15-213 "The course that gives CMU its Zip!"

Floating Point Sept 4, 2003

Topics

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

class04.ppt

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

Assume neither d nor f is NaN

x == (int)(float) x

•
$$d < 0.0$$
 \Rightarrow $((d*2) < 0.0)$

•
$$d > f$$
 \Rightarrow $-f > -d$

•
$$d * d >= 0.0$$

•
$$(d+f)-d == f$$

- 2 - 15-213, F'03

IEEE Floating Point

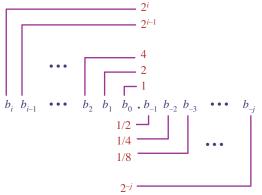
IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Fractional Binary Numbers



Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \cdot 2^k$$

- 3 - 15-213, F'03 - 4 - 15-213, F'03

Frac. Binary Number Examples

value	Representation		
5-3/4	101.112		
2-7/8	10.1112		
63/64	0 111111		

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111..., just below 1.0
 - \bullet 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... \rightarrow 1.0
 - Use notation 1.0 − ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form $x/2^k$
- Other numbers have repeating bit representations

/alue	Representation
1/3	0.0101010101[01]2
1/5	$0.001100110011[0011]{2}$
1/10	0.0001100110011[0011]2

-5- 15-213, F'03 -6- 15-213, F'03

Floating Point Representation

Numerical Form

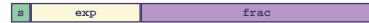
- -1s M 2E
 - Sign bit s determines whether number is negative or positive
 - Significand *M* normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Floating Point Precisions

Encoding



- MSB is sign bit
- exp field encodes E
- frac field encodes M

Sizes

- Single precision: 8 exp bits, 23 frac bits
 - 32 bits total
- Double precision: 11 exp bits, 52 frac bits
 - •64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - » 1 bit wasted

"Normalized" Numeric Values

Condition

• $\exp \neq 000...0$ and $\exp \neq 111...1$

Exponent coded as biased value

E = Exp - Bias

• Exp: unsigned value denoted by exp

• Bias : Bias value

» Single precision: 127 (Exp: 1...254, E: -126...127)

» Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

» in general: Bias = 2e-1 - 1, where e is number of exponent bits

Significand coded with implied leading 1

 $M = 1.xxx...x_2$

• xxx...x: bits of frac

■Minimum when 000...0 (M = 1.0)

• Maximum when 111...1 (*M* = 2.0 – ϵ)

Get extra leading bit for "free"

- 9 - 15-213, F'03

Normalized Encoding Example

Value

```
Float F = 15213.0;
```

■ $15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$

Significand

 $M = 1.1101101101101_2$

Exponent

E = 13Bias = 127

 $Exp = 140 = 10001100_2$

Floating Point Representation (Class 02):

140: 100 0110 0

- 10 - 15-213, F'03

Denormalized Values

Condition

= exp = 000...0

Value

- Exponent value *E* = −*Bias* + 1
- Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

- \blacksquare exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
- = exp = 000...0, frac \neq 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - "Gradual underflow"

Special Values

Condition

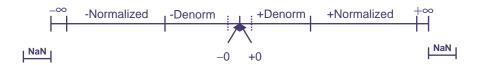
 $= \exp = 111...1$

Cases

15-213. F'03

- \blacksquare exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- $= \exp = 111...1, \operatorname{frac} \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), ∞ ∞

Summary of Floating Point Real Number Encodings



Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same General Form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

7	6	3 2 0
s	exp	frac

- 13 - 15-213, F'03 - 14 - 15-213, F'03

Values Related to the Exponent

Exp	exp	E	2 ^E	
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)

Dynamic Range

	s	exp	frac	E	Value
Denormalized	0	0000 0000 0000	001	-6 -6 -6	0 1/8*1/64 = 1/512
numbers					
		0000	110 111	-6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512 ← largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 ← smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
				_	
Normalized	0	0110 0110 0111	111	-1 -1 0	14/8*1/2 = 14/16 $15/8*1/2 = 15/16 \leftarrow \text{closest to 1 below}$ 8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 ← closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110		7	14/8*128 = 224 15/8*128 = 240 ← largest norm
	0	1110			13/6"126 - 240
	0	1111	000	n/a	inf

- 15 - 15-213, F'03 - 16 - 15-213, F'03

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Notice how the distribution gets denser toward zero.

- 17 - 15-213, F'03

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

- 18 - 15-213, F'03

Interesting Numbers

Description exp frac Numeric Value Zero 00...00 00...00 0.0

Smallest Pos. Denorm. 00...00 00...01 2- {23,52} X 2- {126,1022}

- Single ≈ 1.4 X 10⁻⁴⁵
- Double ≈ 4.9 X 10⁻³²⁴

Largest Denormalized 00...00 11...11 (1.

 $(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$

- Single ≈ 1.18 X 10⁻³⁸
- Double ≈ 2.2 X 10⁻³⁰⁸

Smallest Pos. Normalized 00...01 00...00

1.0 X 2- {126,1022}

Just larger than largest denormalized

One 01...11 00...00

1.0

Largest Normalized 11...10 11...11

 $(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

- Single ≈ 3.4 X 10³⁸
- Double ≈ 1.8 X 10³⁰⁸

Special Properties of Encoding

FP Zero Same as Integer Zero

■ All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK

- 20 -

- Denorm vs. normalized
- Normalized vs. infinity

– 19 **–**

15-213. F'03

15-213. F'03

Floating Point Operations

Conceptual View

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
■ Zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
■ Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

-21 - 15-213, F'03

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

- 22 - 15-213, F'03

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position = 100...2

Examples

■ Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2

FP Multiplication

Operands

 $(-1)^{s1} M1 2^{E1}$ * $(-1)^{s2} M2 2^{E2}$

Exact Result

 $(-1)^s M 2^E$

■ **Sign** s: s1 ^ s2

■ Significand M: M1 * M2

■ Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If *E* out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

FP Addition

Operands

 $(-1)^{s1} M1 2^{E1}$ − E1−E2 **−−**► $(-1)^{s2} M2 2^{E2}$ $(-1)^{s1} M1$ ■ **Assume** *F1* > *F2* $(-1)^{s2} M2$

Exact Result

 $(-1)^s M 2^E$

- $(-1)^{s} M$
- Sign s, significand M:
 - Result of signed align & add
- **Exponent** *E*:

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round *M* to fit frac precision

15-213. F'03

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition? YES

But may generate infinity or NaN

YES **■** Commutative?

Associative? NO

Overflow and inexactness of rounding

0 is additive identity? YES

Every element has additive inverse ALMOST

Except for infinities & NaNs

Monotonicity

■ $a \ge b \Rightarrow a+c \ge b+c$? **ALMOST**

Except for infinities & NaNs

15-213. F'03 -26-

Math. Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication? **YES**

But may generate infinity or NaN

YES Multiplication Commutative?

Multiplication is Associative? NO Possibility of overflow, inexactness of rounding

1 is multiplicative identity? YES

Multiplication distributes over addition? NO

Possibility of overflow, inexactness of rounding

Monotonicity

 $\blacksquare a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?

ALMOST

Except for infinities & NaNs

Floating Point in C

C Guarantees Two Levels

single precision float double precision double

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - » Generally saturates to TMin or TMax
- int to double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int to float
 - Will round according to rounding mode

Answers to Floating Point Puzzles

Assume neither d nor f is NAN

•	f ==	(float)(double) f
•	x ==	(int)(double) x
•	x ==	(int)(float) x

Why

•
$$2/3 == 2/3.0$$

• $d < 0.0 \Rightarrow ((d*2) < 0.0)$

$$d > f \Rightarrow -f > -d$$

■ Converted to 16-bit

integer

■ Exploded 37 seconds

Cargo worth \$500 million

after liftoff

Ariane 5

• (d+f)-d == f

No: Not associative

Yes!

Yes!

Yes!

- 29 -

15-213. F'03

- 30 - 15-213, F'03

Summary

IEEE Floating Point Has Clear Mathematical Properties

- Represents numbers of form $M \times 2^E$
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

- 31 - 15-213, F'03