class22.

15-213

“The course that gives CMU its Zip!”

Concurrency |: Threads
Nov 9, 2000

Topics

* Thread concept
» Posix threads (Pthreads) interface
* Linux Pthreads implementation

» Concurrent execution

« Sharing data

ppt

Modern view of a process

Process = thread + code, data, and kernel context

class22.

Thread (main thread)

Thread context:
Data registers
Condition co des
Stack pointer (SP)
Program co unter (PC)

ppt

brk —»

Code and Data

Traditional view of a process

Process = process context + code,

Process context

Program context:
Data registers
Condition co des

SP —»

data, and stack

Code, data, and stac k

stack

shared libraries

Stack pointer (SP)
Program co unter (PC)

brk —»|

shared libraries

1
1
1
1
1
1
1
1 PC—»
1
1
1
1
1
1
1

run-time heap

read/write data

read-only code/data

Kernel context:
VM structures
Open files
Signal h andlers
brk pointer

CS 213 F'00

Kernel context:
VM structures
Open files
Signal h andlers
brk pointer

run-time heap

read/write data

PC —»| read-only code/data

class22. ppt

CS 213 F00

A process with multiple threads

Multiple threads can be associ

» Each thread has its own logical control flow (sequ
« Each thread shares th e same code, data , and kernel contex t
« Each thread has its own thread id (tid)

Thread 1 (main thread)

Thread 1 context:
Data registers
Condition co des
SP1
PC1

class22. ppt

Shared code and da ta

shared libraries

run-time heap
read/write data

read-only code/data

Kernel context:
VM structures
Open files
Signal h andlers
brk pointer

_4-

ated with a process

ence of PC values)

Thread 2 (peer thread)

Thread 2 context:
Data registers
Condition co des
SP2
PC2

CS 213 F00

Logical view of threads

Threads associated with a proce ss form a pool of peers.
 unlike processes which form a tree hierarchy

Threads associate d with process foo Process hierarchy

(1)
OJOXO)
T (e)
O

class22. ppt _5_ CS 213 F00

“A | shared code, data
and kernel context
) 3

Threads vs processes

How threads and processes are si milar
« Each has its own logic al control flow.
e Each can run concurren tly.
» Each is context switc hed.

How threads and processes are di fferent
e Threads share code and data, processe s (typically) do not.
¢ Threads are somewhat less expensive than processes.

—process control (creating and reaping) is twice as expensive as thread
control.

—Linux/Pentium Il numbers:
» 20K cycles to create and reap a process.
» 10K cycles to create and reap a thread.

class22. ppt _7- CS 213 F00

Concurrent thread execution

Two threads run concurrently (are concurrent) if their
logical flows overlap in time.

Otherwise, they are sequential.

Examples: Thread A Thread B Thread C
e Concurrent: A&B,A&C | ----- [---
* Sequentia: B&C | ctrhmtmmomoooooes I ------------------------
Time |] I ______

class22. ppt —_6— CS 213 F00

Threads are a unifying abstraction for
exceptional control flow

Exception handler
* A handler can be vie wed as a thread
* Waits for a "signa " from CPU
* Upon receipt, execu tes some code, the n waits for next "signa "

Process
* Aprocess is athread + shared code, data , and kernel contex t.

Signal handler
» Asignal handler can be viewed as a threa d
» Waits for a signal from the kernel or another proc ess
« Upon receipt, execute s some code, then waits for next signal.

class22. ppt _8— CS 213 F00

Posix threads (Pthreads) interface

Pthreads : Standard interface for ~60 functions that

manipulate threads from C programs.
« Creating and reaping threa ds.
—pthread _create
—pthread _join
¢ Determining your thread ID
—pthread _self
¢ Terminating threads
—pthread _cancel
—pthread _exit

—exit()

[terminates all th reads], ret

« Synchronizing acce ss to shared variabl es
—pthread _mutex _init
—pthread _mutex _[un Jlock
—pthread _cond_ init
—pthread _cond_[timed]wait

class22.

class22.

ppt —_9-

Execution of “hello, world”

create peer thread

wait for peer thread
to terminate

exit() terminates main thread and any

ppt 11—

L peer threads

CS 213 F'00

™ print output
terminate thread via

CS 213 F'00

[terminates current thread]

ret

The Pthreads "hello, world" program

/*
* hello.c -
*/
#include < ics.h>

Pthreads "hello, world" program

void *thread(void * vargp);
int main() {
pthread _ttid ;

Pthread _create(& tid, NULL, thread, NULL);
Pthread _join(tid, NULL);
exit(0);

) \

Thread attributes
-1 (usually NULL)

Thread arguments
L1 (void *p)

return value

- !
(void **p)
/* thread routine */
void *thread(void * vargp){
printf ("Hello, world\n");
return NULL,;
}
class22. ppt 10— CS 213 F'00

Unix vs Posix error handling

Unix-style error handling (Unix
« if error: return -1 and set errno
« if OK: return useful result as

syscalls)

value >= 0.

if (pid = wait(NULL)) < 0) {
perror ("wait");
exit(0);

}

Posix -style error handling (newer
« if error: return nonzero error code , zero if OK
« useful results are pa ssed back in an argument.

variable to error code .

Posix functions)

if (rc = pthread _join(tid ,&retvalp) !1=0){
printf ("pthread _create: %s\n", strerror(rc
exit(0);

}

)

class22. ppt _12_

CS 213 F00

Suggested error handling macros Pthreads wrappers

Error checking crucial, but ¢ luttered. Use these to We advocate Steven’s convention o f providing
simplify your error checking: wrappers for each system-level function call.
» wrapper is denoted by ¢ apitalizing first letter o f function name.
* _ . » wrapper has identical i nterface as the origina | function.
:/macro for unix -style error handling - each wrapper does app ropriate unix or posix style error checking
#define unix_error(msg) do {\ * wrapper typically return noth ing.
printt ("%s: %s\n", msg, strerror (ermo));\ « declutters code without compromisin g safety.
exit(0);\
} while (0)
/*
* wrapper function for pthread_join
% */
/* f . | handii void Pthread_join(pthread _t tid, void **thread_return) {
*/macro or posix -style error handling intrc =pthread _join(tid, thread_return);
) . if rc!1=0)
#define posix_error(code, msg) do {\ . " .
printf ("%s: %s\n", msg , strerror (code));\ } posix —error(e, "Pthread —Join");
exit(0);\
} while (0)
class22. ppt 13- CS 213 F'00 class22. ppt 14— CS 213 F'00
Basic thread control: create a thread Basic thread control: join
int pthread _create(pthread _t* tidp ,pthread _attr _t* attrp | int pthread _join(pthread _ttid ,void ** thread_return); |
void *(*routine)(vo id *), void * argp);
Creates a new peer thread _ . _
. tidp : thread id Waits for a specific peer thread to termina te, and then
e attrp : thread attributes (usua Ily NULL) reaps It.
. routine: thread routine « tid :thread ID of thread to wait for.
« argp : input parameters to routine « thread_return : object returned by pee rthread via ret stmt
Akin to fork() Akin to wait and wait_pid but unlike wait
- but without the confusing * call once return twice” semantics. * Any thread can reap a ny other thread (not just ¢ _ hildren)
. . . .
- peer thread has loca | stack variables , but shares all globa | variables. Must wait for a *specific* thread

—no way to wait for *any* thread.
—perceived by some as a flaw in the Pthreads design

class22. ppt _15_ CS 213 F'00 class22. ppt ~16- CS 213 F'00

Linux implementation of Pthreads

Linux implements threads in an elega nt way:
* Threads are just proc esses that share the same kernel conte xt.

hellopid .c

The following routine will show us the process
hierarchy of a Linux thread pool:

o fork() :creates achild process with a new kernel context

« clone() :creates achil d process that shares some or all of the
parent’s kernel conte xt.

int _ clone(int (* fn)(void * arg),void *child_s tack,

int flags, void * arg);

#“other peer ™,
S, thread 5

Creates a new process and executes functi on fn with argument arg
in that process usin g the stack space pointed to by child_stack
Returns pid of new process.

flags determine the degre e of kernel context s haring: e.g.,
CLONE_VM: share virtual address s pace
CLONE_FS: share file system information
CLONE_FILES: share open file d escriptors

class22. ppt _17— CS 213 F00

Linux process hierarchy for threads

bass> hellopid
Hello from main thread! tid :1024 pid :6024
Hello from child thread! tid:1025 pid 16026 ppid :6025

#include < ics.h>
void *thread(void * vargp);
int main() {
pthread _ttid
printf ("Hello from main thread!
pthread _self(), getpid());

Pthread _join(tid, NULL);
exit(0);
}

void *thread(void * vargp) {

Pthread _create(& tid, NULL, thread, NULL);

:%Id pid :%d\n",

printf ("Hello from child thread! tid:%ld pid :%d ppid :%d\n",
pthread _self(), getpid(), getppid ());
return NULL;
}
class22. ppt _18- CS 213 F'00

beep.c: Performing concurrent tasks

Thread manager sup ports thread
abstraction using si gnals:

main
pid=6024

* exit(): kills all threads, re gardless
where it is called from

* slow system calls such as sleep()

.-...A

‘ or read() block only the calling
child #“other pee.r'""‘.: thread.
pid =6026 thread
class22. ppt —19- €S 213 F'00

/~k

* beeps until the user hits a key
*/

#include < ics.h>
void *thread(void * vargp);
[* shared by both threads */

char shared = "\0';

int main() {
pthread _ttid ;
Pthread _create(& tid, NULL,
thread, NULL);
while (shared =="0") {
printf ("BEEP\n");
sleep(1);

Pthread _join(tid, NULL);
printf ("DONE\n");
exit(0);

/* thread routine */

void *thread(void * vargp){
shared = getchar ();
return NULL,;

}

class22. ppt _20—

CS 213 F00

badcnt.c: Sharing data between threads

/* bad sharing */
#include < ics.h>
#define NITERS 1000

void *count(void * arg);
struct {

int counter;

} shared;

int main() {

pthread _ttid1, tid2;
Pthread _create(&tid1, NULL,

count, NULL);
_create(&tid2, NULL,
count, NULL);
if (shared.counter != NITERS*2)
printf ("BOOM! counter=%d\n",
shared.counter);

Pthread

else
printf ("OK counter=%d\n",
shared.counter);

[* thread routine */
void *count(void * arg) {
int i, val;

for (i=0; i<NITERS; i++) {
val = shared.counter;
printf ("%d: %d\n",

Output of run 1

Running badcnt.c

Output of run 2

class22. ppt

—-21 -

(int)pthread _self(),
val);
shared.counter = val +1;
}
return NULL;
}
Key point:
“struct shared” is vis ible to

all threads.

“i”and “ val” are visible only
to the count thread.

CS 213 F'00

1025: 0
1025: 1
1025: 2

1025: 997
1025: 998
1025: 999
2050: 969
2050: 970
2050: 971

2050: 1966
2050: 1967
2050: 1968
BOOM! counter=1969

Output of run 3

1025: 0
1025: 1
1025: 2

1025: 997
1025: 998
1025: 999
2050: 712
2050: 713
2050: 714

2050: 1709
2050: 1710
2050: 1711
BOOM! counter=1712

1025: 0
1025: 1
1025: 2

1025: 997
1025: 998
1025: 999
2050: 1000
2050: 1001
2050: 1002

2050: 1997
2050: 1998
2050: 1999
OK counter=2000

So what's the deal?

We must synchronize concurrent acces ses to shared thread d ata

class22. ppt

(the topic of our next le cture)
- 22—

CS 213 F00

