
Code Optimization
October 3, 2000

Topics
• Machine-Independent Optim izations

– Code motion

– Reduction in strength
– Common subexpression sharing

• Machine-Dependent Optimiz ations
– Pointer code
– Unrolling
– Enabling instruction level parallelism

• Advice

15-213

class11. ppt CS 213 F’00– 2 –class11. ppt

Great Reality #4
There’s more to performance than asymptotic

complexity

Constant factors matter too!
• easily see 10 :1 performance range de pending on how code is written
• must optimize at m ultiple levels:

– algorithm, data representations, procedures, and loops

Must understand system to optimize performance
• how programs are compile d and executed
• how to measure program pe rformance and identify bottlenecks
• how to improve performance without destroying code m odularity

and generality

CS 213 F’00– 3 –class11. ppt

Optimizing Compilers
Provide efficient mapping of program to machi ne

• register allocation
• code selection a nd ordering
• eliminating minor ine fficiencies

Don’t (usually) improve asymptotic efficienc y
• up to programmer to sele ct best overall algo rithm
• big-O savings are (often) more important than cons tant factors

– but constant factors also matter

Have difficulty overcoming “optimization bl ockers”
• potential memory aliasing
• potential procedure si de-effects

CS 213 F’00– 4 –class11. ppt

Limitations of Optimizing Compilers
Operate Under Fundamental Constraint

• Must not cause any c hange in program behav ior under any possible
condition

• Often prevents it from mak ing optimizations when would only affect
behavior under patholo gical conditions.

Behavior that may be obvious to the programme r can
be obfuscated by languages and c oding styles
• e.g., data ranges m ay be more limited than variable types suggest

– e.g., using an “int ” in C for what could be an enumerated type

Most analysis is performed only within procedures
• whole-program analysis is too expensive in most cases

Most analysis is based onl y on static information
• compiler has difficu lty anticipating run-time inputs

When in doubt, the compiler must be c onservative

CS 213 F’00– 5 –class11. ppt

Machine-Independent Optimizations
• Optimizations you sh ould do regardless of proc essor / compiler

Code Motion
• Reduce frequency with whic h computation performed

– If it will always produce same result
– Especially moving code out of loop

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
 int ni = n*i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

CS 213 F’00– 6 –class11. ppt

Machine-Independent Opts. (Cont.)
Reductions in Strength:

• Replace costly ope ration with simpler one
• Shift, add instead of m ultiply or divide

16*x --> x << 4

– Utility machine depe ndent
– Depends on cost of m ultiply or divide instruc tion
– On Pentium II or III, integ er multiply only requires 4 CPU cycles

• Keep data in registers rather than memory
– Compilers have trouble making this optimization

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

CS 213 F’00– 7 –class11. ppt

Machine-Independent Opts. (Cont.)
Share Common Subexpressions

• Reuse portions of expre ssions
• Compilers often not very sophisticated in ex ploiting arithmetic

properties

/* Sum neighbors of i,j * /
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

CS 213 F’00– 8 –class11. ppt

Important Tools
Measurement

• Accurately compute ti me taken by code
– Most modern machines have built in cycle counters

• Profile procedure callin g frequencies
– Unix tool gprof

• Custom-built tools
– E.g., L4 cache simulator

Observation
• Generating assembly code

– Lets you see what optimizations compiler can make
– Understand capabilities/limitations of particular compiler

CS 213 F’00– 9 –class11. ppt

Optimization Example

Procedure
• Compute sum of all e lements of integer ve ctor
• Store result at destinati on location
• Vector data structure and operations defined vi a abstract data type

Pentium II/III Performance: Clock Cycles / Element
• 40.3 (Compiled -g) 28.6 (Compiled -O2)

void combine1(vec _ptr v, int *dest)
{
 int i;
 * dest = 0;
 for (i = 0; i < vec_length(v); i++) {
 int val ;
 get_ vec_element(v, i, & val);
 * dest += val;
 }
}

CS 213 F’00– 10 –class11. ppt

Vector ADT

Procedures
vec _ptr new_ vec (int len)

– Create vector of specified length
int get_ vec_element(vec _ptr v, int index, int * dest)

– Retrieve vector element, store at *dest
– Return 0 if out of bounds, 1 if successful

int *get_ vec_start(vec _ptr v)

– Return pointer to start of vector data
• Similar to array implem entations in Pascal , ML, Java

– E.g., always do bounds checking

length

data • • •
0 1 2 length–1

CS 213 F’00– 11 –class11. ppt

Understanding Loop

Inefficiency
• Procedure vec_length called e very iteration
• Even though result alway s the same

void combine1- goto (vec _ptr v, int *dest)
{
 int i = 0;
 int val ;
 * dest = 0;
 if (i >= vec_length(v))
 goto done;
 loop:
 get_ vec_element(v, i, & val);
 * dest += val;
 i++;
 if (i < vec_length(v))
 goto loop
 done:
}

1 iteration

CS 213 F’00– 12 –class11. ppt

Move vec_length Call Out of Loop

Optimization
• Move call to vec _length out of inner loop

– Value does not change from one iteration to next

– Code motion
• CPE: 20.2 (Compiled -O2)

– vec _length requires only constant time, but significant overhead

void combine2(vec _ptr v, int *dest)
{
 int i;
 int len = vec _length(v);
 * dest = 0;
 for (i = 0; i < len; i++) {
 int val ;
 get_ vec_element(v, i, & val);
 * dest += val;
 }
}

CS 213 F’00– 13 –class11. ppt

void lower(char * s)
{
 int i;
 for (i = 0; i < strlen (s); i++)
 if (s[i] >= ' A' && s[i] <= 'Z')
 s[i] -= ('A ' - 'a');
}

Code Motion Example #2
Procedure to Convert String to Lower Case

Original

0.0001

0.01

1

100

10000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

C
P

U
 S

e
co

n
d
s

CPU time quadruples eve ry time double string le ngth

CS 213 F’00– 14 –class11. ppt

Convert Loop To Goto Form

• strlen executed eve ry iteration
• strlen linear in length o f string

– Must scan string until finds ‘\0’

• Overall performance is quadratic

void lower(char * s)
{
 int i = 0;
 if (i >= strlen (s))
 goto done;
 loop:
 if (s[i] >= 'A ' && s[i] <= 'Z')
 s[i] -= (' A' - 'a');
 i++;
 if (i < strlen (s))
 goto loop;
 done:
}

CS 213 F’00– 15 –class11. ppt

Improving Performance
void lower(char * s)
{
 int i;
 int len = strlen (s);
 for (i = 0; i < len; i++)
 if (s[i] >= ' A' && s[i] <= 'Z')
 s[i] -= ('A ' - 'a');
}

0.000001

0.0001

0.01

1

100

10000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

C
P

U
 S

ec
on

ds

Original

New

CPU time doubles every time double string len gth

CS 213 F’00– 16 –class11. ppt

Optimization Blocker: Procedure Calls
Why couldn’t the compiler move vec_len or strlen

out of the inner loop?
• Procedure May Have Side Effe cts

– i.e, alters global state each time called
• Function May Not Return Same Value for Given Arguments

– Depends on other parts of global state
– Procedure lower could interact with strlen

Why doesn’t compiler look at code for vec_len or
strlen ?
• Linker may overloa d with different version

– Unless declared static

• Interprocedural optimization is no t used extensively due to cost

Warning:
• Compiler treats procedure call as a black box
• Weak optimization s in and around them

CS 213 F’00– 17 –class11. ppt

Reduction in Strength

Optimization
• Avoid procedure call to retrieve each vecto r element

– Get pointer to start of array before loop

– Within loop just do pointer reference
– Not as clean in terms of data abstraction

• CPE: 6.76 (Compiled -O2)
– Procedure calls are expensive!
– Bounds checking is expensive

void combine3(vec _ptr v, int *dest)
{
 int i;
 int len = vec _length(v);
 int *data = get_ vec_start(v);
 * dest = 0;
 for (i = 0; i < length; i++) {
 * dest += data[i];
}

CS 213 F’00– 18 –class11. ppt

Eliminate Unneeded Memory References

Optimization
• Don’t need to store in de stination until end
• Local variable sum held in register
• Avoids 1 memory rea d, 1 memory write per cyc le
• CPE: 3.06 (Compiled -O2)

– Memory references are expensive!

void combine4(vec _ptr v, int *dest)
{
 int i;
 int len = vec _length(v);
 int *data = get_ vec_start(v);
 int sum = 0;
 for (i = 0; i < length; i++) {
 sum += data[i];
 * dest = sum;
}

CS 213 F’00– 19 –class11. ppt

Optimization Blocker: Memory Aliasing
Aliasing

• Two different memory referen ces specify singl e location

Example
• v: [3, 2, 17]

• combine3(v, get_ vec _start(v)+2) --> ?

• combine4(v, get_ vec _start(v)+2) --> ?

Observations
• Easy to have happ en in C

– Since allowed to do address arithmetic
– Direct access to storage structures

• Get in habit of introducing local variables
– Accumulating within loops
– Your way of telling compiler not to check for aliasing

CS 213 F’00– 20 –class11. ppt

Machine-Independent Opt. Summary
Code Motion

• compilers are not very good at this, especially with procedure calls

Reduction in Strength
• Shift, add instead of m ultiply or divide

– compilers are (generally) good at this

– Exact trade-offs machine-dependent
• Keep data in registers rather than memory

– compilers are not good at this, since concerned with aliasing

Share Common Subexpressions
• compilers have limited algebraic reasoning capabilities

CS 213 F’00– 21 –class11. ppt

Machine-Dependent Optimizations
Pointer Code

• Can be more efficient than array referencing

Loop Unrolling
• Combine bodies of se veral iterations
• Optimize across itera tion boundaries
• Amortize loop overhea d
• Improve code sche duling

Enabling Instruction Level Pa rallelism
• Making it possible to e xecute multiple ins tructions concurrently

Warning:
• Benefits depend hea vily on particular mac hine
• Best if performed by com piler

– But often stuck with mediocre compiler

CS 213 F’00– 22 –class11. ppt

Pointer Code

Optimization
• Use pointers rather than a rray references
• GCC generates code with 1 le ss instruction in inne r loop
• CPE: 2.06 (Compiled -O2)

– Less work to do on each iteration
Warning : Some compilers do better job optimizing a rray code

void combine5(vec _ptr v, int *dest)
{
 int length = vec _length(v);
 int *data = get_ vec_start(v);
 int *dend = data+length;
 int sum = 0;
 while (data != dend) {
 sum += *data;
 data++;
 }
 * dest = sum;
}

CS 213 F’00– 23 –class11. ppt

Pointer vs. Array Code Inner Loops

Array Code
• GCC does partial conversio n

to pointer code
• Still keeps variabl e i

– To test loop condition

Pointer Code
• Loop condition base d on

pointer value

Performance
• Array Code: 5 instructions i n 3

clock cycles
• Pointer Code: 4 instructions in

2 clock cycles

L23:
addl (%eax),% ecx
addl $4,% eax
incl %edx # i++
cmpl %esi ,%edx # i < n?
jl L23

L28:
addl (% eax),% edx
addl $4,% eax
cmpl %ecx ,%eax # data == dend ?
jne L28

CS 213 F’00– 24 –class11. ppt

CPU Capabilities
Multiple Instructions Can Execute in Parallel

• 1 load
• 1 store
• 2 integer (one may be branch)
• 1 FP

Some Instructions Take > 1 Cycle, but Can be Pipelined
• Instruction Latency Cycles/Issue
• Integer Multiply 4 1
• Integer Divide 36 36
• Double/Single FP Multiply 5 2
• Double/Single FP Add 3 1
• Double/Single FP Divide 38 38

CS 213 F’00– 25 –class11. ppt

Loop Unrolling

Optimization
• Combine multiple

iterations into single
loop body

• Amortizes loop
overhead across
multiple iterations

• CPE = 1.43
– Only small savings in

this case

• Finish extras at en d

void combine6(vec _ptr v, int *dest)
{
 int length = vec _length(v);
 int *data = get_ vec_start(v);
 int *dend = data+length-7 ;
 int sum = 0;
 while (data < dend) {
 sum += data[0]; sum += data[1];
 sum += data[2]; sum += data[3];
 sum += data[4]; sum += data[5];
 sum += data[6]; sum += data[7];
 data += 8;
 }
 dend += 7;
 while (data < dend) {
 sum += *data; data ++;
 }
 * dest = sum;
}

CS 213 F’00– 26 –class11. ppt

Loop Unrolling Assembly

Strange
“Optimization”
%eax = data

%ebx = %eax+28

%ecx = % eax+24

• Wasteful to maintain 3
pointers when 1 would
suffice

L33:
addl (% eax),%edx # data[0]
addl -20(% ecx),% edx # data[1]
addl -16(% ecx),% edx # data[2]
addl -12(% ecx),% edx # data[3]
addl -8(% ecx),% edx # data[4]
addl -4(% ecx),% edx # data[5]
addl (% ecx),%edx # data[6]
addl (% ebx),%edx # data[7]
addl $32,% ecx
addl $32,% ebx
addl $32,% eax
cmpl %esi,% eax
jb L33

CS 213 F’00– 27 –class11. ppt

General Forms of Combining

Data Types
• Use different declarations for

data_t
• Int
• Float
• Double

void abstract_com bine(vec_ptr v, data_t * dest)
{
 int i;
 * dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val ;
 get_ vec_element(v, i, & val);
 * dest = * dest OP val ;
 }
}

Operations
• Use different definitions of OP

and IDENT
• + / 0
• * / 1

CS 213 F’00– 28 –class11. ppt

Optimization Results for Combining

Integer Float ing PointMethod
+ * + *

Abs tract -g 40.26 43.52 41.70 146.61
Abs tract -O2 28.61 31.12 29.38 139.41
Move vec_length 20.22 20.32 20.48 133.23
data access 6.76 9.06 8.06 110.66
Accum. in temp 3.06 4.09 3.20 5.20
Pointer 2.06 4.06 3.06 5.20
Unrol l 8 1.43 4.06 3.06 5.19
Worst : Best 28.15 10.72 13.63 28.25

• Double & Single precisio n FP give identical ti mings
• Up against latency limits

Integer Add: 1 Multiply: 4
FP Add: 3 Multiply: 5

Particular data used h ad
lots of overflow conditions ,
causing fp store to run very
slowly

CS 213 F’00– 29 –class11. ppt

Parallel Loop Unrolling

Optimization
• Accumulate in two

different sums
– Can be performed

simultaneously
• Combine at end
• Exploits property that

integer addition &
multiplication are
associative &
commutative

• FP addition &
multiplication not
associative, but
transformation usually
acceptable

void combine7(vec _ptr v, int *dest)
{
 int length = vec _length(v);
 int *data = get_ vec_start(v);
 int *dend = data+length-7 ;
 int sum1 = 0, sum2 = 0;
 while (data < dend) {
 sum1 += data[0]; sum2 += data[1];
 sum1 += data[2]; sum2 += data[3];
 sum1 += data[4]; sum2 += data[5];
 sum1 += data[6]; sum2 += data[7];
 data += 8;
 }
 dend += 7;
 while (data < dend) {
 sum1 += *data ; data ++;
 }
 * dest = sum1+sum2;
}

CS 213 F’00– 30 –class11. ppt

Parallel Loop Unrolling Assembly

Registers
%eax = data %esi = % eax +28 %edx = % eax+24

%ebx = sum1 %ecx = sum2

• Wasteful to maintain 3 pointers when 1 would su ffice

L43:
addl (%eax),% ebx # data[0], sum1
addl -20(% edx),%ecx # data[1], sum2
addl -16(% edx),%ebx # data[2], sum1
addl -12(% edx),%ecx # data[3], sum2
addl -8(% edx),% ebx # data[4], sum1
addl -4(% edx),% ecx # data[5], sum2
addl (%edx),% ebx # data[6], sum1
addl (%esi),% ecx # data[7], sum2
addl $32,% edx
addl $32,% esi
addl $32,% eax
cmpl %edi ,%eax
jb L43

CS 213 F’00– 31 –class11. ppt

Optimization Results for Combining

Integer Floating Point Method
+ * + *

Abstract -g 41.43 42.01 41.80 135.77
Abstract -O2 31.42 33.22 31.38 124.69
Move vec_length 21.29 21.38 21.37 114.44
data access 6.06 9.07 8.06 96.87
Accum. in temp 2.06 4.06 3.06 5.20
Pointer 3.05 4.06 3.06 5.20
Unroll 8 1.32 4.08 3.07 5.19
Unroll 16 1.12 4.06 3.06 5.20
8 X 2 1.19 2.06 1.56 2.70
8 X 4 1.19 1.31 1.56 2.19
8 X 8 1.84 1.97 1.94 2.21
9 X 3 1.30 1.42 1.75 2.24
Worst : Best 37.00 32.07 26.79 62.00

CS 213 F’00– 32 –class11. ppt

Parallel/Pipelined Operation
FP Multiply Computation

• 5 cycle latency , 2 cycles / iss ue
• Accumulate single product

– Effective computation time: 5 cycles / operation

• Accumulate two products

– Effective computation time: 2.5 cycles / operation

* * * *

* * * *

* * * *

prod

prod1

prod2

CS 213 F’00– 33 –class11. ppt

Parallel/Pipelined Operation (Cont.)
FP Multiply Computation

• Accumulate 3 products
– Effective computation time: 2 cycles / operation

– Limited by issue rate

• Accumulate > 3 produ cts
– Can’t go beyond 2 cycles / operation

prod2

prod3

* * * *

* * * *

* * * *

prod1

CS 213 F’00– 34 –class11. ppt

Limitations of Parallel Execution
Need Lots of Registers

• To hold sums/products
• Only 6 useable inte ger registers

– Also needed for pointers, loop
conditions

• 8 FP registers
• When not enough regis ters, must

spill temporaries onto stac k
– Wipes out any performance gains

Example
• X 4 integer multiply
• 4 local variables must share 2

registers

L53: imull (% eax),% ecx
imull -20(% edx),% ebx
movl -36(%ebp),%edi
imull -16(% edx),% edi
movl -20(%ebp),%esi
imull -12(% edx),% esi
imull (% edx),% edi
imull -8(% edx),%ecx
movl %edi,-36(%ebp)
movl -8(%ebp),%edi
imull (% edi),% esi
imull -4(% edx),%ebx
addl $32,% eax
addl $32,% edx
addl $32,% edi
movl %edi,-8(%ebp)
movl %esi,-20(%ebp)
cmpl -4(% ebp),% eax
jb L53

CS 213 F’00– 35 –class11. ppt

Machine-Dependent Opt. Summary
Pointer Code

• Look carefully at ge nerated code to see whether helpful

Loop Unrolling
• Some compilers do th is automatically
• Generally not as cle ver as what can achie ve by hand

Exposing Instruction-Level Parall elism
• Very machine depe ndent

Warning:
• Benefits depend hea vily on particular mac hine
• Best if performed by com piler

– But GCC on IA32/Linux is particularly bad

• Do only for performance c ritical parts of code

CS 213 F’00– 36 –class11. ppt

Role of Programmer
How should I write my programs , given that I have a good, optimizing

compiler?

Don’t: Smash Code into Oblivion
• Hard to read, maintain, & assure correctness

Do:
• Select best algorithm
• Write code that’s read able & maintainable

– Procedures, recursion, without built-in constant limits

– Even though these factors can slow down code
• Eliminate optimiza tion blockers

– Allows compiler to do its job

Focus on Inner Loops
• Do detailed optimiza tions where code will be e xecuted repeatedly
• Will get most performan ce gain here

