15-213

“The course that gives CMU its Zip!”

Concurrent Servers

December 7, 2000

Topics
* Baseline iterative s erver
* Process-based conc urrent server
» Threads-based conc urrent server
e select- based concurrents erver

class29. ppt
Echo client revisited
/*
* echoclient .C - A simple connection-based echo client
*usage: echoclient <host> <port>
*/

#include < ics.h>
#define BUFSIZE 1024

intmain(intargc , char **argv){

int sockfd ; /* client socket */
struct sockaddr _in serveraddr ; I* server socket addr struct
struct hostent *server; /* server's DNS en try */

/* server's domain name */
's port number */

char *hostname;
int portno ; [* server
char buf[BUFSIZE];

*

Error-handling sockets wrappers

To simplify our code, we w ill use error handling
wrappers of the form:

/* check command line argument s *
if (argc 1= 3) {
fprintf (stderr,"usage: %s <hostname> <port>\n" , argv[0]);
exit(0);
}
hostname = argv [1];
portno =atoi (argv[2));
class29. ppt 3— CS 213 F00

int Accept(ints, struct sockaddr * addr, int *addrlen) {
intrc = accept(s, addr , addrlen);
if (rc <0)
unix _error("Accept”);
return rc;
}
void unix _error(char * msg) {
printf ("%s: %s\n", msg , strerror (errno));
exit(0);
h
class29. ppt _2_ CS 213 F00
[* create the socket */
sockfd = Socket(AF_INET, SOCK_STREAM, 0) ;
/* initialize the server's soc ket address struct */
server = Gethostbyname (hostname);
bzero ((char*) & serveraddr , sizeof (serveraddr));
serveraddr .sin_family = AF_INET;
bcopy ((char *)server->h_ addr,
(char *)& serveraddr .sin_ addr.s_addr , server->h_length);
serveraddr .sin_port = htons(portno);
/* request a connection to the server */
Connect(sockfd , (struct sockaddr *)&serveraddr
sizeof (serveraddr));
class29. ppt —4- CS 213 F00

Echo client (cont)

open_ streamsock helper function

int open_
int listenfd

/* get a message line from the

/* send message line to server

user */

printf ("Please enter msg: ");
bzero (buf, BUFSIZE); listenfd
fgets (buf, BUFSIZE, stdin); Setsockopt

(

and read its echo */

struct sockaddr

streamsock (int portno){

optval = 1;
_in serveraddr ;

/* create a socket descriptor */

= Socket(AF_INET, SOCK_STREAM, 0) ;
(listenfd , SOL_SOCKET, SO_REUSEADDR,
const void *)& optval , sizeof (int));

Write(sockfd , buf, strlen (buf)); I* accept requests to (any IP addr , portno) ¥/
bzero (buf, BUFSIZE); _ bzero ((char*)& serveraddr ,sizeof (serveraddr));
Read(sockfd , buf, BUFS'.ZOE)'" . serveraddr .sin_family = AF_INET;
printf ("Echo fr9m server: %s", buf); serveraddr .sin_ addr.s_ addr=htonl (INADDR_ANY);
CIc_)se(. sockfd); serveraddr .sin_port= htons ((unsigned short) portno);
) exit(0); Bind(listenfd , (struct sockaddr *) & serveraddr sizeof (serveraddr));
/* Make it a listening socket re ady to accept conn requests */
Listen(listenfd ,5);
return listenfd
}
class29. ppt class29. ppt
lterative servers Iterative echo server
. . Vid
Iterative servers process one re quest at a time. * echoserveri ¢ - iterative echo server
. . * : h i t
client 1 server client 2 */Usage echoserver <port>
#include < ics.h>
call connect .1 call connect
o | GO BCCEPL #define BUFSIZE 1024
retconnect - void echo(intconnfd);
Ca” read > ret- accept ' . .
__________ write intmain(intargc , char **argv){
retread - - close int listenfd , connfd;
close int portno
call accept ret connect struct sockaddr . _in clientaddr : N
ret accept int clientlen =sizeof (struct sockaddr _in);
call read
write * check command line args *
close ret read if (arge 1= 2) {
close fprintf (stderr , "usage: %s <port>\n",
argv [on):
v / / exit(0);
}
portno =atoi (argv[1]);
class29. ppt class29. ppt

Iterative echo server (cont)

/* open the listening socket */
listenfd =open_ streamsock (portno);

/* main server loop */

Pros and cons of iterative servers

+ simple
- can process only one request at a time

while (1) { « one slow client can hold up thousands of oth ers
connfd = Accept(listenfd . . ;
struct sockaddr *) &clientaddr , & clientlen); Example: echo cli ents and server
echo(connfd); client 1 server client 2
Close(connfd); call accept
} call connect
} ret connect
/* echo - read and echo a line fro m a client connection */ call fgets ret accept
V?ﬂ'? ecf;q(intconnfd) { Server blocks | Caread . call connect
char bufBUFSIZE] User goes waiting for P
out to lunch data from Client 2 blocks
bzero (buf, BUFSIZE); Client 1 waiting to complete
n=Read(connfd , buf, BUFSIZE); Client 1 blocks its connection
printf ("server received %d bytes: %s", n, buf); waiting for user request until after
Write(connfd, buf, strlen (buf)); :
) totype in data v v lunch!
class29. ppt class29. ppt

Concurrent servers Example: Concurrent echo server

Concurrent slervers process multiple reque sts client 1 server client 2
COnCUI'I'e-mE Y . . - call connect [, Callaccept call connect
« The basic idea i s to use multiple co ntrol flows to handle multipl e T [
requests. retconnect & &
” o | — p| ret accept
cal gets .
. child 1 fork
Example concurrent server deS|gns / call accept
¢ Fork a new child proces s for each request. User goes call read ret connect
« Create a new thread for ea ch request. out to lunch e accept call fgets
» Pre-fork a pool of child p rocesses to handle requests. (not discussed)) fork : write
; Client 1 child 2
* Pre-create a pool of threa ds to handle requests . (not discussed)
. . : . blocks call read
« Manually interleave th e processing for multipl e open connections. waiting for v
—Uses Linux select() function to notice pen ding socket activity user to type
—Form of application-le vel concurrency in data write
close end read
close
v v 4

class29. ppt class29. ppt

Process-based concurrent server

/*

* echoserverp .c - A concurrent echo server based on processes
*Usage: echoserverp <port>

*/

#include < ics.h>

#define BUFSIZE 1024

void echo(intconnfd);
void handler(intsig);

intmain(intargc , char **argv) {
int listenfd , connfd;

int portno ;
struct sockaddr
int clientlen

_in clientaddr
=sizeof (struct sockaddr _in);

if (argc !=2) {
fprintf (stderr , "usage: %s <port>\n",
exit(0);

}

portno =atoi (argv[1]);

listenfd =open_ streamsock (portno);

argv [0]);

Process-based server (cont)

class29. ppt

Reaping zombie children

/* handler - reaps children as the
void handler(intsig){
pid _tpid;
int stat ;

y terminate */

while ((pid = waitpid(-1, & stat, WNOHANG)) > 0)

return;

}

Signal(SIGCHLD, handler); /* pare nt must reap children! */
/* main server loop */
while (1) {
[* for complete portability, m
/* call to SIGCHLD handler */

ust restart if interrupted by */

if ((connfd =accept(listenfd, (struct sockaddr *) & clientaddr
& clientlen))<0){
if (errno == EINTR)
continue; /* go back */
else

unix_error(“accept”);

if (Fork() == 0) {

1

Question: Why is the ¢ all to waitpid

in a loop?

class29. ppt

Close(listenfd); /* child closes its listening socket */
echo(connfd); /* child reads and echos input line */
Close(connfd); /* child is done with this cli ent*/
exit(0); /* child ex its */

}

Close(connfd); /* parent must close connected soc ket! */

}
}
class29. ppt

Issues with process-based design

Server should restart accept call if it is interrupted by
a transfer of control to the SIGCHLD handler

* not necessary for sy stems such as Linux that support Posix signal
handling.

* required for portability on s ome older Unix syste ms.

Server must reap zombie children
« to avoid fatal mem ory leak.

Server must close

its copy of connfd .

« kernel keeps refere nce count of descriptors

socket.

« after fork, refcnt (connfd)=2.

* Connection will not be cl

class29. ppt

osed until refcnt

that point to each

(connfd)=0.

Pros and cons of process-based design

+ handles multiple connections ¢ oncurrently

+ clean sharing model
« descriptors (yes)
¢ global variables (n 0)

+ simple and straightforward
- nontrivial to shared data between proc esses
¢ requires IPC (interprocess communication mec hanisms)
—FIFO’s
—System V shared me mory
—System V semaphore s

- additional overhead for process ¢ ontrol

class29. ppt

Threads-based server (cont)

/* open the listening socket */
listenfd =open_ streamsock (portno);

/* main server loop */

while (1) {
connfdp =Malloc (sizeof (int));
* connfdp = Accept(listenfd
(struct sockaddr *) & clientaddr , &clientlen
Pthread _create(& tid, NULL, thread, (void *) connfdp);
}
}

);

class29. ppt

Threads-based server

/*

* echoservert2.c - A concurrent e cho server using threads
* Usage: echoservert2 <port>

*/

#include < ics.h>

#define BUFSIZE 1024

void echo(intconnfd);

void *thread(void * vargp);
intmain(intargc , char **argv) {
int listenfd ,* connfdp ;
int portno ;
struct sockaddr _in clientaddr
int clientlen =sizeof (struct sockaddr _in);

pthread _ttid

/* check command line args */

if argc 1= 2) {
fprintf (stderr , "usage: %s <port>\n", argv [0]);
exit(0);

}

portno =atoi (argv[l]);

class29. ppt

Threads-based server (cont)

/* thread - thread routine */

void *thread(void * vargp) {
int connfd ;
/* run detached to avoid a memor y leak */

Pthread _detach(pthread _self());

connfd =*((int *vargp);
Free(vargp);

echo(connfd);
Close(connfd);
return NULL;

class29. ppt

Issues with threads-based servers

Must run “detached” to avoid memory leak.
« Atany pointin time, a thread is either joinable or detached.
 joinable thread:
—can be reaped and killed by other threads
—must be reaped (with pthread _join) to free memory resource s.
 detached thread:
—cannot be reaped or k illed by other threads.
—resources are automa tically reaped on te rmination.
¢ default state is joinable .
—use pthread _detach(pthread _self()) to make detach ed.

Must be careful to avoid unintended sha ring.

« For example, what hap pens if we pass the a ddress of connfd to the
thread routine?

e Pthread _create(& tid , NULL, thread, (v oid *)& connfd);

class29. ppt

select function

select sleeps until on e or more file descriptors in the set readset are
ready for reading.

#include <sys/sel ect.h>

int select(int maxfdpl, fd_set* readset , NULL, NULL, NUL L);

readset

« opaque bit vector (max FD_SETSIZE bits) that indicates membership in
a descriptor set.

« if bit k is 1, then descriptor k is a member of the descriptor set.

maxfdpl
» maximum descriptor in descriptor set plus 1.
« tests descriptors 0, 1, 2, ..., maxfdpl - 1 for set membership.

select returns the number of ready descriptors and s ets each bit of
readset to indicate the ready status of its correspondi ng descriptor.

class29. ppt

Pros and cons of thread-based design

+ Arguably the simplest option
* No reaping zombies
» No signal handling

+ Easy to share data structures between threads
* e.g., logging informati on, file cache.
+ Threads are more efficient than process es.

--- Unintentional sharing can introduce subtle and hard
to reproduce race conditions between threads.

« malloc an argument struct for each thread and pas s ptrto struct to
thread routine.

» Keep globals to a minimum.
« If athread references a global variable:
—protect it with a semaph ore or a mutex or
—think carefully abou t whether unprotected is sa fe:
»e.g., one writer thread, mu Itiple readers is OK.

class29. ppt

Macros for manipulating set descriptors
void FD_ZERO(fd _set *fdset);

e turn off all bits in fdset .

void FD_SET(intfd ,fd_set* fdset);
e turnon bit fd in fdset .

void FD_CLR(intfd ,fd_set* fdset);
e turn off bit fd in fdset .

int FD_ISSET(intfd , *fdset);

e is bit fd in fdset turned on?

class29. ppt

select

example

/*

* main loop: wait for connection

* |f connection request, then ech

* and close connection. If comman
*/

printf ("server>");

fflush (stdout);

while (
/*

notdone) {

request or
o input line
d, then process.

stdin command.

select example

First we check for a pending e vent on stdin.

* select: check if the user t yped something to stdin or
* if a connection request arr ived.
*
/
FD_ZERO(& readfds); /* initialize the fd set */
FD_SET(listenfd , &readfds);/* add socket fd */
FD_SET(O, & readfds); /* add stdin fd 0) %/
Select(listenfd +1, & readfds, NULL, NULL, NULL);
class29. ppt

select

example

Next we check for a pending conne ction request.

/* if the user has typed a comma
if (FD_ISSET(0, & readfds)){

nd, process it */

/* if a connection request has a
if (FD_ISSET(listenfd, & readfds)) {
connfd = Accept(listenfd
(struct sockaddr
connectcnt ++;

bzero (buf, BUFSIZE);

rrived, process it */

*) &clientaddr , & clientlen

)i

Read(connfd , buf, BUFSIZE);
Write(connfd , buf, strlen (buf));
Close(connfd);
}
} /* while */
class29. ppt

fgets(buf, BUFSIZE, stdin);
switch (buf [0]) {
case 'c: /* print the connec tion count */
printf ("Received %d conn. requests so far.\n", connectent);
printf ("server>");
fflush (stdout);
break;
case 'q': /* terminate the se rver */
notdone =0;
break;
default: /* bad input */
printf ("ERROR: unknown command\n");
printf ("server>");
fflush (stdout);
}
}
class29. ppt
I/O multiplexing with select
/~k
* echoservers .c - A concurrent echo server based on select
*Usage: echoservers <port>
*/
#include < ics.h>
#define BUFSIZE 1024
void echo(intconnfd);
intmain(intargc , char **argv){
int listenfd , connfd;
int portno ;
struct sockaddr _in clientaddr ;
int clientlen =sizeof (struct sockaddr _in);

fd_set allset ;/* descriptor set for select */
fd_set rset; /*copy of allset for select */
int maxfd ;. [* max descriptor value for select */

int clientfFD_SETSIZE]; /* pool of connect ed descriptors */

int maxi; /* highwater index into client pool */
int nready /* number of ready descript ors from select */
int i, sockfd ; I* misc *

class29. ppt

I/O multiplexing with select (cont) I/O multiplexing with selec t (cont)

/* check command line args */
if (argc '=2) {
fprintf (stderr , "usage: %s <port>\n", argv [0]); /* main server loop */
}ex't(o); while (1) {
portno =atoi (argv[1]); rset = allset !
’ nready =Select(maxfd +1, &set , NULL, NULL, NULL);
1 1 *
" open the Ils_tenlng socket*/ . /* PART I: add a new connected descriptor to the pool */
listenfd =open_ streamsock (portno); if (FD_ISSET(listenfd &rset) {
— H *
/* initialize the pool of active client connections */ connfd B Accepét(gﬁ;enr;;dd dr ' (stgj;tientleﬁsocka)c.idr)
maxi = -1; _) ;
maxid = listenfd nready -
for (i=0; i< FD_SETSIZE; i++)
client[i] = -1;
FD_ZERO(& allset);
FD_SET(listenfd , &allset);
class29. - ppt -29- CS 213 F00 class29. ppt -30- CS 213 F00
I/O multiplexing with selec t (cont) I/O multiplexing with selec t (cont)
;* ”Pf‘g?‘?(”;g cg%”_; Sp&cé.*{ﬁ I* PART II: check the pool of connected descs for client data */
or (i=0; i<FD_ 1) for (i=0; (i<=maxi) &&. (nready > 0); i++) {
if (client[] < 0) { sockfd = client[i;
E“e”‘k[_'] = connfd if (sockid > 0) && (FD_ISSET(sockfd, & rset){
} reax; echo(sockfd);
P Close(sockfd);
if (i == FD_SETSIZE) o FD _CLR(sockid, & allset):
app_error("Too many clients\n"); clienti = -1;
nready -
[* update the read descriptor set */ }i* for */
FD_SET(connfd , &allset); } /% while(1) */
if (connfd > maxfd) }
maxfd = connfd;
if (i > maxi)
maxi = i;
} /% if (FD_ISSET(listenfd , &rset) */
class29. ppt _31_ CS 213 F00 class29. ppt -32- CS 213 F00

Pro and cons of select -based design

+ one logical control flow.
+ can single step with a deb ugger.
+ no process or thread control overhead.

- significantly more complex to code initially than
process or thread designs.

- vulnerable to denial of servi ce attack
* How?

class29. ppt

