 a
14010 you
12,936 my
11,722 in
11,519 that
15-213,

F'03

Code Profiling

Augment Executable Program with Timing Functions

m Computes (approximate) amount of time spent in each
function

m Time computation method
® Periodically (~ every 10ms) interrupt program
® Determine what function is currently executing
® Increment its timer by interval (e.g., 10ms)

m Also maintains counter for each function indicating number
of times called

Using
gcc —O2 —pg prog. —o0 prog
./ prog
® Executes in normal fashion, but also generates file gnon. out
gpr of prog

® Generates profile information based on gnon. out

5o 15-213, F'03

Profiling Results

% cunul ati ve
time seconds

86. 60 8.21
5. 80 8.76
4.75 9.21
1.27 9. 33

sel f
seconds

8.21
0. 55
0. 45
0.12

calls
1
946596
946596
946596

sel f

ns/ cal |

8210. 00
0. 00
0. 00
0. 00

t ot al

ne/ cal |

8210. 00
0. 00
0. 00
0. 00

name
sort_words

| ower 1

find ele rec
h_add

Call Statistics

m Number of calls and cumulative time for each function

Performance Limiter
m Using inefficient sorting algorithm
m Single call uses 87% of CPU time

_ 53—

15-213, F'03

— 54—

Code
Optimizations

10

9

8,

7 | Rest
§ 6 O Hash
0 5 O Lower
D)
o 4 m List
O

3 @ Sort

2

1,

: N—0 N — -

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower
First step: Use more efficient sorting function
Library function qsort
15-213, F'03

— 55—

Further Optimizations

2
1.8
16 []

14 | Rest
§ 1.2 O Hash
n 1 - - O Lower
E 0.8 List

. mLis
o I
0.6 m Sort
0.4 .
H =
0 ‘ ‘ e |
Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

Ilter first: Use iterative function to insert elements into linked list
® Causes code to slow down

Iter last: Iterative function, places new entry at end of list
® Tend to place most common words at front of list

Big table: Increase number of hash buckets
Better hash: Use more sophisticated hash function
Linear lower: Move st rl en out of loop

15-213, F'03

_ 56—

Profiling Observations

Benefits
m Helps identify performance bottlenecks

m Especially useful when have complex system with many
components

Limitations
m Only shows performance for data tested

m E.g., linear lower did not show big gain, since words are
short
® Quadratic inefficiency could remain lurking in code
m Timing mechanism fairly crude
® Only works for programs that run for > 3 seconds

15-213, F'03

Role of Programmer

How should | write my programs, given that | have a good,
optimizing compiler?
Don’t: Smash Code into Oblivion
m Hard to read, maintain, & assure correctness

Do:

m Select best algorithm

m Write code that's readable & maintainable
® Procedures, recursion, without built-in constant limits
® Even though these factors can slow down code

m Eliminate optimization blockers
® Allows compiler to do its job

Focus on Inner Loops
m Do detailed optimizations where code will be executed repeatedly
m Will get most performance gain here

- 57 — 15-213, F'03

