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Great Reality #4
There’s more to performance than asymptotic

complexity

Constant factors matter too!
• easily see 10 :1 performance range de pending on how code is written
• must optimize at m ultiple levels:

– algorithm, data representations, procedures, and loops

Must understand system to optimize performance
• how programs are compile d and executed
• how to measure program pe rformance and identify bottlenecks
• how to improve performance without destroying code m odularity

and generality
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Optimizing Compilers
Provide efficient mapping of program to machi ne

• register allocation
• code selection a nd ordering
• eliminating minor ine fficiencies

Don’t (usually) improve asymptotic efficienc y
• up to programmer to sele ct best overall algo rithm
• big-O savings are (often ) more important than cons tant factors

– but constant factors also matter

Have difficulty overcoming “optimization bl ockers”
• potential memory aliasing
• potential procedure si de-effects
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Limitations of Optimizing Compilers
Operate Under Fundamental Constraint

• Must not cause any c hange in program behav ior under any possible
condition

• Often prevents it from mak ing optimizations when would only affect
behavior under patholo gical conditions.

Behavior that may be obvious to the programme r can
be obfuscated by languages and c oding styles
• e.g., data ranges m ay be more limited than variable types suggest

– e.g., using an “int ” in C for what could be an enumerated type

Most analysis is performed only within procedures
• whole-program analysis is too expensive in most cases

Most analysis is based onl y on static  information
• compiler has difficu lty anticipating run-time inputs

When in doubt, the compiler must be c onservative
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Machine-Independent Optimizations
• Optimizations you sh ould do regardless of proc essor / compiler

Code Motion
• Reduce frequency with whic h computation performed

– If it will always produce same result
– Especially moving code out of loop

for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
    a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
  int ni = n*i;
  for (j = 0; j < n; j++)
    a[ ni + j] = b[j];
}
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Machine-Independent Opts. (Cont.)
Reductions in Strength:

• Replace costly ope ration with simpler one
• Shift, add instead of m ultiply or divide

16*x --> x << 4

– Utility machine depe ndent
– Depends on cost of m ultiply or divide instruc tion
– On Pentium II or III, integ er multiply only requires 4 CPU cycles

• Keep data in registers rather than memory
– Compilers have trouble making this optimization

for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
    a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
  for (j = 0; j < n; j++)
    a[ ni + j] = b[j];
  ni += n;
}
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Machine-Independent Opts. (Cont.)
Share Common Subexpressions

• Reuse portions of expre ssions
• Compilers often not very sophisticated in ex ploiting arithmetic

properties

/* Sum neighbors of i,j * /
up =    val[(i-1)*n + j];
down =  val[(i+1)*n + j];
left =  val[i*n   + j-1];
right = val[i*n   + j+1];
sum = up + down + left + right;

int inj  = i*n + j;
up =    val[inj  - n];
down =  val[inj  + n];
left =  val[inj  - 1];
right = val[inj  + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n
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Important Tools
Measurement

• Accurately compute ti me taken by code
– Most modern machines have built in cycle counters

• Profile procedure callin g frequencies
– Unix tool gprof

• Custom-built tools
– E.g., L4 cache simulator

Observation
• Generating assembly code

– Lets you see what optimizations compiler can make
– Understand capabilities/limitations of particular compiler
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Optimization Example

Procedure
• Compute sum of all e lements of integer ve ctor
• Store result at destinati on location
• Vector data structure and operations defined vi a abstract data type

Pentium II/III Performance: Clock Cycles / Element
• 40.3 (Compiled -g) 28.6 (Compiled -O2)

void combine1( vec _ptr v, int  *dest )
{
  int  i;
  * dest = 0;
  for (i = 0; i < vec_length(v); i++) {
    int val ;
    get_ vec_element(v, i, & val);
    * dest  += val;
  }
}
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Vector ADT

Procedures
vec _ptr new_ vec (int len )

– Create vector of specified length
int  get_ vec_element( vec _ptr  v, int  index, int * dest )

– Retrieve vector element, store at *dest
– Return 0 if out of bounds, 1 if successful

int  *get_ vec_start( vec _ptr v)

– Return pointer to start of vector data
• Similar to array implem entations in Pascal , ML, Java

– E.g., always do bounds checking

length

data • • •
0 1 2 length–1

CS 213 F’00– 11 –class11. ppt

Understanding Loop

Inefficiency
• Procedure vec_length called e very iteration
• Even though result alway s the same

void combine1- goto (vec _ptr v, int  *dest )
{
    int i = 0;
    int val ;
    * dest  = 0;
    if (i >= vec_length(v))
      goto done;
  loop:
    get_ vec_element(v, i, & val);
    * dest  += val;
    i++;
    if (i < vec_length(v))
      goto loop
  done:
}

1 iteration
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Move vec_length  Call Out of Loop

Optimization
• Move call to vec _length  out of inner loop

– Value does not change from one iteration to next

– Code motion
• CPE:   20.2 (Compiled -O2)

–  vec _length  requires only constant time, but significant overhead

void combine2( vec _ptr v, int  *dest )
{
  int  i;
  int len = vec _length(v);
  * dest = 0;
  for (i = 0; i < len; i++) {
    int val ;
    get_ vec_element(v, i, & val);
    * dest  += val;
  }
}
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void lower(char * s)
{
  int  i;
  for (i = 0; i < strlen (s); i++)
    if (s[i] >= ' A' && s[i] <= 'Z')
      s[i] -= ('A ' - 'a');
}

Code Motion Example #2
Procedure to Convert String to Lower Case
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Convert Loop To Goto Form

•  strlen  executed eve ry iteration
•  strlen  linear in length o f string

– Must scan string until finds ‘\0’

• Overall performance is quadratic

void lower(char * s)
{
   int i = 0;
   if (i >= strlen (s))
     goto done;
 loop:
   if (s[i] >= 'A ' && s[i] <= 'Z')
       s[i] -= (' A' - 'a');
   i++;
   if (i < strlen (s))
     goto loop;
 done:
}
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Improving Performance
void lower(char * s)
{
  int  i;
  int len = strlen (s);
  for (i = 0; i < len; i++)
    if (s[i] >= ' A' && s[i] <= 'Z')
      s[i] -= ('A ' - 'a');
}
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Optimization Blocker: Procedure Calls
Why couldn’t the compiler move vec_len  or strlen

out of the inner loop?
• Procedure May Have Side Effe cts

– i.e, alters global state each time called
• Function May Not Return Same Value for Given Arguments

– Depends on other parts of global state
– Procedure lower  could interact with strlen

Why doesn’t compiler look at code for vec_len  or
strlen ?
• Linker may overloa d with different version

– Unless declared static

• Interprocedural  optimization is no t used extensively due to cost

Warning:
• Compiler treats procedure call as a black box
• Weak optimization s in and around them
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Reduction in Strength

Optimization
• Avoid procedure call to retrieve each vecto r element

– Get pointer to start of array before loop

– Within loop just do pointer reference
– Not as clean in terms of data abstraction

• CPE:   6.76 (Compiled -O2)
– Procedure calls are expensive!
– Bounds checking is expensive

void combine3( vec _ptr v, int  *dest )
{
  int  i;
  int len = vec _length(v);
  int  *data = get_ vec_start(v);
  * dest = 0;
  for (i = 0; i < length; i++) {
    * dest  += data[i];
}
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Eliminate Unneeded Memory References

Optimization
• Don’t need to store in de stination until end
• Local variable sum held in register
• Avoids 1 memory rea d, 1 memory write per cyc le
• CPE:   3.06 (Compiled -O2)

– Memory references are expensive!

void combine4( vec _ptr v, int  *dest )
{
  int  i;
  int len = vec _length(v);
  int  *data = get_ vec_start(v);
  int  sum = 0;
  for (i = 0; i < length; i++) {
    sum += data[i ];
  * dest = sum;
}
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Optimization Blocker: Memory Aliasing
Aliasing

• Two different memory referen ces specify singl e location

Example
• v: [3, 2, 17]

• combine3(v, get_ vec _start(v)+2) --> ?

• combine4(v, get_ vec _start(v)+2) --> ?

Observations
• Easy to have happ en in C

– Since allowed to do address arithmetic
– Direct access to storage structures

• Get in habit of introducing local variables
– Accumulating within loops
– Your way of telling compiler not to check for aliasing

CS 213 F’00– 20 –class11. ppt

Machine-Independent Opt. Summary
Code Motion

• compilers are not very good at this, especially with procedure calls

Reduction in Strength
• Shift, add instead of m ultiply or divide

– compilers are (generally) good at this

– Exact trade-offs machine-dependent
• Keep data in registers rather than memory

– compilers are not good at this, since concerned with aliasing

Share Common Subexpressions
• compilers have limited algebraic reasoning capabilities
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Machine-Dependent Optimizations
Pointer Code

• Can be more efficient than array referencing

Loop Unrolling
• Combine bodies of se veral iterations
• Optimize across itera tion boundaries
• Amortize loop overhea d
• Improve code sche duling

Enabling Instruction Level Pa rallelism
• Making it possible to e xecute multiple ins tructions concurrently

Warning:
• Benefits depend hea vily on particular mac hine
• Best if performed by com piler

– But often stuck with mediocre compiler
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Pointer Code

Optimization
• Use pointers rather than a rray references
• GCC generates code with 1 le ss instruction in inne r loop
• CPE:   2.06 (Compiled -O2)

– Less work to do on each iteration
Warning : Some compilers do better job optimizing a rray code

void combine5( vec _ptr v, int  *dest )
{
  int  length = vec _length(v);
  int  *data = get_ vec_start(v);
  int  *dend  = data+length;
  int  sum = 0;
  while (data != dend) {
    sum += *data;
    data++;
  }
  * dest = sum;
}
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Pointer vs. Array Code Inner Loops

Array Code
• GCC does partial conversio n

to pointer code
• Still keeps variabl e i

– To test loop condition

Pointer Code
• Loop condition base d on

pointer value

Performance
• Array Code: 5 instructions i n 3

clock cycles
• Pointer Code: 4 instructions in

2 clock cycles

L23:
addl  (%eax ),% ecx
addl  $4,% eax
incl  %edx # i++
cmpl  %esi ,%edx # i < n?
jl L23

L28:
addl  (% eax),% edx
addl  $4,% eax
cmpl  %ecx ,%eax # data == dend ?
jne  L28
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CPU Capabilities
Multiple Instructions Can Execute in Parallel

• 1 load
• 1 store
• 2 integer (one may be branch)
• 1 FP

Some Instructions Take > 1 Cycle, but Can be Pipelined
• Instruction Latency Cycles/Issue
• Integer Multiply 4 1
• Integer Divide 36 36
• Double/Single FP Multiply 5 2
• Double/Single FP Add 3 1
• Double/Single FP Divide 38 38
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Loop Unrolling

Optimization
• Combine multiple

iterations into single
loop body

• Amortizes loop
overhead across
multiple iterations

• CPE = 1.43
– Only small savings in

this case

• Finish extras at en d

void combine6( vec _ptr v, int  *dest )
{
  int  length = vec _length(v);
  int  *data = get_ vec_start(v);
  int  *dend  = data+length-7 ;
  int  sum = 0;
  while (data < dend ) {
    sum += data[0 ]; sum += data[1];
    sum += data[2 ]; sum += data[3];
    sum += data[4 ]; sum += data[5];
    sum += data[6 ]; sum += data[7];
    data += 8;
  }
  dend  += 7;
  while (data < dend ) {
    sum += *data; data ++;
  }
  * dest = sum;
}
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Loop Unrolling Assembly

Strange
“Optimization”
%eax = data

%ebx = %eax+28

%ecx = % eax+24

• Wasteful to maintain 3
pointers when 1 would
suffice

L33:
addl  (% eax ),%edx # data[0]
addl  -20(% ecx),% edx # data[1]
addl  -16(% ecx),% edx # data[2]
addl  -12(% ecx),% edx # data[3]
addl  -8(% ecx ),% edx # data[4]
addl  -4(% ecx ),% edx # data[5]
addl  (% ecx ),%edx # data[6]
addl  (% ebx ),%edx # data[7]
addl  $32,% ecx
addl  $32,% ebx
addl  $32,% eax
cmpl  %esi,% eax
jb  L33
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General Forms of Combining

Data Types
• Use different declarations for

data_t
• Int
• Float
• Double

void abstract_com bine( vec_ptr  v, data_t * dest)
{
  int  i;
  * dest = IDENT;
  for (i = 0; i < vec_length(v); i++) {
    data_t val ;
    get_ vec_element(v, i, & val);
    * dest  = * dest  OP val ;
  }
}

Operations
• Use different definitions of OP

and IDENT
• + / 0
• * / 1
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Optimization Results for Combining

Integer Float ing PointMethod
+ * + *

Abs tract -g 40.26 43.52 41.70 146.61
Abs tract -O2 28.61 31.12 29.38 139.41
Move vec_length 20.22 20.32 20.48 133.23
data access 6.76 9.06 8.06 110.66
Accum. in  temp 3.06 4.09 3.20 5.20
Pointer 2.06 4.06 3.06 5.20
Unrol l 8 1.43 4.06 3.06 5.19
Worst  : Best 28.15 10.72 13.63 28.25

• Double & Single precisio n FP give identical ti mings
• Up against latency limits

Integer Add: 1 Multiply: 4
FP Add: 3 Multiply: 5

Particular data used h ad
lots of overflow conditions ,
causing fp store to run very
slowly
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Parallel Loop Unrolling

Optimization
• Accumulate in two

different sums
– Can be performed

simultaneously
• Combine at end
• Exploits property that

integer addition &
multiplication are
associative &
commutative

• FP addition &
multiplication not
associative, but
transformation usually
acceptable

void combine7( vec _ptr v, int  *dest )
{
  int  length = vec _length(v);
  int  *data = get_ vec_start(v);
  int  *dend  = data+length-7 ;
  int  sum1 = 0, sum2 = 0;
  while (data < dend ) {
    sum1 += data[ 0]; sum2 += data[1];
    sum1 += data[ 2]; sum2 += data[3];
    sum1 += data[ 4]; sum2 += data[5];
    sum1 += data[ 6]; sum2 += data[7];
    data += 8;
  }
  dend += 7;
  while (data < dend ) {
    sum1 += *data ;  data ++;
  }
  * dest = sum1+sum2;
}
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Parallel Loop Unrolling Assembly

Registers
%eax = data %esi = % eax +28 %edx = % eax+24

%ebx = sum1 %ecx = sum2

• Wasteful to maintain 3 pointers when 1 would su ffice

L43:
addl  (%eax ),% ebx # data[0], sum1
addl  -20(% edx ),%ecx # data[1], sum2
addl  -16(% edx ),%ebx # data[2], sum1
addl  -12(% edx ),%ecx # data[3], sum2
addl  -8(% edx),% ebx # data[4], sum1
addl  -4(% edx),% ecx # data[5], sum2
addl  (%edx ),% ebx # data[6], sum1
addl  (%esi ),% ecx # data[7], sum2
addl  $32,% edx
addl  $32,% esi
addl  $32,% eax
cmpl  %edi ,%eax
jb L43

CS 213 F’00– 31 –class11. ppt

Optimization Results for Combining

Integer Floating Point Method 
+ * + * 

Abstract  -g 41.43 42.01 41.80 135.77 
Abstract  -O2 31.42 33.22 31.38 124.69 
Move vec_length 21.29 21.38 21.37 114.44 
data access 6.06 9.07 8.06 96.87 
Accum. in temp 2.06 4.06 3.06 5.20 
Pointer 3.05 4.06 3.06 5.20 
Unroll 8 1.32 4.08 3.07 5.19 
Unroll 16 1.12 4.06 3.06 5.20 
8 X 2 1.19 2.06 1.56 2.70 
8 X 4 1.19 1.31 1.56 2.19 
8 X 8 1.84 1.97 1.94 2.21 
9 X 3 1.30 1.42 1.75 2.24 
Worst  : Best 37.00 32.07 26.79 62.00 
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Parallel/Pipelined Operation
FP Multiply Computation

• 5 cycle latency , 2 cycles / iss ue
• Accumulate single product

– Effective computation time: 5 cycles / operation

• Accumulate two products

– Effective computation time: 2.5 cycles / operation

* * * *

* * * *

* * * *

prod

prod1

prod2
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Parallel/Pipelined Operation (Cont.)
FP Multiply Computation

• Accumulate 3 products
– Effective computation time: 2 cycles / operation

– Limited by issue rate

• Accumulate > 3 produ cts
– Can’t go beyond 2 cycles / operation

prod2

prod3

* * * *

* * * *

* * * *

prod1
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Limitations of Parallel Execution
Need Lots of Registers

• To hold sums/products
• Only 6 useable inte ger registers

– Also needed for pointers, loop
conditions

• 8 FP registers
• When not enough regis ters, must

spill  temporaries onto stac k
– Wipes out any performance gains

Example
• X 4 integer multiply
• 4 local variables must share 2

registers

L53: imull  (% eax),% ecx
imull  -20(% edx ),% ebx
movl -36(%ebp),%edi
imull  -16(% edx ),% edi
movl -20(%ebp),%esi
imull  -12(% edx ),% esi
imull  (% edx),% edi
imull  -8(% edx ),%ecx
movl %edi,-36(%ebp)
movl -8(%ebp),%edi
imull  (% edi),% esi
imull  -4(% edx ),%ebx
addl  $32,% eax
addl  $32,% edx
addl  $32,% edi
movl %edi,-8(%ebp)
movl %esi,-20(%ebp)
cmpl  -4(% ebp),% eax
jb L53
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Machine-Dependent Opt. Summary
Pointer Code

• Look carefully at ge nerated code to see whether helpful

Loop Unrolling
• Some compilers do th is automatically
• Generally not as cle ver as what can achie ve by hand

Exposing Instruction-Level Parall elism
• Very machine depe ndent

Warning:
• Benefits depend hea vily on particular mac hine
• Best if performed by com piler

– But GCC on IA32/Linux is particularly bad

• Do only for performance c ritical parts of code
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Role of Programmer
How should I write my programs , given that I have a good, optimizing

compiler?

Don’t: Smash Code into Oblivion
• Hard to read, maintain, & assure correctness

Do:
• Select best algorithm
• Write code that’s read able & maintainable

– Procedures, recursion, without built-in constant limits

– Even though these factors can slow down code
• Eliminate optimiza tion blockers

– Allows compiler to do its job

Focus on Inner Loops
• Do detailed optimiza tions where code will be e xecuted repeatedly
• Will get most performan ce gain here


