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Error-handling sockets wrappers

void unix _error(char * msg) {
  printf ("%s: %s\n",  msg , strerror (errno));
  exit(0);
};

int Accept( int s,  struct sockaddr  * addr, int  *addrlen ) {
  int rc  = accept(s,  addr , addrlen );
  if ( rc < 0)
    unix _error("Accept");
  return  rc;
}

To simplify our code, we w ill use error handling
wrappers of the form: 
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Echo client revisited
/* 
 * echoclient .c - A simple connection-based echo client
 * usage:  echoclient  <host> <port>
 */
#include < ics.h>
#define BUFSIZE 1024

int main( int argc , char **argv ) {
    int sockfd ;                    /* client socket */
    struct sockaddr _in serveraddr ; /* server socket  addr struct  */
    struct hostent  *server;        /* server's DNS en try */
    char *hostname;                /* server's domain name */
    int portno ;                    /* server 's port number */
    char  buf[BUFSIZE];     

    /* check command line argument s */
    if ( argc != 3) {
       fprintf ( stderr,"usage: %s <hostname> <port>\n" , argv[0]);
       exit(0);
    }
    hostname =  argv [1];
    portno  = atoi (argv[2]);
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Echo client ( cont )

    /* create the socket */
    sockfd  = Socket(AF_INET, SOCK_STREAM, 0) ;

    /* initialize the server's soc ket address  struct */
    server =  Gethostbyname (hostname);
    bzero ((char *) & serveraddr , sizeof (serveraddr ));
    serveraddr .sin_family = AF_INET;
    bcopy ((char *)server->h_ addr, 

  (char *)& serveraddr .sin_ addr.s_addr , server->h_length);
    serveraddr .sin_port =  htons(portno );

    /* request a connection to the server */
    Connect( sockfd , (struct sockaddr  *)&serveraddr , 
            sizeof (serveraddr )); 
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Echo client ( cont )

    /* get a message line from the user */
    printf ("Please enter  msg: ");
    bzero (buf, BUFSIZE);
    fgets (buf, BUFSIZE,  stdin );

    /* send message line to server and read its echo */
    Write( sockfd , buf, strlen (buf));
    bzero (buf, BUFSIZE);
    Read( sockfd , buf, BUFSIZE);
    printf ("Echo from server: %s",  buf);
    Close( sockfd );
    exit(0);
}
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open_ streamsock  helper function
int open_ streamsock (int portno ) {
  int listenfd , optval = 1;
  struct sockaddr _in serveraddr ;

  /* create a socket descriptor */
  listenfd  = Socket(AF_INET, SOCK_STREAM, 0) ;
  Setsockopt (listenfd , SOL_SOCKET, SO_REUSEADDR,

     ( const void *)& optval  , sizeof (int));

  /* accept requests to (any IP addr , portno ) */
  bzero ((char *) & serveraddr , sizeof (serveraddr ));
  serveraddr .sin_family = AF_INET;
  serveraddr .sin_ addr.s_ addr = htonl (INADDR_ANY);
  serveraddr .sin_port =  htons ((unsigned short) portno);
  Bind( listenfd , (struct sockaddr  *) & serveraddr sizeof (serveraddr ));

  /* Make it a listening socket re ady to accept conn requests */
  Listen( listenfd , 5);
  return listenfd ;
}
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Iterative servers
Iterative servers process one re quest at a time.

client 1 server client 2

call connect call accept

ret connect
ret accept

call connect

call read
write

ret read
close

close
call accept

ret connect

call read

ret read

close

write

ret accept

close
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Iterative echo server
/*
 * echoserveri .c - iterative echo server
 * Usage:  echoserveri  <port>
 */
#include < ics.h>
#define BUFSIZE 1024
void echo( int connfd );

int main( int argc , char **argv ) {
  int listenfd ,  connfd;
  int portno ;
  struct sockaddr _in clientaddr ;
  int clientlen  = sizeof (struct sockaddr _in);

  /* check command line  args  */
  if ( argc != 2) {
    fprintf (stderr , "usage: %s <port>\n",
            argv [0]);
    exit(0);
  }
  portno  = atoi (argv[1]);
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Iterative echo server ( cont)
/* open the listening socket */
  listenfd  = open_ streamsock (portno );

  /* main server loop */
  while (1) {
    connfd  = Accept( listenfd , 
                   ( struct sockaddr  *) &clientaddr , & clientlen);
    echo( connfd );
    Close( connfd );
  }
}

/* echo - read and echo a line fro m a client connection */
void echo( int connfd ) {  
  int  n; 
  char  buf[BUFSIZE];  

  bzero (buf, BUFSIZE);
  n = Read( connfd , buf, BUFSIZE);
  printf ("server received %d bytes: %s", n,  buf );
  Write( connfd,  buf, strlen (buf));
}
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Pros and cons of iterative servers
+ simple
- can process only one request at a time

• one slow client can hold up thousands of oth ers
• Example: echo cli ents and server

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to complete
its connection 
request until after
lunch!

Server blocks
waiting for
data from
Client 1
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Concurrent servers
Concurrent servers process multiple reque sts

concurrently.
• The basic idea i s to use multiple co ntrol flows to handle multipl e

requests.

Example concurrent server designs :
• Fork a new child proces s for each request.
•  Create a new thread for ea ch request.
• Pre-fork a pool of child p rocesses to handle requests. (not discussed)
• Pre-create a pool of threa ds to handle requests . (not discussed)
• Manually interleave th e processing for multipl e open connections.

– Uses Linux  select()  function to notice pen ding socket activity
– Form of  application-le vel concurrency
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Example: Concurrent echo server
client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

call accept
ret connect

ret accept call fgets

writefork

call 
read

child 2

write

call read

end read

close
close

...
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Process-based concurrent server
/* 
 * echoserverp .c - A concurrent echo server based on processes 
 * Usage:  echoserverp  <port>
 */
#include < ics.h>
#define BUFSIZE 1024
void echo( int connfd );
void handler( int sig );

int main( int argc , char **argv ) {
  int listenfd ,  connfd;
  int portno ;
  struct sockaddr _in clientaddr ;
  int clientlen  = sizeof (struct sockaddr _in);

  if ( argc != 2) {
    fprintf (stderr , "usage: %s <port>\n",  argv [0]);
    exit(0);
  }
  portno  = atoi (argv[1]);
  listenfd  = open_ streamsock (portno );
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Process-based server ( cont)
 Signal(SIGCHLD, handler); /* pare nt must reap children! */

  /* main server loop */
  while (1) {
    /* for complete portability, m ust restart if interrupted by */
    /* call to SIGCHLD handler */
    if (( connfd  = accept( listenfd, ( struct sockaddr  *) & clientaddr , 
                        & clientlen )) < 0) {
       if ( errno == EINTR)
          continue; /* go back */
       else
          unix_error(“accept”);

    if (Fork() == 0) { 
      Close( listenfd ); /* child closes its listening socket */
      echo( connfd );    /* child reads and  echos  input line */
      Close( connfd );   /* child is done with this cli ent */
      exit(0);         /* child ex its */
    }
    Close( connfd ); /* parent must close connected soc ket! */
  }
}
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Reaping zombie children

/* handler - reaps children as the y terminate */
void handler( int sig ) {
  pid _t pid;
  int stat ;
  
  while (( pid =  waitpid(-1, & stat, WNOHANG)) > 0)
    ;
  return;
}

Question: Why is the c all to  waitpid  in a loop?
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Issues with process-based design
Server should restart accept  call if it is interrupted by

a transfer of control to the SIGCHLD handler
• not necessary for sy stems such as Linux  that support Posix signal

handling.
• required for portability on s ome older Unix syste ms.

Server must reap zombie children
• to avoid fatal mem ory leak.

Server must close  its copy of connfd .
• kernel keeps refere nce count of descriptors that point to each

socket.
• after fork, refcnt (connfd )=2 .
• Connection will not be cl osed until refcnt (connfd )=0 .
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Pros and cons of process-based design
+ handles multiple connections c oncurrently
+ clean sharing model

• descriptors (yes)
• global variables (n o)

+ simple and straightforward
- nontrivial to shared data between proc esses

• requires IPC ( interprocess communication mec hanisms)
– FIFO’s
– System V shared me mory
– System V semaphore s

- additional overhead for process c ontrol
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Threads-based server
/* 
 * echoservert2.c - A concurrent e cho server using threads
 * Usage: echoservert2 <port>
 */
#include < ics.h>
#define BUFSIZE 1024
void echo( int connfd );
void *thread(void * vargp );

int main( int argc , char **argv ) {
  int listenfd , * connfdp ;
  int portno ; 
  struct sockaddr _in clientaddr ;
  int clientlen  = sizeof (struct sockaddr _in);
  pthread _t tid ; 

  /* check command line  args  */
  if ( argc != 2) {
    fprintf (stderr , "usage: %s <port>\n",  argv [0]);
    exit(0);
  }
  portno  = atoi (argv[1]);
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Threads-based server ( cont)

 /* open the listening socket */
  listenfd  = open_ streamsock (portno );

  /* main server loop */
  while (1) {
    connfdp  = Malloc (sizeof (int));
    * connfdp = Accept( listenfd , 

      ( struct sockaddr  *) & clientaddr , &clientlen );

    Pthread _create(& tid, NULL, thread, (void *) connfdp );
  }
}
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Threads-based server ( cont)

/* thread - thread routine */
void *thread(void * vargp ) {  
  int connfd ;

  /* run detached to avoid a memor y leak */
  Pthread _detach( pthread _self()); 

  connfd  = *((int  *)vargp );
  Free( vargp);

  echo( connfd);
  Close( connfd);
  return NULL;
}
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Issues with threads-based servers
Must run “detached” to avoid memory leak.

• At any point in time, a thread is either joinable  or detached.
• joinable thread:

– can be reaped and killed by other threads .
– must be reaped (with pthread _join ) to free memory resource s.

• detached thread:
– cannot be reaped or k illed by other threads.
– resources are automa tically reaped on te rmination.

• default state is joinable .
– use pthread _detach( pthread _self())  to make detach ed.

Must be careful to avoid unintended sha ring.
• For example, what hap pens if we pass the a ddress of connfd to the

thread routine?
• Pthread _create(& tid , NULL, thread, (v oid *)& connfd );
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Pros and cons of thread-based design
+ Arguably the simplest option

• No reaping zombies
• No signal handling

+ Easy to share data structures between threads
• e.g., logging informati on, file cache.

+ Threads are more efficient than process es.
--- Unintentional sharing can introduce subtle and hard

to reproduce race conditions between threads.
• malloc an argument struct for each thread and pas s ptr to struct to

thread routine.
• Keep globals  to a minimum.
• If a thread references a global variable:

– protect it with a semaph ore or a mutex or
– think carefully abou t whether unprotected is sa fe:

» e.g., one writer thread, mu ltiple readers is OK.
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select function
select   sleeps until on e or more file descriptors in the set readset are

ready for reading.

#include <sys/sel ect.h>

int  select( int  maxfdp1, fd_set * readset , NULL, NULL, NUL L);

readset
• opaque bit vector (max FD_SETSIZE bits) that indicates membership  in

a descriptor set.
• if bit k is 1, then descriptor k is a member of  the descriptor set.

maxfdp1
• maximum descriptor in descriptor set plus 1.
• tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership.

select   returns the number of ready descriptors and s ets each bit  of
readset  to indicate the ready status of its correspondi ng descriptor.
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Macros for manipulating set descriptors
void FD_ZERO( fd _set *fdset );

• turn off all bits in fdset .

void FD_SET( int fd , fd_set * fdset);
• turn on bit fd in fdset .

void FD_CLR( int fd , fd_set * fdset);
• turn off bit fd  in fdset .

int FD_ISSET( int fd , *fdset );
• is bit fd  in fdset  turned on?
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select example
/* 
 * main loop: wait for connection request or  stdin command.
 * If connection request, then ech o input line 
 * and close connection. If comman d, then process. 
 */
 printf ("server> ");
 fflush (stdout);

 while ( notdone ) {
    /* 
     * select: check if the user t yped something to  stdin  or 
     * if a connection request arr ived.
     */
    FD_ZERO(& readfds );          /* initialize the  fd set */
    FD_SET( listenfd , &readfds ); /* add socket  fd */
    FD_SET(0, & readfds);        /* add  stdin fd  (0) */
    Select( listenfd +1, & readfds, NULL, NULL, NULL); 
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select  example
First we check for a pending e vent on stdin.

  /* if the user has typed a comma nd, process it */
  if (FD_ISSET(0, & readfds )) {
     fgets(buf, BUFSIZE,  stdin);
     switch ( buf [0]) {
     case 'c': /* print the connec tion count */
        printf ("Received %d conn. requests so far.\n",  connectcnt );
        printf ("server> ");
        fflush ( stdout);
        break;
     case 'q': /* terminate the se rver */
        notdone  = 0;
        break;
     default: /* bad input */
        printf ("ERROR: unknown command\n");
        printf ("server> ");
        fflush ( stdout);
     }
  }    
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select  example
Next we check for a pending conne ction request.

  /* if a connection request has a rrived, process it */
  if (FD_ISSET( listenfd, & readfds)) {
     connfd = Accept( listenfd , 
                    (struct sockaddr  *) &clientaddr , & clientlen );
     connectcnt ++;
      
     bzero (buf, BUFSIZE);
     Read( connfd , buf, BUFSIZE);
     Write( connfd , buf, strlen (buf ));
     Close( connfd );
  }
} /* while */  
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I/O multiplexing with select
/* 
 * echoservers .c - A concurrent echo server based on select
 * Usage:  echoservers  <port>
 */
#include < ics.h>
#define BUFSIZE 1024
void echo( int connfd );

int main( int argc , char **argv ) {
  int listenfd ,  connfd;
  int portno ;
  struct sockaddr _in clientaddr ;
  int clientlen  = sizeof (struct sockaddr _in);

  fd_set  allset ; /* descriptor set for select */
  fd_set  rset;   /* copy of  allset  for select */
  int maxfd ;     /* max descriptor value for select */
  
  int  client[FD_SETSIZE]; /* pool of connect ed descriptors */
  int  maxi;      /*  highwater  index into client pool */
  int nready ;    /* number of ready descript ors from select */    
  int  i, sockfd ; /* misc  */
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I/O multiplexing with select (cont)
  /* check command line  args  */
  if ( argc != 2) {
    fprintf (stderr , "usage: %s <port>\n",  argv [0]);
    exit(0);
  }
  portno  = atoi (argv[1]);

  /* open the listening socket */
  listenfd  = open_ streamsock (portno );

  /* initialize the pool of active client connections */
  maxi = -1;         
  maxfd  = listenfd ; 
  for (i=0; i< FD_SETSIZE; i++)
    client[i] = -1; 
  FD_ZERO(& allset );
  FD_SET( listenfd , &allset );
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I/O multiplexing with selec t (cont )

  /* main server loop */
  while (1) {
    rset  = allset ;
    nready  = Select( maxfd +1, &rset , NULL, NULL, NULL);

    /* PART I: add a new connected descriptor to the pool */
    if (FD_ISSET( listenfd , &rset)) {
      connfd  = Accept( listenfd , (struct _sockaddr  *) 

      & clientaddr , &clientlen );
      nready --;
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I/O multiplexing with selec t (cont )

     /* update the client pool */
     for (i=0; i<FD_SETSIZE; i++)
       if (client[i] < 0) {

  client[i] =  connfd ;
  break;

       }
       if (i == FD_SETSIZE)

  app_error("Too many clients\n");
      
      
     /* update the read descriptor set */
     FD_SET( connfd , &allset );
     if ( connfd  > maxfd)

maxfd  = connfd; 
     if (i > maxi)

maxi = i;  
    
   } /* if (FD_ISSET( listenfd , &rset ) */

CS 213 F’00– 32 –class29. ppt

I/O multiplexing with selec t (cont )

    /* PART II: check the pool of connected descs for client data */
    for (i=0; (i<=maxi) && ( nready  > 0); i++) {
      sockfd  = client[i];
      if (( sockfd  > 0) && (FD_ISSET( sockfd, & rset))) { 
        echo( sockfd );
        Close( sockfd );
        FD_CLR( sockfd, & allset);
        client[i] = -1;
        nready --;
      } 
    } /* for */
  } /* while(1) */
}
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Pro and cons of select -based design
+ one logical control flow.
+ can single step with a deb ugger.
+ no process or thread control overhead.

- significantly more complex to code initially than
process or thread designs.

- vulnerable to denial of servi ce attack
• How?


