
Machine-Level Programming III:
Procedures

Sept 19, 2000

Topics
• IA32 stack discip line
• Register saving conv entions
• Creating pointers to loca l

variables
• Stack buffer overflow expl oits

– finger
– AIM (AOL Instant Messenger)

class07. ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’00– 2 –class07. ppt

IA32 Stack
• Region of memory man aged with

stack discipline
• Register %esp indicates lowest

allocated position in stack
– i.e., address of top element

Pushing
• pushl Src
• Fetch operand at Src
• Decrement %esp by 4
• Write operand at addres s given

by %esp

Popping
• popl Dest
• Read operand at addres s given

by %esp

• Increment %esp by 4
• Write to Dest

Stack
Pointer

%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

CS 213 F’00– 3 –class07. ppt

0x108

0x10c

0x110

0x104

555

%esp

213%eax

213

123

0x104

%edx

Stack Operation Examples

0x108

0x10c

0x110

555

%esp

213%eax

123

0x108

%edx

pushl %eax

0x108

0x10c

0x110

213

%esp

213%eax

123

0x108

%edx

popl %edx

CS 213 F’00– 4 –class07. ppt

Procedure Control Flow

Use stack to support procedure call a nd return

Procedure call:
call label Push return address on stack; Jump to label

Return address value
• Address of instruction be yond call

• Example from disas sembly
 804854e: e8 3d 06 00 00 call 8048b90 <mai n>

 8048553: 50 pushl %eax

– Return address = 0x8048553

Procedure return:
• ret Pop address from stack; Jump to address

CS 213 F’00– 5 –class07. ppt

0x108

0x10c

0x110

0x104

0x804854e

0x8048553

123

Procedure Call / Return Example

0x108

0x10c

0x110

%esp

%eip

123

0x108

call 8048b90

0x108

0x10c

0x110

123

ret

804854e: e8 3d 06 00 00 call 8048b90 <m ain>
8048553: 50 pushl % eax

0x8048b90

0x104%esp

%eip 0x8048553

0x108%esp

%eip

%eip is program counter

CS 213 F’00– 6 –class07. ppt

Stack-Based Languages
Languages that Support Recursion

• e.g., C, Pascal, Ja va
• Code must be “ Reentrant ”

– Multiple simultaneous instantiations of single procedure
• Need some place to store state of each instantiation

– Arguments

– Local variables
– Return pointer

Stack Discipline
• State for given procedure needed for limited tim e

– From when called to when return

• Callee returns before caller d oes

Stack Allocated in Frames
• state for single proce dure instantiation

CS 213 F’00– 7 –class07. ppt

Call Chain Example
Code Structure

yoo (…)
{

•
•
who();
•
•

}

who(…)
{

•
•
amI ();
•
•

}

amI (…)
{

•
•
amI ();
•
•

}

yoo

who

amI

amI

amI

Call Chain

• Procedure amI recursive

CS 213 F’00– 8 –class07. ppt

Stack
Pointer

%esp

yoo

who

amI

amI

amI

•
•
•

Frame
Pointer

%ebp

Stack Grows

Increasing
Addresses

Stack
“Top”

IA32 Stack Structure
Stack Growth

• Toward lower addresses

Stack Pointer
• Address of next avai lable

location in stack
• Use register %esp

Frame Pointer
• Start of current stack frame
• Use register %ebp

CS 213 F’00– 9 –class07. ppt

IA32/Linux Stack Frame
Callee Stack Frame (“Top” to

Bottom)
• Parameters for called functions
• Local variables

– If can’t keep in registers

• Saved register contex t
• Old frame pointer

Caller Stack Frame
• Return address

– Pushed by call instruction

• Arguments for this call

Stack Pointer
(%esp)

Frame Pointer
(%ebp)

Return Addr

Saved
Registers

Argument
Build

Old %ebp

Local
Variables

Arguments

Caller
Frame

CS 213 F’00– 10 –class07. ppt

Revisiting swap

void swap(int *xp , int *yp)
{
 int t0 = * xp ;
 int t1 = * yp ;
 * xp = t1;
 * yp = t0;
}

int zip1 = 15213;
int zip2 = 91125;

void call_swap()
{
 swap(&zip1, &zi p2);
}

call_swap:
• • •
pushl $zip2
pushl $zip1
call swap
• • •

&zip2

&zip1

Rtn adr %esp

Resulting
Stack

•
•
•

CS 213 F’00– 11 –class07. ppt

Revisiting swap

void swap(int *xp , int *yp)
{
 int t0 = * xp ;
 int t1 = * yp ;
 * xp = t1;
 * yp = t0;
}

swap:
pushl %ebp
movl %esp ,%ebp
pushl %ebx

movl 12(% ebp),% ecx
movl 8(% ebp),% edx
movl (%ecx),% eax
movl (%edx),% ebx
movl %eax ,(%edx)
movl %ebx ,(%ecx)

movl -4(% ebp),% ebx
movl %ebp ,%esp
popl %ebp
ret

Body

Set
Up

Finish

CS 213 F’00– 12 –class07. ppt

swap Setup

swap:
pushl %ebp
movl %esp ,%ebp
pushl %ebx

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

Resulting
Stack

•
•
•

&zip2

&zip1

Rtn adr %esp

Entering
Stack

•
•
•

%ebp

Old %ebx %esp

CS 213 F’00– 13 –class07. ppt

swap Finish

movl -4(% ebp),% ebx
movl %ebp ,%esp
popl %ebp
ret

yp

xp

Rtn adr

Old %ebp %ebp 0

 4

 8

12

Offset

swap’s
Stack

•
•
•

&zip2

&zip1 %esp

Exiting
Stack

•
•
•

%ebp

Old %ebx %esp-4

Observation
• Saved & restored registe r %ebx

• Didn’t do so for %eax, %ecx, or %edx

CS 213 F’00– 14 –class07. ppt

Register Saving Conventions
When procedure yoo calls who:

• yoo is the caller , who is the callee

Can Register be Used for Temporary Storage?

• Contents of register %edx overwritten by who

Conventions
• “Caller Save”

– Caller saves temporary in its frame before calling

• “Callee Save”
– Callee saves temporary in its frame before using

yoo :
• • •
movl $15213, % edx
call who
addl %edx , %eax
• • •
ret

who:
• • •
movl 8(%ebp), % edx
addl $91125, % edx
• • •
ret

CS 213 F’00– 15 –class07. ppt

IA32/Linux Register Usage
• Surmised by looking at

code examples

Integer Registers
• Two have special u ses

%ebp, %esp

• Three managed as callee -
save
%ebx, %esi , %edi

– Old values saved on
stack prior to using

• Three managed as caller-
save
%eax, %edx, %ecx

– Do what you please, but
expect any callee to do
so, as well

• Register %eax also stores
returned value

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

Caller-Save
Temporaries

Callee-Save
Temporaries

Special

CS 213 F’00– 16 –class07. ppt

int rfact (int x)
{
 int rval ;
 if (x <= 1)
 return 1;
 rval = rfact (x-1);
 return rval * x;
}

.globl rfact
.type

rfact ,@function
rfact :

pushl %ebp
movl %esp ,%ebp
pushl %ebx
movl 8(% ebp),% ebx
cmpl $1,% ebx
jle .L78
leal -1(% ebx),%eax
pushl %eax
call rfact
imull %ebx,% eax
jmp .L79
.align 4

.L78:
movl $1,% eax

.L79:
movl -4(% ebp),%ebx
movl %ebp ,%esp
popl %ebp
ret

Recursive Factorial

Complete Assembly
• Assembler directives

– Lines beginning with “. ”

– Not of concern to us
• Labels

– .Lxx

• Actual instructions

CS 213 F’00– 17 –class07. ppt

Rfact Stack Setup

rfact :
pushl %ebp
movl %esp ,%ebp
pushl %ebx

Entering Stack

x

Rtn adr

Old %ebp %ebp 0

 4

 8

Old %ebx %esp-4

Caller

Callee

x

Rtn adr

Caller

%esp

CS 213 F’00– 18 –class07. ppt

Rfact Body

Registers
$ebx Stored value of x
$eax

– Temporary value of x-1

– Returned value from rfact (x-1)

– Returned value from this call

movl 8(% ebp),% ebx # ebx = x
cmpl $1,% ebx # Compare x : 1
jle .L78 # If <= goto Term
leal -1(% ebx),% eax # eax = x-1
pushl %eax # Push x-1
call rfact # rfact (x-1)
imull %ebx ,%eax # rval * x
jmp .L79 # Goto done

.L78: # Term:
movl $1,% eax # return val = 1

.L79: # Done:

int rfact (int x)
{
 int rval ;
 if (x <= 1)
 return 1;
 rval = rfact (x-1);
 return rval * x;
}

CS 213 F’00– 19 –class07. ppt

Rfact Recursion

pushl %eax

x

Rtn adr

Old %ebp %ebp

Old %ebx

%espx-1

x-1%eax

x%ebx

x

Rtn adr

Old %ebp %ebp

Old %ebx %esp

x-1%eax

x%ebx

leal -1(% ebx),% eax

x

Rtn adr

Old %ebp %ebp

Old %ebx

%esp

x-1

Rtn adr

x-1%eax

x%ebx

call rfact

CS 213 F’00– 20 –class07. ppt

Rfact Result

imull %ebx,%eax

x

Rtn adr

Old %ebp %ebp

Old %ebx

%espx-1

x!%eax

x%ebx

x

Rtn adr

Old %ebp %ebp

Old %ebx

%espx-1

(x-1)!%eax

x%ebx

Return from Call

CS 213 F’00– 21 –class07. ppt

Rfact Completion

movl -4(% ebp),% ebx
movl %ebp ,%esp
popl %ebp
ret

x

Rtn adr

Old %ebp %ebp 0

 4

 8

Old %ebx

%esp

-4

x %esp

x!%eax

Old %ebx%ebx

x!%eax

x%ebx

x-1-8

CS 213 F’00– 22 –class07. ppt

Pointer Code

void s_helper
 (int x, int *accum)
{
 if (x <= 1)
 return;
 else {
 int z = * accum * x;
 * accum = z;
 s_helper (x-1 ,accum);
 }
}

int sfact (int x)
{
 int val = 1;
 s_helper(x, & val);
 return val;
}

Top-Level CallRecursive Procedure

• Pass pointer to update location
• Uses tail recursion

– But GCC only partially optimizes it

CS 213 F’00– 23 –class07. ppt

Creating & Initializing Pointer

int sfact (int x)
{
 int val = 1;
 s_helper(x, &val);
 return val;
}

_sfact :
pushl %ebp # Save % ebp
movl %esp,% ebp # Set % ebp
subl $16,% esp # Add 16 bytes
movl 8(% ebp),%edx # edx = x
movl $1,-4(% ebp) # val = 1

Using Stack for Local
Variable
• Variable val must be stored

on stack
– Need to create pointer to it

• Compute pointer as -4(% ebp)

• Push on stack as second
argument

Initial part of sfact

x

Rtn adr

Old %ebp %ebp 0

 4

 8

val = 1

%esp

 -4

Unused-12

 -8

-16

CS 213 F’00– 24 –class07. ppt

Passing Pointer

int sfact (int x)
{
 int val = 1;
 s_helper(x, &val);
 return val;
}

leal -4(% ebp),% eax # Compute & val
pushl %eax # Push on stack
pushl %edx # Push x
call _s_helper # call
movl -4(% ebp),% eax # Return val
• • • # Finish

Calling s_helper from sfact

x

Rtn adr

Old %ebp %ebp 0

 4

 8

val = 1

%esp

 -4

Unused-12

 -8

-16

&val

x

Stack at time of ca ll

CS 213 F’00– 25 –class07. ppt

Using Pointer

• • •
movl %ecx,% eax # z = x
imull (%edx),%eax # z *= * accum
movl %eax,(% edx) # * accum = z
• • •

void s_helper
 (int x, int *accum)
{
 • • •
 int z = * accum * x;
 * accum = z;
 • • •
}

• Register %ecx holds x

• Register %edx holds accum

– Use access (%edx) to reference memory

CS 213 F’00– 26 –class07. ppt

Internet worm and IM War
November, 1988

• Internet Worm attacks thousands of Internet hos ts.
• How did it happen?

July, 1999
• Microsoft launches MSN Messenge r (instant messaging system).
• Messenger clients ca n access popular AOL In stant Messaging

Service (AIM) servers

AIM
server

AIM
client

AIM
client

MSN
client

MSN
server

CS 213 F’00– 27 –class07. ppt

Internet Worm and IM War (cont)
August 1999

• Mysteriously, Messenger c lients can no longe r access AIM servers.
• Even though the AIM protocol i s an open, publishe d standard.
• Microsoft and AOL begin the IM war:

– AOL changes server to disallow Messenger clients
– Microsoft makes changes to clients to defeat AOL changes.

– At least 13 such skirmishes.
• How did it happen?

The Internet Worm and AOL/Microsoft War were both
based on stack buffer overflow exploits!

– many Unix functions, such as gets() and strcpy(), do not check
argument sizes.

– allows target buffers to overflow.

CS 213 F’00– 28 –class07. ppt

Stack buffer overflows

void bar() {
 char buf [64];
 gets(buf);
 ...
}

void foo (){
 bar();
 ...
}

Stack
before call to gets()

A

Old %ebp

buf

return
address

A

foo stack frame

bar stack frame

CS 213 F’00– 29 –class07. ppt

Stack buffer overflows (cont)

void bar() {
 char buf [64];
 gets(buf);
 ...
}

void foo (){
 bar();
 ...
}

Stack
after call to gets()

B

return
address

A

foo stack frame

bar stack frame

B

exploit
code

pad

When bar() returns, control p asses silently to B instead of A!!

data
written

by
gets()

CS 213 F’00– 30 –class07. ppt

Exploits based on buffer overflows
Buffer overflow bugs allow remote machine s to

execute arbitrary code on victim machines.
Internet worm

• Early versions of the finger server (fingerd) used gets() to read the
argument sent by the client:
– finger droh @cs.cmu .edu

• Worm attacked fingerd client by sending ph ony argument:
– finger “exploit c ode padding new re turn address”

– exploit code: exe cuted a root shell on th e victim machine with a
direct TCP connection to the attacker.

IM War
• AOL exploited existing buffer overflow bug in AIM clients
• exploit code: returned 4-byte signature (the by tes at some locati on in

the AIM client) to server.
• When Microsoft changed c ode to match signatu re, AOL changed

signature location.

CS 213 F’00– 31 –class07. ppt

Main Ideas
Stack Provides Storage for Procedure Instantiation

• Save state
• Local variables
• Any variable for which mu st create pointer

Assembly Code Must Manage Stack
• Allocate / deallocate by decrementing / incrementing sta ck pointer
• Saving / restoring regis ter state

Stack Adequate for All Forms of Recursion
• Including multi-way an d mutual recursion exa mples in the bonus

slides.

Good programmers know the stack dis cipline and are
aware of the dangers of stack buffer overflow s.

Free Bonus Slides!
(not covered in lectu re)

Topics
• how the stack supports multi-

way recursion.
• how the stack supports mutual

recursion.

class07. ppt

CS 213 F’00– 33 –class07. ppt

Multi-Way Recursion

int bfact (int x)
{
 return r_prod(1 ,x);
}

int r_prod
 (int from, int to)
{
 int middle;
 int prodA , prodB ;
 if (from >= to)
 return from;
 middle = (from + to) >> 1;
 prodA = r_prod(from, middle);
 prodB = r_prod(middle+1, to);
 return prodA * prodB ;
}

• Compute product x * (x+1) * … * (y–1) * y
• Split into two ranges:

– Left: x * (x+1) * … * (m–1) * m
– Right: (m+1) * … * (y–1) * y

m = (x+y)/2
• No real advantage a lgorithmically

Top-Level Call

CS 213 F’00– 34 –class07. ppt

Binary Splitting Example

bfact (6)

r_prod(1,6)

r_prod(1,3) r_prod(4,6)

r_prod(1,2) r_prod(3,3) r_prod(4,5) r_prod(6,6)

r_prod(1,1) r_prod(2,2) r_prod(4,4) r_prod(5,5)

1 2 4 5

2

6 120

720

6203

CS 213 F’00– 35 –class07. ppt

Multi-Way Recursive Code
_r_prod:

 • • • # Setup
movl 8(% ebp),% eax # eax = from
movl 12(% ebp),%edi # edi = to
cmpl %edi ,%eax # from : to
jge L8 # if >= goto done
leal (% edi,% eax),% ebx # from + to
sarl $1,% ebx # middle
pushl %ebx # 2nd arg : middle
pushl %eax # 1st arg : from
call _r_prod # 1st call
pushl %edi # 2nd arg : to
movl %eax ,%esi # esi = ProdA
incl %ebx # middle + 1
pushl %ebx # ... 1st arg
call _r_prod # 2nd call
imull %eax,% esi # ProdA * ProdB
movl %esi ,%eax # Return value

L8: # done:
 • • • # Finish

Stack Frame

$eax

from

return values

Callee Save Regs.
$ebx middle

$edi to

$esi prodA

from

to

Rtn Adr
Old $ebp

Old $edi

Old $esi

Old $ebx

 12

 8

 4

 0

 -4

 -8

-12

CS 213 F’00– 36 –class07. ppt

L8: # done:
leal -12(% ebp),%esp # Set Stack Ptr
popl %ebx # Restore % ebx
popl %esi # Restore % esi
popl %edi # Restore % edi
movl %ebp ,%esp # Restore % esp
popl %ebp # Restore % ebp
ret # Return

from

to

Rtn Adr
Old $ebp

Old $edi

Old $esi

Old $ebx

 12

 8

 4

 0

 -4

 -8

-12

Multi-Way Recursive Code Finish

Stack
• After making recursive calls, still has two a rguments on top

Finishing Code
• Moves stack pointer to start of saved register a rea
• Pops registers

Arg 2
Arg 1

-16

-20

CS 213 F’00– 37 –class07. ppt

Mutual Recursion

int lrfact (int x)
{
 int left = 1;
 return
 left_prod(&lef t, &x);
}

int left_prod
(int * leftp, int *rightp)
{
 int left = *leftp ;
 if (left >= * rightp)
 return left;
 else {
 int plus1 = left+1;
 return left *
 right_prod(&plus1, rightp);
 }
}

int right_prod
(int * leftp, int *rightp)
{
 int right = * rightp;
 if (* leftp == right)
 return right;
 else {
 int minus1 = right-1;
 return right *
 left_prod(leftp, &minus1);
 }
}

Top-Level Call

CS 213 F’00– 38 –class07. ppt

Mutually Recursive Execution Example
Calling

• Recursive routines pa ss two
arguments
– Pointer to own local variable
– Pointer to caller’s local

variable

lrfact (4)

1left:

4x:

left_prod(,)

2plus1:

right_prod(,)

3minus1:

left_prod(,)

3plus1:

right_prod(,)
3

6

24

24

24

CS 213 F’00– 39 –class07. ppt

Implementation of lrfact

 int left = 1;
 return left_pro d(&left, &x);

leal 8(% ebp),%edx # edx = &x
pushl %edx # push &x
leal -4(% ebp),% eax # eax = &left
pushl %eax # push &left
call _left_prod # Call

Call to Recursive Routine

Code for Call

x

Rtn adr

Old %ebp %ebp 0

 4

 8

left= 1

%esp

 -4

Unused-12

 -8

-16

&x

&left

Stack at time of ca ll

CS 213 F’00– 40 –class07. ppt

Implementation of left_prod

 int plus1 = left+1;
 return left *
 right_prod(&pl us1, rightp);

Call to Recursive Routine

%ebx holds left
%edx holds rightp
leal 1(% ebx),%ecx # left+1
movl %ecx,-4(% ebp) # Store in plus1
pushl %edx # Push rightp
leal -4(% ebp),% eax # &plus1
pushl %eax # Push &plus1
call _right_pro d # Call

leftp

Rtn adr

Old %ebp %ebp 0

 4

 8

plus1

%esp

 -4

Unused-12

 -8

-16

rightp

&plus1

Stack at time of ca ll

rightp 12

CS 213 F’00– 41 –class07. ppt

Tail Recursion

int tfact (int x)
{
 return t_helper (x, 1);
}

t_helper(x, val)
{
 • • •
 return
 t_helper(Xexpr , Vexpr)
}

General Form

Form
• Directly return value returne d

by recursive call

Consequence
• Can convert into loop

int t_helper
 (int x, int val)
{
 if (x <= 1)
 return val ;
 return
 t_helper(x-1, val*x);
}

Tail Recursive Procedure

Top-Level Call

CS 213 F’00– 42 –class07. ppt

Removing Tail Recursion

int t_helper
 (int x, int val)
{
 start:
 if (x <= 1)
 return val ;
 val = val *x;
 x = x-1;
 goto start;
}

t_helper(x, val)
{
 start:
 • • •
 val = Vexpr ;
 x = Xexpr ;
 goto start;
}

Optimized General Form Resulting Code

Effect of Optimization
• Turn recursive chain into single procedure
• No stack frame need ed
• Constant space require ment

– Vs. linear for recursive version

CS 213 F’00– 43 –class07. ppt

Generated Code for Tail Recursive Proc.

%edx = x
%ecx = val

L53: # start:
cmpl $1,% edx # x : 1
jle L52 # if <= goto done
movl %edx ,%eax # eax = x
imull %ecx,% eax # eax = val * x
decl %edx # x--
movl %eax ,%ecx # val = val * x
jmp L53 # goto start

L52: # done:

Optimized Form

int t_helper
 (int x, int val)
{
 start:
 if (x <= 1)
 return val ;
 val = val *x;
 x = x-1;
 goto start;
}

Code for Loop

Registers
$edx x

$ecx val

