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“The course that gives CMU its Zip!”

Machine-Level Programming lII:
Procedures
Sept 19, 2000

Topics
» |A32 stack discip line
» Register saving conv entions

« Creating pointers to loca |
variables

 Stack buffer overflow expl oits
—finger

—AIM (AOL Instant Messenger)
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Stack Operation Examples

pushl  %eax popl %edx
0x110 0x110 0x110
0x10c 0x10c 0x10c
0x108 123 0x108 123 0x108 123
0x104 213
%eax 213 %eax 213 %eax 213
%edx 555 %edx 555 %edx 213
%esp 0x108 %esp 0x104 %esp 0x108
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IA32 Stack

+ Region of memory man aged with Stack “Bottom”
stack discipline
» Register %esp indicates lowest /
allocated position in stack T
—i.e., address of top element Increasing
. Addresses
Pushing |
e pushl Src

» Fetch operand at Src
« Decrement %esp by 4
» Write operand at addres s given I

by %esp Stack Grows
. Stack Down
Popplng Pointer
* popl Dest %esp —p l
» Read operand at addres s given
by %es% J \
Stack “Top”

e Increment %esp by 4
e Write to Dest
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Procedure Control Flow

Use stack to support procedure calla nd return

Procedure call:
call | abel Push return address on stack; Jump to | abel

Return address value
» Address of instruction be yond call
« Example from disas sembly
804854e: e8 3d 06 00 00 call 8048b90 <mai n>
8048553: 50 pushl  %eax
—Return address = 0x8048553

Procedure return:
e ret Pop address from stack; Jump to address
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Procedure Call / Return Example

804854e: e8 3d 06 00 00 call 8048b90 <m ain>
8048553: pushl % eax
call 8048b90 ret
0x110 0x110 0x110
0x10c 0x10c 0x10c
0x108 123 0x108 123 0x108 123
0x104 |0x8048553
%esp 0x108 %esp 0x104 %esp 0x108

%eip |0x804854¢e %eip |0x8048090 %eip |0x8048553

%eip is program counter
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Call Chain Example

Code Structure _
Call Chain

yoo(...)
{ Y00

: !

Stack-Based Languages

Languages that Support Recursion
* e.g., C, Pascal, Java
» Code must be “ Reentrant”
—Multiple simultaneous instantiations of single procedure
* Need some place to store state of each instantiation
—Arguments
—Local variables
—Return pointer

Stack Discipline
« State for given procedure needed for limited tim e
—From when called to when return
 Callee returns before caller d oes

Stack Allocated in  Frames
« state for single proce dure instantiation
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aml();

* Procedure aml recursive
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aml

|

aml

|

aml

IA32 Stack Structure :
Stack Growth :
e Toward lower addresses T
. yoo _
Stack Pointer Increasing
« Address of next avai lable Addresses
location in stack who |
» Use register %esp
Frame Pointer
- Start of current stack frame aml |
+ Use register %ebp Stack Grows
Frame aml i
Pointer
Y%ebp—>
aml
Stack »
Pointer
%esp \ Stack
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IA32/Linux Stack Frame

Callee Stack Frame (“Top” to
Bottom)
« Parameters for called functions
e Local variables
—If can't keep in registers
e Saved register contex t
¢ Old frame pointer

-

Caller
Frame <

Frame Pointer
(%ebp

Reuvisiting swap

Old %ebp
Caller Stack Frame
« Return address Saved
—Pushed by call instruction Registers
« Arguments for this call
Local
Variables
Stack Pointer Ar%ting nt
(esp —>
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Revisiting swap
swap:

void swap( int

{

*Xp ,int  *yp)

int t0O=* xp;
int tl=* yp;
* xp =tl;
* yp =10;
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pushl %ebp

movl %esp ,%ebp

pushl %ebx

Set
Up

movl 12(% ebp),% ecx
movl 8(% ebp),% edx

movl (%ecx ),% eax
movl (%edx ),% ebx

movl %eax ,(%edx )
movl %ebx ,(%ecx )

movl -4(% ebp),% ebx

movl %ebp ,%esp

popl %ebp
ret

Finish

CS 213 F00

Body

int lel = 15213, call swap:
int  zip2 = 91125; Tees
) pushl $zip2
void call_swap() pushl $zipl
_ . call swap
swap(&zipl, &zi p2); cee
}
: Resulting
: : . . Stack
void swap( int *xp ,int  *yp)
{
int t0=* xp; &zip2
int  t1=* yp; &zipl
* xp=tl; )
* yp =t0; Rtn adr [¢+— %esp
}
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swap Setup
Entering _
Stack Resulting
— %ebp Stack
. Offset :
&zip2 yp
&zipl Xp
Rtn adr Rtn adr
0 [Old %elp*— %ebp
Old %ebx|+— %esp
swap:
pushl %ebp
movl %esp ,%ebp
pushl  %ebx
class07. ppt -12- CS 213 F'00



swap Finish

swap’s — %ebp
Stack . .
. . Exiting
Offset
Stack
12 yp &zip2
Xp &zipl [¢— %esp
Rtn adr
old %efFe— %ebp | 4% ebp).% eb
movl -4(% ebp),% ebx
-4 |Old %ebxj+— %esp movl %ebp %esp
popl %ebp
ret
Observation

« Saved & restored registe r %ebx
« Didn't do so for %eax, %ecx, or Yedx
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IA32/Linux Register Usage

¢ Surmised by looking at
code examples

Integer Registers (| %eax |
« Two have special u ses Caller-Save 5
%ebp %esp Tempol’aries -< | Yoedx |
* Three managed as callee- _ | Ybecx |
save — | %ebx |
%ebx, %esi, Yedi
Callee-Save Py
—0ld values saved on Temporaries | Opesi |
stack prior to using | Yood |
(1]
¢ Three managed as caller- o
save _ | Ybesp |
%eax, %oedx, Yecx Special
| %ebp |
—Do what you please, but

expect any callee to do
so, as well

* Register %eax also stores
returned value
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Register Saving Conventions

When procedure yoo calls who:
e yoo is the caller, who is the callee

Can Register be Used for Temporary Storage?

yoo': who:
movl $15213, % edx movl 8(%ebp), % edx
call who addl $91125, % edx
addl %edx, %eax oo
eee ret
ret

« Contents of register %edx overwritten by who

Conventions
» “Caller Save”
—Caller saves temporary in its frame before calling
» “Callee Save”
—Callee saves temporary in its frame before using
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. . .globl rfact
Recursive Factorial type
rfact ,@function
int rfact (int  x) rfact
{. pushl %ebp
int rval ; movl %esp ,%ebp
if (x <=1) pushl %ebx
return 1; movl 8(% ebp),% ebx
rval = rfact (x-1); cmpl $1,% ebx
return rval  *x; jle .L78
} leal -1(% ebx),%eax
pushl %eax
call rfact

imull  %ebx,% eax
Complete Assembly imp .L79
» Assembler directives .align 4
—Lines beginning with “. ” L78:
—Not of concern to us movl $1,% eax
« Labels L79:
~ Lxx movl -4(% ebp),%ebx
) movl %ebp ,%esp
 Actual instructions popl %ebp
ret
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!

Rfact Stack Setup

Entering Stack

Caller
X
| Rtn adr [¢«— %esp
rfact
pushl %ebp
T movl %esp ,%ebp
pushl %ebx
Caller
X
4 | Rtn adr
! 9 e—  %eb
Callee Old %ebp °eop
-4 |Old %ebxj¢— %esp

|
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Rfact Recursion

|Iea| -1(% ebx),% eax |

X pushl %eax
Rtn adr
Old %ebp¢— %ebp X
Old %ebxl+— %esp Rtn adr call  rfact
Old %ebp+— %ebp »
Old %ebx R adr
X1 [«—%esp  "[oid sebple— %ebp
veax] x1 Old %ebx
%ebx X 1
%eax x-1 y
[— %es
Yebx " Rtn adr 0esp
%eax| x-1
%ebx X
class07. ppt

Rfact Body

movl 8(% ebp),% ebx # ebx =x
cmpl $1,% ebx # Compare x : 1
jle .L78 #1f <= goto Term
leal -1(% ebx),% eax # eax =x-1
pushl %eax # Push x-1
call rfact # rfact (x-1)
imull  %ebx ,%eax # rval *Xx
jmp .L79 # Goto done
.L78: # Term:
movl $1,% eax # return val =1
.L79: # Done:
int rfact int X .
{ ( ) Registers
int rval ; $ebx Stored value of x
if (x <=1) $eax
return 1;
’ —Temporary value of x-1
rval = rfact (x-1); Ret P dy ue f - 1
return val  *x: —Returned value from rfact (x-1)
} —Returned value from this call
class07. ppt

Rfact Result

Return from Call

X
Rtn adr
Old Y%ebp¢— %ebp
Old %ebx
x-1

«— %esp

%eax | (x-1)!

%ebx X
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| imull  %ebx %eax

X

Rtn adr

Old %ebp*— %ebp

Old %ebx|
x-1

— %esp

%eax x!

%ebx X




Rfact Completion

X
Rtn adr
Old %ebpe— %ebp
-4 |Old %ebx|
-8 x-1 <+— Y%esp
movl -4(% ebp),% ebx
movl %ebp ,%esp
%eax| x! popl %ebp
%ebx X ret
Y%eax x!

%ebx |Old %ebx|
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Creating & Initializing Pointer

Initial part of sfact

_sfact 8
pushl %ebp # Save % ebp X
movl %esp,% ebp # Set % ebp Rtn adr
subl $16,% esp # Add 16 bytes 0 [Old %ebple— %ebp
movl 8(% ebp),%edx # edx =X
movl $1,-4(% ebp) # val =1 4 fval =1
-8
Using Stack for Local -12 [ Unused
Variable -16 — %esp
» Variable val must be stored
on stack intsfact  (int  x)
—Need to create pointer to it {
¢ Compute pointer as -4(% ebp) int val =1;
» Push on stack as second s_helper(x, &val);
argument return val;
}
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Pointer Code

Recursive Procedure Top-Level Call
void. s_helper intsfact ~ (int  x)
( intx, int *accum ) {
_ int val =1
if (x <=1) s_helper(x, & val );
return; return  val;
else { }

int z=* accum *X;
* accum =z;
s_helper (x-1 ,accum );

}

}

« Pass pointer to update location
 Uses tail recursion
—But GCC only partially optimizes it
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Passing Pointer

Calling s_helper from sfact ,
- Stack at time of ca |l

leal -4(% ebp),% eax # Compute & val 8 X
pushl %eax # Push on stack 4 Rtn adr
pushl %edx # Push x o ¢ %eb
call _s_helper # call 0 |Old %ebp oebp
movl -4(% ebp),% eax #Return val 4 (val =1
see # Finish -8
-12 | Unused
int sfact (int  x) -16
{
int val =1; &val &
s_helper(x, &val); X —  %esp
return val;
}
class07. ppt



Using Pointer

void s_helper
( intx, int *accum )

{

LN ]
int z=* accum *X;
* accum =z;

}

Internet worm and IM War
November, 1988

¢ Internet Worm attacks thousands of Internet hos ts.
* How did it happen?
July, 1999

« Microsoft launches MSN Messenge r (instant messaging system).

* Messenger clients ca n access popular AOL In stant Messaging
Service (AIM) servers

LN ]

movl %ecx,% eax #z=X

imull  (%edx ),%eax #z *=* accum
movl %eax,(% edx) #* accum =z

* Register %ecx holds x
* Register %edxholds accum
—Use access (%edx) to reference memory
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Internet Worm and IM War ( cont)
August 1999

« Mysteriously, Messenger c lients can no longe r access AIM servers.

« Even though the AIM protocol i s an open, publishe d standard.
¢ Microsoft and AOL begin the IM war:

—AOL changes server to disallow Messenger clients

—Microsoft makes changes to clients to defeat AOL changes.

— At least 13 such skirmishes.
¢ How did it happen?

The Internet Worm and AOL/Microsoft War were both
based on stack buffer overflow exploits!

—many Unix functions, such as gets() and strcpy(), do not check
argument sizes.

—allows target buffers to overflow.
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Stack buffer overflows
Stack
before call to gets()
3
void foo ()}
return bar(); > foo stack frame
address —-..
A } A )
void bar() { Old %ebp
char  buf [64];
gets( buf);
buf > bar stack frame
}
J
class07. ppt



Stack buffer overflows (cont)

Stack
after call to gets()
3
void foo (){
return bar(); > foo stack frame
address —»-..
A } B
data ﬁ
void bar() { written
char  buf [64]; by pad
gets(  buf); gets()
exploit } bar stack frame
} code
B &
J

When bar() returns, control p asses silently to B instead of Al!l
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Main lIdeas

Stack Provides Storage for Procedure  Instantiation
* Save state
¢ Local variables
¢ Any variable for which mu st create pointer

Assembly Code Must Manage Stack

¢ Allocate / deallocate by decrementing /incrementing sta ck pointer

e Saving / restoring regis ter state

Stack Adequate for All Forms of Recursion

¢ Including multi-way an d mutual recursion exa mples in the bonus
slides.

Good programmers know the stack dis cipline and are
aware of the dangers of stack buffer overflow s.
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Exploits based on buffer overflows

Buffer overflow bugs allow remote machine s to
execute arbitrary code on victim  machines.

Internet worm

 Early versions of the finger server ( fingerd) used gets() to read the
argument sent by the client:

—finger droh @cscmu.edu
* Worm attacked fingerd client by sending ph ony argument:
—finger “exploit ¢ ode padding new re turn address”

—exploit code: exe cuted a root shell on th e victim machine with a
direct TCP connection to the attacker.

IM War

¢ AOL exploited existing buffer overflow bug in AIM clients

» exploit code: returned  4-byte signature (the by tes at some locati on in
the AIM client) to server.

* When Microsoft changed ¢ ode to match signatu re, AOL changed
signature location.
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Free Bonus Slides!

(not covered in lectu re)

Topics
» how the stack supports  multi-
way recursion.

» how the stack supports mutual
recursion.

class07. ppt



Multi-Way Recursion

int r_prod
( int from, int to) Top-Level Call
{ int bfact ~ (int x)
int  middle; {
int prodA , prodB ;
if (from >= to) }
return from;

middle = (from +10) >> 1;
prodA = r_prod(from, middle);
prodB = r_prod(middle+1, to);
return prodA *prodB ;

return r_prod(1 X);

e Compute product x* (x+1)*...*(y=1)*y
 Split into two ranges:
—Left: X*(x+1)*...*(m-1)*m
—Right:  (m+1)* ... *(y-1)*y
m = [{x+y)/20
* No real advantage a Igorithmically

class07. ppt

Multi-Way Recursive Code

Stack Frame _r_prod:
e # Setup
12 from movl 8(% ebp),% eax #eax =from
8 to movl 12(% ebp),%edi #edi =to
4 Rtn Adr cmpl %edi ,%eax # from : to
0 Old $ebp jge L8 #if>= goto done
4 Old $edi leal (% edi,% eax),% ebx # from +to
- sarl  $1,% ebx # middle
8 Old Sesi pushl %ebx #2nd arg : middle
-12 Old $ebx pushl %eax #1st arg : from
call _r_prod # 1st call
$eax pushl %edi #2nd arg:to
from movl %eax ,%esi #esi = ProdA
return Values II"IC| %ebX # m|dd|e +1
pushl %ebx #... 1st arg
Callee Save Regs. call _r_prod # 2nd call
$ebx middle imull  %eax,% esi # ProdA * ProdB
$edi to movl %esi ,%eax # Return value
$esi prodA L8: # done:_ _
cee # Finish
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Binary Splitting Example

r_prod(1,3)

[ bfact 6) |

A

720

v
r_prod(1,6)

r_prod(4,6)

r_prod(6,6)

/ N\
[r_prod(l,Z)T] [r_prod(3,3) ]
2

/f
1
/ N

/
[r_prod(4,5) T]
«
/4 5
/

[r_prod(l,l)

J r_prod(2,2)

] [r_prod.4) ] (r_prod(s,5)

J
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Multi-Way Recursive Code Finish

12 from

8 to

4 Rtn Adr
0 Old $ebp
4 Old $edi
-8 Old $esi
-12 Old $ebx
-16 Arg 2
-20 Arg 1

Stack

» After making recursive
Finishing Code

» Moves stack pointer to

» Pops registers
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L8: # done:
leal -12(% ebp),%esp # Set Stack

popl %ebx # Restore %
popl %esi # Restore %
popl %edi # Restore %
movl %ebp ,%esp # Restore %
popl %ebp # Restore %
ret # Return

calls, still has two a rguments on top

start of saved register a rea

Ptr
ebx
esi
edi
esp
ebp



. int left_prod
Mutual Recursion |t efpint  srigntp )
int left =*leftp ;
if (left >=* rightp)
Top-Level Call return left;
else {
int Irfact (int  x) int plusl = left+1;
{ return left *
int left = 1; ri ght _prod(&plusl, rightp);
return }
left_prod(&lef t, &X); }
} int right_prod
(int*  leftp, int *rightp )
{
int  right="* rightp;
if (* leftp == right)
return right;
else {
int minusl = right-1;
return right *
| ef t _pr od(leftp, &minusl);
}
}
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Implementation

Call to Recursive Routine
int left=1;

of

Stack at time of ca |l

return left_pro d(&left, &x);

Code for Call
leal 8(% ebp),%edx # edx=&x 4
pushl %edx # push &x )
leal -4(% ebp),% eax# eax = &left -8
pushl %eax # push &left 12
call _left_prod # Call 16
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Irfact

X

Rtn adr

Old %ebp

4—

left=1

Unused

&x @

&left *

—

%ebp

%esp

Mutually Recursive Execution Example

Calling
* Recursive routines pa ss two
arguments Ifact  (4)
—Pointer to own local variable left: 24
—>
—Poi_nter to caller’s local X: ‘ -
variable left_prod( , )* 3
plusl: 2 —> 24
right_prod( , )@ @
minus1; —> 24
left_prod( , ).{
plusi: —>6
right_prod( , )¥ .//
—» 3
class07. ppt
Implementation of left _prod
Call to Recursive Routine .
Stack at time of ca |l
int  plusl = left+1;
return left * 12 | rightp *
right_prod(&pl usl, rightp leftp
Rtn adr
Old %ebp¢— |%ebp
# %ebx holds left 4 e
#%edx holds rightp ) plus ‘\
leal 1(% ebx),%ecx  # left+1 -8
movl %ecx,-4(% ebp) # Store in plusl -12 | Unused
pushl %edx # Push rightp
leal -4(% ebp),% eax # &plusl -16
pushl %eax # Push &plusl rightp ®
call _right_pro d # Call
~M9P &plus1®— oesp
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Tail Recursion

Tail Recursive Procedure

Removing Tail Recursion

Optimized General Form

Resulting Code

int t_helper General Form t_helper(x, val ) int t_helper
( intx, intval ) { ( intx, intval )
t_helper(x, val ) start: {
if (x<=1) { see start:
return val ; °e val = Vexpr; if (x <= 1)
return return X=  Xexpr: return val ;
t_helper(x-1, val*x); t_helper( Xexpr, Vexpr) goto  start; val =val *x;
} } } X = x-1;
goto  start;
}
- Form .. .
Top-Level Call orm Effect of Optimization
int tfact (int  x) : bD|rectIy return \ﬁalue returne  d e Turn recursive chain into single procedure
{ y recursive ca .
return t_helper (x, 1); Consequence No stack frame need. ed
} o | » Constant space require ment
* Can convertinto loop —Vs. linear for recursive version
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Generated Code for Tail Recursive Proc.

Optimized Form Code for Loop

int t helper # %edx = X
( intx, intval ) # %ecx = val
{ L53: # start:
start: cmpl $1,% edx #x:1
if (x <=1) jle  L52 #if <= goto done
return v*al ; movl %edx ,%eax #eax =X
val =val *x; imull  %ecx,% eax #eax = val*x
X = x-1; decl %edx # X--
goto  start; movl %eax ,%ecx #val = val*x
} jmp L53 #goto start
L52: # done:
Registers
$edx x
$ecx val
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