Example Cache Problems

Problem 1:

Consider the following program:

typedef struct {
int val; /I The value we care about
float alpha;
float beta;
float gamma;
double eta;
double teta;
} cell;

#define N 4096
#define STEPS 2

cell cvalues|NJ;
cell tcvalues|N];

int values[N];
int tvalues[N];

void jacobil()

int i, k;
cell *ptrl, *ptr2, *tmp;

ptrl = cvalues;
ptr2 = tcvalues;
for(k = 0; k < STEPS; k++)
{
fori = 1; i < N-1; i++)
{
ptr2[i].val = (ptrl[i-1].val+ptri[i].val+ptrl[i+1].val)/3;
}
tmp = ptrl;
ptrl = ptr2;
ptr2 = tmp;
}

Page 1 of 4

void jacobi2()

{
int i, k;
int *ptrl, *ptr2, *tmp;
ptrl = values;
ptr2 = tvalues;
for(k = 0; k < STEPS; k++)
{
for(= 1; i < N-1; i++)
{
ptr2[i] = (ptrd[i-1]+ptri[i]+ptrd[i+1])/3;
}
tmp = ptrl;
ptrl = ptr2;
ptr2 = tmp;
}
}

In all problems, assume that global variables are allocated adjacent to each other in memory (so &cvalues[N]
== &tcvalues[0]) and that the values of the global arrays are not already in the cache. You answer does not
have to be exact (ie, 1023 instead of 1024.. an answer of 1K is sufficient).

A. Assuming the code is run on a machine with a Ii€ct mapped level one data cache with 32 byte
cache lines, what is the number of cache misses incurred during a jacobil?

If the code is run on a machine with a 1@<way associativdevel one data cache with 32 byte cache
lines, what is the number of cache misses incurred during a riatobil?

Assuming the code is run on a machine with a Iitect mapped level one data cache with 32 byte
cache lines, what is the number of cache misses incurred during a jacobi2?

If the code is run on a machine with a 1@<way associativdevel one data cache with 32 byte cache
lines, what is the number of cache misses incurred during a riatobi2?

Page 2 of 4

B. Suppose we're just interested in finding the value of the first (index 1) element in the array and, to
make our lives easier we don’t do a strict Jacobian computation (we use new and old values):

int just_first_value()

{
int i, k;
int *ptrl, *ptr2, *tmp;
ptrl = values;
for(k = STEPS; k > 0; k--)
{
for(i = 1; i <= k; i++)
{
ptrl[i] = (ptrd[i-1]+ptri[i]+ptrd[i+1])/3;
}
}
return *ptrl;
}

If the code is run on a machine with a 1@<way associativdevel one data cache with 32 byte cache
lines, what is the number of cache misses incurred during a rjusofirst _value?

How many more cache misses would be incurred if the code is changed to compute the first two
values?

Imagine this approach is adapated to compute an arbitrary number of first values and we run it on
a machine with a fully associative cache with 4byte cache lines. What is the minimum size of such
cache that will ensure this algorithm will never evict a cache line that it will want to use later?

Page 3 of 4

Problem 2:

Part 1

Consider a computer with a 12-bit address space and a two level cache. Both levels use a LRU replacement
policy. The parameters of the caches are as follows:

e L1: 32 bytes, direct mapped, 8-byte cache lines.
e L2: 512 bytes, 4-way set associative, 32-byte cache lines.

The boxes below represent the bit-format of a physical address. In each box, for each cache (L1 and L2),
indicate which field that bit represents (it's possible that a field doesn’t exist). Here are the fields:

O: Byte offset within the cache line

1 10 9 8 7 6 5 4 3 2 1 0
il [PP

I: The cache (set) index

e cach 11 10 9 8 7 6 5 4 3 2 1 O
T: The cache tag L [[[[T 1]

The table below shows a trace of memory accesses (loads) made by the processor. For each access specify
whether it is a level 1 cache hit (LI), a level 2 cache hit (L2), or a miss (M). If the access is a hit, specify
which previous access (by line number) loaded the value into the cadseime that initially all cache

lines are invalid.

| Load No. | Binary Address| L1, L2 or M [Which line loaded?
1 1011 0101 0111

1100 0111 0101
11101111 1100
1011 0101 000Q
1011 0101 1100
1011 0101 0010
1011 0111 1010
0001 0111 1001
1100 0101 000Q
11110111 1111
11 1100 0111 0111

O O N O O | W N

[EN
o

Suggestion: Work out the L1 hits before dealing with the L2 hits.

Recommended Book Practice Problem5.9,6.10,6.14,6.15,6.16,6.18
Solutions are at the end of the chapter.

Page 4 of 4

