
Concurrent Servers

December 7, 2000

Topics
• Baseline iterative s erver
• Process-based conc urrent server
• Threads-based conc urrent server
• select- based concurrent s erver

class29. ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’00– 2 –class29. ppt

Error-handling sockets wrappers

void unix _error(char * msg) {
 printf ("%s: %s\n", msg , strerror (errno));
 exit(0);
};

int Accept(int s, struct sockaddr * addr, int *addrlen) {
 int rc = accept(s, addr , addrlen);
 if (rc < 0)
 unix _error("Accept");
 return rc;
}

To simplify our code, we w ill use error handling
wrappers of the form:

CS 213 F’00– 3 –class29. ppt

Echo client revisited
/*
 * echoclient .c - A simple connection-based echo client
 * usage: echoclient <host> <port>
 */
#include < ics.h>
#define BUFSIZE 1024

int main(int argc , char **argv) {
 int sockfd ; /* client socket */
 struct sockaddr _in serveraddr ; /* server socket addr struct */
 struct hostent *server; /* server's DNS en try */
 char *hostname; /* server's domain name */
 int portno ; /* server 's port number */
 char buf[BUFSIZE];

 /* check command line argument s */
 if (argc != 3) {
 fprintf (stderr,"usage: %s <hostname> <port>\n" , argv[0]);
 exit(0);
 }
 hostname = argv [1];
 portno = atoi (argv[2]);

CS 213 F’00– 4 –class29. ppt

Echo client (cont)

 /* create the socket */
 sockfd = Socket(AF_INET, SOCK_STREAM, 0) ;

 /* initialize the server's soc ket address struct */
 server = Gethostbyname (hostname);
 bzero ((char *) & serveraddr , sizeof (serveraddr));
 serveraddr .sin_family = AF_INET;
 bcopy ((char *)server->h_ addr,

 (char *)& serveraddr .sin_ addr.s_addr , server->h_length);
 serveraddr .sin_port = htons(portno);

 /* request a connection to the server */
 Connect(sockfd , (struct sockaddr *)&serveraddr ,
 sizeof (serveraddr));

CS 213 F’00– 5 –class29. ppt

Echo client (cont)

 /* get a message line from the user */
 printf ("Please enter msg: ");
 bzero (buf, BUFSIZE);
 fgets (buf, BUFSIZE, stdin);

 /* send message line to server and read its echo */
 Write(sockfd , buf, strlen (buf));
 bzero (buf, BUFSIZE);
 Read(sockfd , buf, BUFSIZE);
 printf ("Echo from server: %s", buf);
 Close(sockfd);
 exit(0);
}

CS 213 F’00– 6 –class29. ppt

open_ streamsock helper function
int open_ streamsock (int portno) {
 int listenfd , optval = 1;
 struct sockaddr _in serveraddr ;

 /* create a socket descriptor */
 listenfd = Socket(AF_INET, SOCK_STREAM, 0) ;
 Setsockopt (listenfd , SOL_SOCKET, SO_REUSEADDR,

 (const void *)& optval , sizeof (int));

 /* accept requests to (any IP addr , portno) */
 bzero ((char *) & serveraddr , sizeof (serveraddr));
 serveraddr .sin_family = AF_INET;
 serveraddr .sin_ addr.s_ addr = htonl (INADDR_ANY);
 serveraddr .sin_port = htons ((unsigned short) portno);
 Bind(listenfd , (struct sockaddr *) & serveraddr sizeof (serveraddr));

 /* Make it a listening socket re ady to accept conn requests */
 Listen(listenfd , 5);
 return listenfd ;
}

CS 213 F’00– 7 –class29. ppt

Iterative servers
Iterative servers process one re quest at a time.

client 1 server client 2

call connect call accept

ret connect
ret accept

call connect

call read
write

ret read
close

close
call accept

ret connect

call read

ret read

close

write

ret accept

close

CS 213 F’00– 8 –class29. ppt

Iterative echo server
/*
 * echoserveri .c - iterative echo server
 * Usage: echoserveri <port>
 */
#include < ics.h>
#define BUFSIZE 1024
void echo(int connfd);

int main(int argc , char **argv) {
 int listenfd , connfd;
 int portno ;
 struct sockaddr _in clientaddr ;
 int clientlen = sizeof (struct sockaddr _in);

 /* check command line args */
 if (argc != 2) {
 fprintf (stderr , "usage: %s <port>\n",
 argv [0]);
 exit(0);
 }
 portno = atoi (argv[1]);

CS 213 F’00– 9 –class29. ppt

Iterative echo server (cont)
/* open the listening socket */
 listenfd = open_ streamsock (portno);

 /* main server loop */
 while (1) {
 connfd = Accept(listenfd ,
 (struct sockaddr *) &clientaddr , & clientlen);
 echo(connfd);
 Close(connfd);
 }
}

/* echo - read and echo a line fro m a client connection */
void echo(int connfd) {
 int n;
 char buf[BUFSIZE];

 bzero (buf, BUFSIZE);
 n = Read(connfd , buf, BUFSIZE);
 printf ("server received %d bytes: %s", n, buf);
 Write(connfd, buf, strlen (buf));
}

CS 213 F’00– 10 –class29. ppt

Pros and cons of iterative servers
+ simple
- can process only one request at a time

• one slow client can hold up thousands of oth ers
• Example: echo cli ents and server

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

Server blocks
waiting for
data from
Client 1

CS 213 F’00– 11 –class29. ppt

Concurrent servers
Concurrent servers process multiple reque sts

concurrently.
• The basic idea i s to use multiple co ntrol flows to handle multipl e

requests.

Example concurrent server designs :
• Fork a new child proces s for each request.
• Create a new thread for ea ch request.
• Pre-fork a pool of child p rocesses to handle requests. (not discussed)
• Pre-create a pool of threa ds to handle requests . (not discussed)
• Manually interleave th e processing for multipl e open connections.

– Uses Linux select() function to notice pen ding socket activity
– Form of application-le vel concurrency

CS 213 F’00– 12 –class29. ppt

Example: Concurrent echo server
client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

call accept
ret connect

ret accept call fgets

writefork

call
read

child 2

write

call read

end read

close
close

...

CS 213 F’00– 13 –class29. ppt

Process-based concurrent server
/*
 * echoserverp .c - A concurrent echo server based on processes
 * Usage: echoserverp <port>
 */
#include < ics.h>
#define BUFSIZE 1024
void echo(int connfd);
void handler(int sig);

int main(int argc , char **argv) {
 int listenfd , connfd;
 int portno ;
 struct sockaddr _in clientaddr ;
 int clientlen = sizeof (struct sockaddr _in);

 if (argc != 2) {
 fprintf (stderr , "usage: %s <port>\n", argv [0]);
 exit(0);
 }
 portno = atoi (argv[1]);
 listenfd = open_ streamsock (portno);

CS 213 F’00– 14 –class29. ppt

Process-based server (cont)
 Signal(SIGCHLD, handler); /* pare nt must reap children! */

 /* main server loop */
 while (1) {
 /* for complete portability, m ust restart if interrupted by */
 /* call to SIGCHLD handler */
 if ((connfd = accept(listenfd, (struct sockaddr *) & clientaddr ,
 & clientlen)) < 0) {
 if (errno == EINTR)
 continue; /* go back */
 else
 unix_error(“accept”);

 if (Fork() == 0) {
 Close(listenfd); /* child closes its listening socket */
 echo(connfd); /* child reads and echos input line */
 Close(connfd); /* child is done with this cli ent */
 exit(0); /* child ex its */
 }
 Close(connfd); /* parent must close connected soc ket! */
 }
}

CS 213 F’00– 15 –class29. ppt

Reaping zombie children

/* handler - reaps children as the y terminate */
void handler(int sig) {
 pid _t pid;
 int stat ;

 while ((pid = waitpid(-1, & stat, WNOHANG)) > 0)
 ;
 return;
}

Question: Why is the c all to waitpid in a loop?

CS 213 F’00– 16 –class29. ppt

Issues with process-based design
Server should restart accept call if it is interrupted by

a transfer of control to the SIGCHLD handler
• not necessary for sy stems such as Linux that support Posix signal

handling.
• required for portability on s ome older Unix syste ms.

Server must reap zombie children
• to avoid fatal mem ory leak.

Server must close its copy of connfd .
• kernel keeps refere nce count of descriptors that point to each

socket.
• after fork, refcnt (connfd)=2 .
• Connection will not be cl osed until refcnt (connfd)=0 .

CS 213 F’00– 17 –class29. ppt

Pros and cons of process-based design
+ handles multiple connections c oncurrently
+ clean sharing model

• descriptors (yes)
• global variables (n o)

+ simple and straightforward
- nontrivial to shared data between proc esses

• requires IPC (interprocess communication mec hanisms)
– FIFO’s
– System V shared me mory
– System V semaphore s

- additional overhead for process c ontrol

CS 213 F’00– 18 –class29. ppt

Threads-based server
/*
 * echoservert2.c - A concurrent e cho server using threads
 * Usage: echoservert2 <port>
 */
#include < ics.h>
#define BUFSIZE 1024
void echo(int connfd);
void *thread(void * vargp);

int main(int argc , char **argv) {
 int listenfd , * connfdp ;
 int portno ;
 struct sockaddr _in clientaddr ;
 int clientlen = sizeof (struct sockaddr _in);
 pthread _t tid ;

 /* check command line args */
 if (argc != 2) {
 fprintf (stderr , "usage: %s <port>\n", argv [0]);
 exit(0);
 }
 portno = atoi (argv[1]);

CS 213 F’00– 19 –class29. ppt

Threads-based server (cont)

 /* open the listening socket */
 listenfd = open_ streamsock (portno);

 /* main server loop */
 while (1) {
 connfdp = Malloc (sizeof (int));
 * connfdp = Accept(listenfd ,

 (struct sockaddr *) & clientaddr , &clientlen);

 Pthread _create(& tid, NULL, thread, (void *) connfdp);
 }
}

CS 213 F’00– 20 –class29. ppt

Threads-based server (cont)

/* thread - thread routine */
void *thread(void * vargp) {
 int connfd ;

 /* run detached to avoid a memor y leak */
 Pthread _detach(pthread _self());

 connfd = *((int *)vargp);
 Free(vargp);

 echo(connfd);
 Close(connfd);
 return NULL;
}

CS 213 F’00– 21 –class29. ppt

Issues with threads-based servers
Must run “detached” to avoid memory leak.

• At any point in time, a thread is either joinable or detached.
• joinable thread:

– can be reaped and killed by other threads .
– must be reaped (with pthread _join) to free memory resource s.

• detached thread:
– cannot be reaped or k illed by other threads.
– resources are automa tically reaped on te rmination.

• default state is joinable .
– use pthread _detach(pthread _self()) to make detach ed.

Must be careful to avoid unintended sha ring.
• For example, what hap pens if we pass the a ddress of connfd to the

thread routine?
• Pthread _create(& tid , NULL, thread, (v oid *)& connfd);

CS 213 F’00– 22 –class29. ppt

Pros and cons of thread-based design
+ Arguably the simplest option

• No reaping zombies
• No signal handling

+ Easy to share data structures between threads
• e.g., logging informati on, file cache.

+ Threads are more efficient than process es.
--- Unintentional sharing can introduce subtle and hard

to reproduce race conditions between threads.
• malloc an argument struct for each thread and pas s ptr to struct to

thread routine.
• Keep globals to a minimum.
• If a thread references a global variable:

– protect it with a semaph ore or a mutex or
– think carefully abou t whether unprotected is sa fe:

» e.g., one writer thread, mu ltiple readers is OK.

CS 213 F’00– 23 –class29. ppt

select function
select sleeps until on e or more file descriptors in the set readset are

ready for reading.

#include <sys/sel ect.h>

int select(int maxfdp1, fd_set * readset , NULL, NULL, NUL L);

readset
• opaque bit vector (max FD_SETSIZE bits) that indicates membership in

a descriptor set.
• if bit k is 1, then descriptor k is a member of the descriptor set.

maxfdp1
• maximum descriptor in descriptor set plus 1.
• tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership.

select returns the number of ready descriptors and s ets each bit of
readset to indicate the ready status of its correspondi ng descriptor.

CS 213 F’00– 24 –class29. ppt

Macros for manipulating set descriptors
void FD_ZERO(fd _set *fdset);

• turn off all bits in fdset .

void FD_SET(int fd , fd_set * fdset);
• turn on bit fd in fdset .

void FD_CLR(int fd , fd_set * fdset);
• turn off bit fd in fdset .

int FD_ISSET(int fd , *fdset);
• is bit fd in fdset turned on?

CS 213 F’00– 25 –class29. ppt

select example
/*
 * main loop: wait for connection request or stdin command.
 * If connection request, then ech o input line
 * and close connection. If comman d, then process.
 */
 printf ("server> ");
 fflush (stdout);

 while (notdone) {
 /*
 * select: check if the user t yped something to stdin or
 * if a connection request arr ived.
 */
 FD_ZERO(& readfds); /* initialize the fd set */
 FD_SET(listenfd , &readfds); /* add socket fd */
 FD_SET(0, & readfds); /* add stdin fd (0) */
 Select(listenfd +1, & readfds, NULL, NULL, NULL);

CS 213 F’00– 26 –class29. ppt

select example
First we check for a pending e vent on stdin.

 /* if the user has typed a comma nd, process it */
 if (FD_ISSET(0, & readfds)) {
 fgets(buf, BUFSIZE, stdin);
 switch (buf [0]) {
 case 'c': /* print the connec tion count */
 printf ("Received %d conn. requests so far.\n", connectcnt);
 printf ("server> ");
 fflush (stdout);
 break;
 case 'q': /* terminate the se rver */
 notdone = 0;
 break;
 default: /* bad input */
 printf ("ERROR: unknown command\n");
 printf ("server> ");
 fflush (stdout);
 }
 }

CS 213 F’00– 27 –class29. ppt

select example
Next we check for a pending conne ction request.

 /* if a connection request has a rrived, process it */
 if (FD_ISSET(listenfd, & readfds)) {
 connfd = Accept(listenfd ,
 (struct sockaddr *) &clientaddr , & clientlen);
 connectcnt ++;

 bzero (buf, BUFSIZE);
 Read(connfd , buf, BUFSIZE);
 Write(connfd , buf, strlen (buf));
 Close(connfd);
 }
} /* while */

CS 213 F’00– 28 –class29. ppt

I/O multiplexing with select
/*
 * echoservers .c - A concurrent echo server based on select
 * Usage: echoservers <port>
 */
#include < ics.h>
#define BUFSIZE 1024
void echo(int connfd);

int main(int argc , char **argv) {
 int listenfd , connfd;
 int portno ;
 struct sockaddr _in clientaddr ;
 int clientlen = sizeof (struct sockaddr _in);

 fd_set allset ; /* descriptor set for select */
 fd_set rset; /* copy of allset for select */
 int maxfd ; /* max descriptor value for select */

 int client[FD_SETSIZE]; /* pool of connect ed descriptors */
 int maxi; /* highwater index into client pool */
 int nready ; /* number of ready descript ors from select */
 int i, sockfd ; /* misc */

CS 213 F’00– 29 –class29. ppt

I/O multiplexing with select (cont)
 /* check command line args */
 if (argc != 2) {
 fprintf (stderr , "usage: %s <port>\n", argv [0]);
 exit(0);
 }
 portno = atoi (argv[1]);

 /* open the listening socket */
 listenfd = open_ streamsock (portno);

 /* initialize the pool of active client connections */
 maxi = -1;
 maxfd = listenfd ;
 for (i=0; i< FD_SETSIZE; i++)
 client[i] = -1;
 FD_ZERO(& allset);
 FD_SET(listenfd , &allset);

CS 213 F’00– 30 –class29. ppt

I/O multiplexing with selec t (cont)

 /* main server loop */
 while (1) {
 rset = allset ;
 nready = Select(maxfd +1, &rset , NULL, NULL, NULL);

 /* PART I: add a new connected descriptor to the pool */
 if (FD_ISSET(listenfd , &rset)) {
 connfd = Accept(listenfd , (struct _sockaddr *)

 & clientaddr , &clientlen);
 nready --;

CS 213 F’00– 31 –class29. ppt

I/O multiplexing with selec t (cont)

 /* update the client pool */
 for (i=0; i<FD_SETSIZE; i++)
 if (client[i] < 0) {

 client[i] = connfd ;
 break;

 }
 if (i == FD_SETSIZE)

 app_error("Too many clients\n");

 /* update the read descriptor set */
 FD_SET(connfd , &allset);
 if (connfd > maxfd)

maxfd = connfd;
 if (i > maxi)

maxi = i;

 } /* if (FD_ISSET(listenfd , &rset) */

CS 213 F’00– 32 –class29. ppt

I/O multiplexing with selec t (cont)

 /* PART II: check the pool of connected descs for client data */
 for (i=0; (i<=maxi) && (nready > 0); i++) {
 sockfd = client[i];
 if ((sockfd > 0) && (FD_ISSET(sockfd, & rset))) {
 echo(sockfd);
 Close(sockfd);
 FD_CLR(sockfd, & allset);
 client[i] = -1;
 nready --;
 }
 } /* for */
 } /* while(1) */
}

CS 213 F’00– 33 –class29. ppt

Pro and cons of select -based design
+ one logical control flow.
+ can single step with a deb ugger.
+ no process or thread control overhead.

- significantly more complex to code initially than
process or thread designs.

- vulnerable to denial of servi ce attack
• How?

