Problem 6. (12 points):

Recently, Microsoft’s SQL Server was hit by the SQL Slammer worm, which exploits a known buffer
overflow in the SQL Resolution Service. Today, we’ll be writing our own 273 Slammer that exploits the
vulnerability introduced in bufbomb, the executable used in your Lab 3 assignment. And as such, Gets
has the same functionality as in Lab 3 except that it strips off the newline character before storing the input
string.

Consider the following exploit code, which runs the program into an infinite loop:

infinite.o: file format elf32-i386

Disassembly of section .text:

00000000 <.text>:
0: 68 fc b2 ff bf push SO0xbfffb2fc
5: c3 ret
6: 89 fo6 mov %$esi, %esi

Here is a disassembled version of the getbuf function in bufbomb, along with the values of the relevant
registers and a printout of the stack before the call to Gets () .

(gdb) disas

Dump of assembler code for function getbuf:

0x8048a44 <getbuf>: push $ebp

0x8048a45 <getbuf+l>: mov %esp, sebp

0x8048a47 <getbuf+3>: sub $0x18, $esp

0x8048a4a <getbuf+6>: add SOxfffffff4d, Sesp

0x8048a4d <getbuf+9>: lea Oxfffffff4 (%ebp), $eax
0x8048a50 <getbuf+l2>: push %eax

0x8048a51 <getbuf+13>: call 0x8048b50 <Gets>

0x8048a56 <getbuf+18>: mov $0x1, $eax

0x8048ab5b <getbuf+23>: mov %ebp, $esp

0x8048ab5d <getbuf+25>: pop %ebp

0x8048abe <getbuf+26>: ret

0x8048a5f <getbuf+27>: nop

End of assembler dump.

(gdb) info registers

eax Oxbfffb2fc ecx Oxffffffff
edx 0x0 ebx 0x0

esp Oxbfffb2e0 ebp Oxbff£fb308
esi Oxffffffff edi 0x804b820
(gdb) x/20xb S$ebp-12

Oxbfffb2fc: O0xf0 O0x17 0x02 0x40 0x18 O0xb3 Oxff Oxbf
O0xbfffb304: 0x50 0x80 O0x06 0x40 0x28 O0xb3 O0xff Oxbf
Oxbfffb30c: Oxee 0x89 0x04 0x08 0x24 O0xb3 Oxff Oxbf

Page 7 of 11

Here are the questions:

1. Write down the address of the location on the stack which contains the return address where getbuf

is supposed to return to:

0Ox

2. Using the exploit code illustrated above, fill in the the following blanks on the stack after the call to
Gets (). All the numbers must be in a two character hexadecimal representation of a byte. We’ve

already filled in the terminating \ 0 (0x00) character for you.

(gdb) x/20xb S$ebp-12

Oxbfffb2fc:

Oxbfffb304:

Oxbfffb30c:

(0D:¢ 0x 0Ox 0Ox 0x (0D:4
(0D:4 0x Ox 0Ox 0x (0D:4
0x 0x 0x00 Oxb3 O0xff Oxbf

3. During the infinite loop, what is the value of $ebp?

0x

Page 8 of 11

. reclsol.txt
Solution to Problem 6

1. Oxbfffb30c

2. 68 fc b2 ff bf c3 xx xx
XX XX XX XX pg rs tu vw
fc b2 ff bf 00
where xx can be anything except 00,
and pgrstuvw can be any valid hexademical values which aren't zeros

3. Oxvwturspq (matching the pqrstuvw above)

Page 1

Problem 3. (8 points):

Consider the following 7-bit floating point representation based on the IEEE floating point format:
e There is a sign bit in the most significant bit.
e The next 3 bits are the exponent. The exponent bias is 3.
e The last 3 bits are the fraction.

e The representation encodes numbers of the form: V = (—1)® x M x 2%, where M is the significand
and E the integer value of the exponent.

Please fill in the table below. You do not have to fill in boxes with ——" in them. If a number is NAN
or infinity, you may disregard the M, E, and V fields below. However, fill the Description and Binary
fields with valid data.

Here are some guidelines for each field:

Description - A verbal description if the number has a special meaning

Binary - Binary representation of the number

M - Significand (same as the M in the formula above)
e E - Exponent (same as the E in 2%)
e V - Fractional Value represented

Please fill the)M, E, and V fields below with rational numbers (fractions) rather than decimals or
binary decimals

Description Binary M E \%
— 0 010 010
3
23
1 111 000

Most Negative Normalized

Smallest Positive Denormalized

Page 4 of 11

Solution to Problem 3

Description Binary

rec2sol.txt

-- 0 010 010
2 3/8 0 100 010
-infinity 1 111 000

most neg norm 1 110 111

smal pos dnrm 0 000 001

Page 1

