15-213

Code Optimization
October 3, 2000

Topics

¢ Machine-Independent Optim izations
—Code motion
—Reduction in strength
—Common subexpression sharing

* Machine-Dependent Optimiz ations
— Pointer code
—Unrolling
—Enabling instruction level parallelism

» Advice

class1l. ppt

Optimizing Compilers

Provide efficient mapping of program to machi ne
« register allocation
« code selection a nd ordering
« eliminating minor ine fficiencies
Don’t (usually) improve asymptotic efficienc vy
« up to programmer to sele ct best overall algo rithm
¢ big-O savings are (often) more important than cons tant factors
—but constant factors also matter

Have difficulty overcoming “optimization bl ockers”
¢ potential memory aliasing
¢ potential procedure si de-effects

class1l. ppt

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!
« easily see 10:1 performance range de pending on how code is written
e must optimize at m ultiple levels:
—algorithm, data representations, procedures, and loops
Must understand system to optimize performance
* how programs are compile d and executed
* how to measure program pe rformance and identify bottlenecks

» how to improve performance without destroying code m odularity
and generality

class1ll. ppt

Limitations of Optimizing Compilers

Operate Under Fundamental Constraint

* Must not cause any ¢ hange in program behav ior under any possible
condition

« Often prevents it from mak ing optimizations when would only affect
behavior under patholo gical conditions.

Behavior that may be obvious to the programme r can
be obfuscated by languages and ¢ oding styles
e e.g., data ranges m ay be more limited than variable types suggest
—e.g., using an “int " in C for what could be an enumerated type
Most analysis is performed only within procedures
e whole-program analysis is too expensive in most cases
Most analysis is based onl y on static information
» compiler has difficu Ity anticipating run-time inputs
When in doubt, the compiler must be ¢ onservative

class1ll. ppt

Machine-Independent Optimizations

¢ Optimizations you sh ould do regardless of proc essor / compiler

Code Motion

« Reduce frequency with whic h computation performed

—If it will always produce same result
—Especially moving code out of loop

for (i=0;i<n;i++)
for j=0;j<n;j++)
a[n*i + j] = biil;

class1l. ppt

for(i=0;i<n;i++){
int ni =n*i;
for (j=0;j<n;j++)
al ni+j]=b[;

Machine-Independent Opts. (Cont.)

Share Common Subexpressions

* Reuse portions of expre ssions

« Compilers often not very sophisticated in ex ploiting arithmetic

properties

/* Sum neighbors of i,j *

up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = valli*n + j-1];
right = valli*n + j+1];

sum = up + down + left +

right;

intinj =i*n+j;

up = val[inj -nj;
down = vallinj +nJ;
left = vallinj -1];
right = val[inj +1];

sum = up + down + left +

right;

3 multiplications: i*n,

class1l. ppt

(i-1)*n, (i+1)*n

1 multiplication: i*n

Machine-Independent Opts. (Cont.)

Reductions in Strength:
» Replace costly ope ration with simpler one
 Shift, add instead of m ultiply or divide
16*x --> X <<4
— Utility machine depe ndent
—Depends on cost of m ultiply or divide instruc tion
—On Pentium Il or Ill, integ er multiply only requires 4 CPU cycles

int ni =0;
for (i=0;i<n;i++) for (i=0;i<n;i++) {
for (j =0; j<n; j++) —> for j=0;j<n;j++)
a[n*i + j] = bij]; a[ni+j]=b[;
ni += n;
}

« Keep data in registers rather than memory
—Compilers have trouble making this optimization

class1ll. ppt

Important Tools

Measurement
» Accurately compute ti me taken by code
—Most modern machines have built in cycle counters
« Profile procedure callin g frequencies
—Unix tool gprof
» Custom-built tools
—E.g., L4 cache simulator

Observation
* Generating assembly code
—Lets you see what optimizations compiler can make
—Understand capabilities/limitations of particular compiler

classll. ppt

Optimization Example

void combinel(vec_ptrv, int *dest)
{ . .
int 1
* dest=0;
for (i=0;i< vec_length(v); i++)
intval ;
get_ vec_element(v, i, & val);
* dest += val;
}
}
Procedure

« Compute sum of all e lements of integer ve ctor
« Store result at destinati on location

« Vector data structure and operations defined vi a abstract data type

Pentium II/lIl Performance: Clock Cycles / Element

* 40.3 (Compiled -g) 28.6 (Compiled -02)

*dest

class1l. ppt
Understanding Loop
void combinel- goto (vec _ptrv, int
{
inti=0;
intval
* dest =0;
if (i >= vec_length(v))
goto done;
loop:
get vec_element(v, i, & val);
* dest += val;
i++;
if (i< vec_| engt h(v))
goto loop
done:
}
Inefficiency

« Procedure vec_length called e very iteration
« Even though result alway s the same

class1l. ppt

)

1 iteration

Vector ADT

Move vec_length

length 012 length-1

data e;—| | [[---1] |

Procedures

vec_ptrnew_ vec(intlen)
— Create vector of specified length

int get_ vec_element(vec _ptr v,int index,
—Retrieve vector element, store at *dest
—Return 0 if out of bounds, 1 if successful

int *get_ vec_start(vec_ptrv)
—Return pointer to start of vector data

int*

» Similar to array implem entations in Pascal , ML, Java

—E.qg., always do bounds checking

class1ll. ppt

dest)

Call Out of Loop

void combine2(vec _ptryv, int *dest)
{. .
int i;
int len =vec _length(v);
* dest=0;
for(i=0;i< len; i++) {
int val ;
get_ vec_element(v, i, & val);
* dest += val;
}
}
Optimization

e Move call to vec _length out of inner loop
—Value does not change from one iteration to next

—Code motion

e CPE: 20.2 (Compiled -02)

— vec _length

classll. ppt

requires only constant time, but significant overhead

Code Motion Example #2

Procedure to Convert String to Lower Case

void lower(char * s)
{
int i
for(i=0;i< strlen (s); i++)
if (s[i] >=" A' && s[i] <='Z")
s[i] -= (A '-al);
}

10000

100

o m B N | H D

CPU Seconds
[N

00001 +—==— T
256 512 1024 2048 4096 8192 16384 32768 65536 131072

262144

CPU time quadruples eve ry time double string le ngth
class1l. ppt

Improving Performance

void lower(char * s)
{
int i;
int len =strlen (s);
for(i=0;i< len; i++)
if (s[i] >=" A' && s[i] <='2)
s[i] = (A -a);
}
10000
) 100
8 1
Q @ Orignal
(@]
0.0001 -+
0.000001
256 512 1024 2048 409% 8192 16384 32768 65536 131072 262144

CPU time doubles every time double string len gth
class1l. ppt

Convert Loop To Goto Form

void lower(char * S)
{
inti=0;
if (i >= strlen (s))
goto done;
loop:
if (S[i] >="A ' && sfi] <='Z")
sfi] = (A=),
i++;
if (i< strlen (s))
goto loop;
done:
}
» strlen executed eve ry iteration
e strlen linear in length o f string

—Must scan string until finds \0’
e Overall performance is quadratic

class1ll. ppt

Optimization Blocker: Procedure Calls

Why couldn’t the compiler move vec_len or strlen
out of the inner loop?
» Procedure May Have Side Effe cts
—i.e, alters global state each time called
* Function May Not Return Same Value for Given Arguments
—Depends on other parts of global state
—Procedure lower could interact with strlen

Why doesn’t compiler look at code for vec_len or
strlen ?
« Linker may overloa d with different version
—Unless declared static

* Interprocedural optimization is no t used extensively due to cost
Warning:

» Compiler treats procedure call as a black box

* Weak optimization s in and around them

classll. ppt

Reduction in Strength

void combine3(vec _ptrv, int *dest)
{ . .
int 1
int len =vec _length(v);
int *data = get_ vec_start(v);
* dest=0;
for (i=0;i< length; i++) {
* dest +=datali];
}
Optimization

« Avoid procedure call to retrieve each vecto r element
—Get pointer to start of array before loop
—Within loop just do pointer reference
—Not as clean in terms of data abstraction
*« CPE: 6.76 (Compiled -0O2)
—Procedure calls are expensive!

—Bounds checking is expensive
class1l. ppt

Optimization Blocker: Memory Aliasing

Aliasing

« Two different memory referen ces specify singl e location
Example

e V:[3,2,17]

e combine3(v, get_ vec_start(v)+2) ->

¢ combine4(v, get_ vec_start(v)+2) -> ?

Observations
« Easy to have happ enin C
—Since allowed to do address arithmetic
—Direct access to storage structures
« Get in habit of introducing local variables
—Accumulating within loops
—Your way of telling compiler not to check for aliasing

class1l. ppt

Eliminate Unneeded Memory References

void combine4(vec _ptrv, int *dest)
{ . .
int 1
int len =vec _length(v);
int *data = get_ vec_start(v);
int sum =0;
for(i=0;i< length; i++) {
sum += datai 1
* dest =sum;
}
Optimization

» Don't need to store in de stination until end
 Local variable sum held in register
* Avoids 1 memory rea d, 1 memory write per cyc le
« CPE: 3.06 (Compiled -02)

—Memory references are expensive!

class1ll. ppt

Machine-Independent Opt. Summary

Code Motion
» compilers are not very good at this, especially with procedure calls
Reduction in Strength
 Shift, add instead of m ultiply or divide
—compilers are (generally) good at this
—Exact trade-offs machine-dependent
« Keep data in registers rather than memory
—compilers are not good at this, since concerned with aliasing
Share Common Subexpressions
« compilers have limited algebraic reasoning capabilities

classll. ppt

Machine-Dependent Optimizations Pointer Code

. void combine5 vec _ptrv, int *dest
Pointer Code { (P)
« Can be more efficient than array referencing int length = vec _length(v);
int *data =get_ vec_start(v);

Loop Unrolling

« Combine bodies of se veral iterations
¢ Optimize across itera tion boundaries while (data != dend) {
« Amortize loop overhea d

int *dend = datatlength;
int sum =0;

sum += *data;

« Improve code sche duling }data++;
Enabling Instruction Level Pa rallelism * dest = sum;
« Making it possible to e xecute multiple ins tructions concurrently }
Warning: Optimization
« Benefits depend hea vily on particular mac hine » Use pointers rather than a rray references
» Best if performed by com piler » GCC generates code with 1 le ss instruction in inne r loop

—But often stuck with mediocre compiler « CPE: 2.06 (Compiled -O2)

class1l. ppt

—Less work to do on each iteration
Warning : Some compilers do better job optimizing a rray code
class1ll. ppt

Pointer vs. Array Code Inner Loops CPU Capalbilities

L23:
addl (%eax),% ecx
addl $4,% eax
incl %edx #i++
cmpl %esi ,%edx #i<n?
jlL23

L28:
addl (% eax),% edx
addl $4,% eax
cmpl %ecx ,%eax # data ==
jne L28

dend?

class1l. ppt

Multiple Instructions Can Execute in Parallel

¢ 1load
Array Code + 1 store
» GCC does partial conversio n e 2integer (one may be branch)
to pointer code « 1FP

 Still keeps variabl e

o Some Instructions Take > 1 Cycle, but Can be Pipelined
—To test loop condition

. * Instruction Latency Cycles/Issue
Pointer Code - Integer Multiply 4 1
* Loop condition base d on « Integer Divide 36 36
painter value * Double/Single FP Multiply 5 2
Performance « Double/Single FP Add 3 1
* Array Code: 5 instructionsi n 3 » Double/Single FP Divide 38 38
clock cycles
» Pointer Code: 4 instructions in
2 clock cycles
classll. ppt

Loop Unrolling

Loop Unrolling Assembly

void combine6(vec _ptrv, int *dest)
{ L33:
int length=" vec_length(v); Optimization addl (% eax),%edx # data[0] Strange
int *data = get vec_start(v); .) -20(9) “ . N
int *dend i d_ata+lengtﬂ-7 ()' » Combine multiple ggg: igg‘;z 22302 2g§ zgggg} Optlmlzatlon
int -0 ' iterations into single . . %eax = data
int sum =0; loop body addl -12(% ecx),% edx # data[3]
while (data < dend) { « Amortizes loo addl -8(% ecx),% edx # data[4] %ebx = %eax+28
sum += data[0]; sum += data[1]; overhead acrc?ss addl -4(% ecx),% edx # data[5] %ecx = % eax+24
sum += data[2 J; sum += data[3]; multiple iterations addl (% ecx),%edx # data[6] « Wasteful to maintain 3
sum += ga:a{g % sum += ga:a{%, . CPE = 1.43 addl (% ebx),%edx # data[7] pointers when 1 would
sum += datal : sum += data[7]; :]) addl $32,% ecx suffice
data += 8; —OhT“y small savings in addl $32,% ebx
} this case addl $32,% eax
dend +=7, * Finish extras aten d cmpl %esi,% eax
while (data < dend) { jo L33
sum += *data; data ++;
}
* dest = sum;
}
class1l. ppt _o5_ CS 213 F00 classll. ppt - 26— CS 213 F00
General Forms of Combining Optimization Results for Combining
void abstract_com bine(vec_ptr v, data_t* dest)
{im " Method Integer Floating Point
* dest = IDENT; + * + *
for(i=0;i< vec_length(v); i++) { Abstract -g 40.26 43.52 41.70 146.61
data t val : Abstract -O2 28.61 31.12 29.38 139.41
get__ vec_element(v, i, & val); Move vec_length 20.22 20.32 20.48 133.23
* —x . ata access
dest dest OP val dat 6.76 9.06 8.06 110.66
} Accum. in temp 3.06 4.09 3.20 5.20
} Pointer 2.06 4.06 3.06 5.20
Unroll 8 1.43 4.06 3.06 5.19
. Worst : Best 28.15 10.72 13.63 28.25
Data Types Operations s’ . 2es
: g;;iitiﬁerent declarations for : gﬁg :jDifS\ﬁm definitions of OP » Double & Single precisio n FP give identical ti mings
e Int e +/0 * Up against latency limits
« Float o */1 Integer Add: 1 Multiply: 4 Particular data used h ad
« Double FP Add: 3 Multiply: 5 lots of overflow conditions
causing fp store to run very
slowly
class1l. ppt —27- CS 213 F00 class1l. ppt -28- CS 213 F00

Parallel Loop Unrolling Parallel Loop Unrolling Assembly

void combine7(vec _ptrv, int *dest) L43:
{ addl (%eax),% ebx # data[0], sum1l
int length = vec _length(v); Optimization addl -20(% edx),%ecx # data[1], sum2
int *data = get_ vec_start(v); late i addl -16(% edx),%ebx # data[2], sum1l
int *dend = datatlength-7 ; * g(]ffceur;nnut iben;g two addl -12(% edx),%ecx # data[3], sum2
int suml =0, sum2 = 0; addl -8(% edx),% ebx # data[4], suml
while (data < dend) { —Can lbe performed addl -4(% edx),% ecx # data[5], sum2
suml += data[0]; sum2 += data[1]; simu taneously addl (%edx),% ebx # data[6], sum1l
sum1l += data[2]; sum2 += data[3]; Combine at end addl (%esi),% ecx # data[7], sum2
suml += data[4]; sum2 += datal[5]; « Exploits property that addl $32,% edx
sumil += data[6]; sum2 += data[7]; integer addition & addl $32,% esi
data += 8; multiplication are addl $32,% eax
} associative & cmpl %edi ,%eax
dend +=7: commu.t:?mve ib L43
while (data < dend) { + FP addition & :
sum1 += *data " data ++: multiplication not Registers
} associative, but %eax = data %si =% eax+28 %edx=% eax+24
} ¢ Wasteful to maintain 3 pointers when 1 would su ffice
class1l. ppt class1ll. ppt
Optimization Results for Combining Parallel/Pipelined Operation
Method Integer Floating Point FP Multiply Computation
+ * + * * 5cycle latency , 2 cycles / iss ue
Abstract -g 41.43 42.01 41.80 135.77 * Accumulate single product
Abstract -O2 31.42 33.22 31.38 124.69 | x I * I x x prod
Move vec_length 21.29 21.38 21.37 114.44
data access 6.06 9.07 8.06 96.87 — Effective computation time: 5 cycles / operation
Accum. in temp 2.06 4.06 3.06 5.20
* Accumulate two products
Pointer 3.05 4.06 3.06 5.20 umuiate two produ
Unroll 8 1.32 4.08 3.07 5.19
Unroll 16 1.12 4.06 3.06 5.20 L - - 1 =~ 1T =] prod1
8X2 1.19 2.06 1.56 2.70 | I - I I | prod2
8 X4 1.19 1.31 1.56 2.19 - - -
8X8 1.84 1.97 1.94 2.21 — Effective computation time: 2.5 cycles / operation
9X3 1.30 1.42 1.75 2.24
Worst : Best 37.00 32.07 26.79 62.00

class1l. ppt classll. ppt

Parallel/Pipelined Operation (Cont.)
FP Multiply Computation

¢ Accumulate 3 products
— Effective computation time: 2 cycles / operation
—Limited by issue rate

- - J- J - | prod1

L - JL - L J[-] o

[~ JL ~ JL » J[» [oproos

¢ Accumulate > 3 produ cts
—Can'’t go beyond 2 cycles / operation

class1l. ppt

Machine-Dependent Opt. Summary

Pointer Code
« Look carefully at ge nerated code to see whether helpful

Loop Unrolling

* Some compilers do th is automatically

« Generally not as cle ver as what can achie ve by hand
Exposing Instruction-Level Parall elism

« Very machine depe ndent
Warning:

« Benefits depend hea vily on particular mac hine

« Best if performed by com piler

—But GCC on IA32/Linux is particularly bad
« Do only for performance ¢ ritical parts of code

class1l. ppt

Limitations of Parallel Execution

i L53: imull (% eax),% ecx
Need Lots of Registers mull -20(% edx) 96 ebx

* To hold sums/products movl - 36(%ebp) , Yedi

* Only 6 useable inte ger registers imull -16(% edx),% edi
—Also needed for pointers, loop nmovl -20(%bp), Yesi
conditions imull -12(% edx),% esi
» 8 FP registers imull (% edx),% edi

« When not enough regis ters, must imull 0'8(% edx),g&ecx
spill temporaries onto stac k novl %edi, - 36(%ebp)

Wi . novl -8(%bp), Yedi
Wipes out any performance gains imull (% edi)% esi

Example imull -4(% edx),%ebx
* X 4 integer multiply addl $32,% eax
i addl $32,% edx
* 4 local variables must share 2 N .
registers addl $32,% edi
nmovl %edi, - 8(¥%ebp)
nmovl %esi, - 20(%ebp)
cmpl -4(% ebp),% eax
jb L53
class1ll. ppt

Role of Programmer

How should | write my programs , given that | have a good, optimizing
compiler?
Don’t: Smash Code into Oblivion
« Hard to read, maintain, & assure correctness

Do:
» Select best algorithm
« Write code that's read able & maintainable
—Procedures, recursion, without built-in constant limits
—Even though these factors can slow down code
 Eliminate optimiza tion blockers
—Allows compiler to do its job

Focus on Inner Loops
» Do detailed optimiza tions where code will be e xecuted repeatedly
« Will get most performan ce gain here

classll. ppt

