15-213

“The course that gives CMU its Zip!”

Machine-Level Programming lII:
Procedures
Sept 19, 2000

Topics
» |A32 stack discip line
» Register saving conv entions

« Creating pointers to loca |
variables

 Stack buffer overflow expl oits
—finger

—AIM (AOL Instant Messenger)
class07. ppt

Stack Operation Examples

pushl %eax popl %edx
0x110 0x110 0x110
0x10c 0x10c 0x10c
0x108 123 0x108 123 0x108 123
0x104 213
%eax 213 %eax 213 %eax 213
%edx 555 %edx 555 %edx 213
%esp 0x108 %esp 0x104 %esp 0x108

class07. ppt

IA32 Stack

+ Region of memory man aged with Stack “Bottom”
stack discipline
» Register %esp indicates lowest /
allocated position in stack T
—i.e., address of top element Increasing
. Addresses
Pushing |
e pushl Src

» Fetch operand at Src
« Decrement %esp by 4
» Write operand at addres s given I

by %esp Stack Grows
. Stack Down
Popplng Pointer
* popl Dest %esp —p l
» Read operand at addres s given
by %es% J \
Stack “Top”

e Increment %esp by 4
e Write to Dest

class07. ppt

Procedure Control Flow

Use stack to support procedure calla nd return

Procedure call:
call | abel Push return address on stack; Jump to | abel

Return address value
» Address of instruction be yond call
« Example from disas sembly
804854e: e8 3d 06 00 00 call 8048b90 <mai n>
8048553: 50 pushl %eax
—Return address = 0x8048553

Procedure return:
e ret Pop address from stack; Jump to address

class07. ppt

Procedure Call / Return Example

804854e: e8 3d 06 00 00 call 8048b90 <m ain>
8048553: pushl % eax
call 8048b90 ret
0x110 0x110 0x110
0x10c 0x10c 0x10c
0x108 123 0x108 123 0x108 123
0x104 |0x8048553
%esp 0x108 %esp 0x104 %esp 0x108

%eip |0x804854¢e %eip |0x8048090 %eip |0x8048553

%eip is program counter

class07. ppt

Call Chain Example

Code Structure _
Call Chain

yoo(...)
{ Y00

: !

Stack-Based Languages

Languages that Support Recursion
* e.g., C, Pascal, Java
» Code must be “ Reentrant”
—Multiple simultaneous instantiations of single procedure
* Need some place to store state of each instantiation
—Arguments
—Local variables
—Return pointer

Stack Discipline
« State for given procedure needed for limited tim e
—From when called to when return
 Callee returns before caller d oes

Stack Allocated in Frames
« state for single proce dure instantiation

class07. ppt

aml();

* Procedure aml recursive

class07. ppt

aml

|

aml

|

aml

IA32 Stack Structure :
Stack Growth :
e Toward lower addresses T
. yoo _
Stack Pointer Increasing
« Address of next avai lable Addresses
location in stack who |
» Use register %esp
Frame Pointer
- Start of current stack frame aml |
+ Use register %ebp Stack Grows
Frame aml i
Pointer
Y%ebp—>
aml
Stack »
Pointer
%esp \ Stack

class07. ppt

“Top”

IA32/Linux Stack Frame

Callee Stack Frame (“Top” to
Bottom)
« Parameters for called functions
e Local variables
—If can't keep in registers
e Saved register contex t
¢ Old frame pointer

-

Caller
Frame <

Frame Pointer
(%ebp

Reuvisiting swap

Old %ebp
Caller Stack Frame
« Return address Saved
—Pushed by call instruction Registers
« Arguments for this call
Local
Variables
Stack Pointer Ar%ting nt
(esp —>
class07. ppt -9- CS 213 F00
Revisiting swap
swap:

void swap(int

{

*Xp ,int *yp)

int t0O=* xp;
int tl=* yp;
* xp =tl;
* yp =10;

class07. ppt -11-

pushl %ebp

movl %esp ,%ebp

pushl %ebx

Set
Up

movl 12(% ebp),% ecx
movl 8(% ebp),% edx

movl (%ecx),% eax
movl (%edx),% ebx

movl %eax ,(%edx)
movl %ebx ,(%ecx)

movl -4(% ebp),% ebx

movl %ebp ,%esp

popl %ebp
ret

Finish

CS 213 F00

Body

int lel = 15213, call swap:
int zip2 = 91125; Tees
) pushl $zip2
void call_swap() pushl $zipl
_ . call swap
swap(&zipl, &zi p2); cee
}
: Resulting
: : . . Stack
void swap(int *xp ,int *yp)
{
int t0=* xp; &zip2
int t1=* yp; &zipl
* xp=tl;)
* yp =t0; Rtn adr [¢+— %esp
}
class07. ppt -10- CS 213 F00
swap Setup
Entering _
Stack Resulting
— %ebp Stack
. Offset :
&zip2 yp
&zipl Xp
Rtn adr Rtn adr
0 [Old %elp*— %ebp
Old %ebx|+— %esp
swap:
pushl %ebp
movl %esp ,%ebp
pushl %ebx
class07. ppt -12- CS 213 F'00

swap Finish

swap’s — %ebp
Stack . .
. . Exiting
Offset
Stack
12 yp &zip2
Xp &zipl [¢— %esp
Rtn adr
old %efFe— %ebp | 4% ebp).% eb
movl -4(% ebp),% ebx
-4 |Old %ebxj+— %esp movl %ebp %esp
popl %ebp
ret
Observation

« Saved & restored registe r %ebx
« Didn't do so for %eax, %ecx, or Yedx

class07. ppt

IA32/Linux Register Usage

¢ Surmised by looking at
code examples

Integer Registers (| %eax |
« Two have special u ses Caller-Save 5
%ebp %esp Tempol’aries -< | Yoedx |
* Three managed as callee- _ | Ybecx |
save — | %ebx |
%ebx, %esi, Yedi
Callee-Save Py
—0ld values saved on Temporaries | Opesi |
stack prior to using | Yood |
(1]
¢ Three managed as caller- o
save _ | Ybesp |
%eax, %oedx, Yecx Special
| %ebp |
—Do what you please, but

expect any callee to do
so, as well

* Register %eax also stores
returned value

class07. ppt

Register Saving Conventions

When procedure yoo calls who:
e yoo is the caller, who is the callee

Can Register be Used for Temporary Storage?

yoo': who:
movl $15213, % edx movl 8(%ebp), % edx
call who addl $91125, % edx
addl %edx, %eax oo
eee ret
ret

« Contents of register %edx overwritten by who

Conventions
» “Caller Save”
—Caller saves temporary in its frame before calling
» “Callee Save”
—Callee saves temporary in its frame before using

class07. ppt
. . .globl rfact
Recursive Factorial type
rfact ,@function
int rfact (int x) rfact
{. pushl %ebp
int rval ; movl %esp ,%ebp
if (x <=1) pushl %ebx
return 1; movl 8(% ebp),% ebx
rval = rfact (x-1); cmpl $1,% ebx
return rval *x; jle .L78
} leal -1(% ebx),%eax
pushl %eax
call rfact

imull %ebx,% eax
Complete Assembly imp .L79
» Assembler directives .align 4
—Lines beginning with “. ” L78:
—Not of concern to us movl $1,% eax
« Labels L79:
~ Lxx movl -4(% ebp),%ebx
) movl %ebp ,%esp
 Actual instructions popl %ebp
ret

class07. ppt

!

Rfact Stack Setup

Entering Stack

Caller
X
| Rtn adr [¢«— %esp
rfact
pushl %ebp
T movl %esp ,%ebp
pushl %ebx
Caller
X
4 | Rtn adr
! 9 e— %eb
Callee Old %ebp °eop
-4 |Old %ebxj¢— %esp

|

class07. ppt

Rfact Recursion

|Iea| -1(% ebx),% eax |

X pushl %eax
Rtn adr
Old %ebp¢— %ebp X
Old %ebxl+— %esp Rtn adr call rfact
Old %ebp+— %ebp »
Old %ebx R adr
X1 [«—%esp "[oid sebple— %ebp
veax] x1 Old %ebx
%ebx X 1
%eax x-1 y
[— %es
Yebx " Rtn adr 0esp
%eax| x-1
%ebx X
class07. ppt

Rfact Body

movl 8(% ebp),% ebx # ebx =x
cmpl $1,% ebx # Compare x : 1
jle .L78 #1f <= goto Term
leal -1(% ebx),% eax # eax =x-1
pushl %eax # Push x-1
call rfact # rfact (x-1)
imull %ebx ,%eax # rval *Xx
jmp .L79 # Goto done
.L78: # Term:
movl $1,% eax # return val =1
.L79: # Done:
int rfact int X .
{ () Registers
int rval ; $ebx Stored value of x
if (x <=1) $eax
return 1;
’ —Temporary value of x-1
rval = rfact (x-1); Ret P dy ue f - 1
return val *x: —Returned value from rfact (x-1)
} —Returned value from this call
class07. ppt

Rfact Result

Return from Call

X
Rtn adr
Old Y%ebp¢— %ebp
Old %ebx
x-1

«— %esp

%eax | (x-1)!

%ebx X

class07. ppt

| imull %ebx %eax

X

Rtn adr

Old %ebp*— %ebp

Old %ebx|
x-1

— %esp

%eax x!

%ebx X

Rfact Completion

X
Rtn adr
Old %ebpe— %ebp
-4 |Old %ebx|
-8 x-1 <+— Y%esp
movl -4(% ebp),% ebx
movl %ebp ,%esp
%eax| x! popl %ebp
%ebx X ret
Y%eax x!

%ebx |Old %ebx|

class07. ppt

Creating & Initializing Pointer

Initial part of sfact

_sfact 8
pushl %ebp # Save % ebp X
movl %esp,% ebp # Set % ebp Rtn adr
subl $16,% esp # Add 16 bytes 0 [Old %ebple— %ebp
movl 8(% ebp),%edx # edx =X
movl $1,-4(% ebp) # val =1 4 fval =1
-8
Using Stack for Local -12 [Unused
Variable -16 — %esp
» Variable val must be stored
on stack intsfact (int x)
—Need to create pointer to it {
¢ Compute pointer as -4(% ebp) int val =1;
» Push on stack as second s_helper(x, &val);
argument return val;
}

class07. ppt

Pointer Code

Recursive Procedure Top-Level Call
void. s_helper intsfact ~ (int x)
(intx, int *accum) {
_ int val =1
if (x <=1) s_helper(x, & val);
return; return val;
else { }

int z=* accum *X;
* accum =z;
s_helper (x-1 ,accum);

}

}

« Pass pointer to update location
 Uses tail recursion
—But GCC only partially optimizes it

class07. ppt

Passing Pointer

Calling s_helper from sfact ,
- Stack at time of ca |l

leal -4(% ebp),% eax # Compute & val 8 X
pushl %eax # Push on stack 4 Rtn adr
pushl %edx # Push x o ¢ %eb
call _s_helper # call 0 |Old %ebp oebp
movl -4(% ebp),% eax #Return val 4 (val =1
see # Finish -8
-12 | Unused
int sfact (int x) -16
{
int val =1; &val &
s_helper(x, &val); X — %esp
return val;
}
class07. ppt

Using Pointer

void s_helper
(intx, int *accum)

{

LN]
int z=* accum *X;
* accum =z;

}

Internet worm and IM War
November, 1988

¢ Internet Worm attacks thousands of Internet hos ts.
* How did it happen?
July, 1999

« Microsoft launches MSN Messenge r (instant messaging system).

* Messenger clients ca n access popular AOL In stant Messaging
Service (AIM) servers

LN]

movl %ecx,% eax #z=X

imull (%edx),%eax #z *=* accum
movl %eax,(% edx) #* accum =z

* Register %ecx holds x
* Register %edxholds accum
—Use access (%edx) to reference memory

class07. ppt

Internet Worm and IM War (cont)
August 1999

« Mysteriously, Messenger c lients can no longe r access AIM servers.

« Even though the AIM protocol i s an open, publishe d standard.
¢ Microsoft and AOL begin the IM war:

—AOL changes server to disallow Messenger clients

—Microsoft makes changes to clients to defeat AOL changes.

— At least 13 such skirmishes.
¢ How did it happen?

The Internet Worm and AOL/Microsoft War were both
based on stack buffer overflow exploits!

—many Unix functions, such as gets() and strcpy(), do not check
argument sizes.

—allows target buffers to overflow.

class07. ppt

class07. ppt
Stack buffer overflows
Stack
before call to gets()
3
void foo ()}
return bar(); > foo stack frame
address —-..
A } A)
void bar() { Old %ebp
char buf [64];
gets(buf);
buf > bar stack frame
}
J
class07. ppt

Stack buffer overflows (cont)

Stack
after call to gets()
3
void foo (){
return bar(); > foo stack frame
address —»-..
A } B
data ﬁ
void bar() { written
char buf [64]; by pad
gets(buf); gets()
exploit } bar stack frame
} code
B &
J

When bar() returns, control p asses silently to B instead of Al!l

class07. ppt

Main lIdeas

Stack Provides Storage for Procedure Instantiation
* Save state
¢ Local variables
¢ Any variable for which mu st create pointer

Assembly Code Must Manage Stack

¢ Allocate / deallocate by decrementing /incrementing sta ck pointer

e Saving / restoring regis ter state

Stack Adequate for All Forms of Recursion

¢ Including multi-way an d mutual recursion exa mples in the bonus
slides.

Good programmers know the stack dis cipline and are
aware of the dangers of stack buffer overflow s.

class07. ppt

Exploits based on buffer overflows

Buffer overflow bugs allow remote machine s to
execute arbitrary code on victim machines.

Internet worm

 Early versions of the finger server (fingerd) used gets() to read the
argument sent by the client:

—finger droh @cscmu.edu
* Worm attacked fingerd client by sending ph ony argument:
—finger “exploit ¢ ode padding new re turn address”

—exploit code: exe cuted a root shell on th e victim machine with a
direct TCP connection to the attacker.

IM War

¢ AOL exploited existing buffer overflow bug in AIM clients

» exploit code: returned 4-byte signature (the by tes at some locati on in
the AIM client) to server.

* When Microsoft changed ¢ ode to match signatu re, AOL changed
signature location.

class07. ppt

Free Bonus Slides!

(not covered in lectu re)

Topics
» how the stack supports multi-
way recursion.

» how the stack supports mutual
recursion.

class07. ppt

Multi-Way Recursion

int r_prod
(int from, int to) Top-Level Call
{ int bfact ~ (int x)
int middle; {
int prodA , prodB ;
if (from >= to) }
return from;

middle = (from +10) >> 1;
prodA = r_prod(from, middle);
prodB = r_prod(middle+1, to);
return prodA *prodB ;

return r_prod(1 X);

e Compute product x* (x+1)*...*(y=1)*y
 Split into two ranges:
—Left: X*(x+1)*...*(m-1)*m
—Right: (m+1)* ... *(y-1)*y
m = [{x+y)/20
* No real advantage a Igorithmically

class07. ppt

Multi-Way Recursive Code

Stack Frame _r_prod:
e # Setup
12 from movl 8(% ebp),% eax #eax =from
8 to movl 12(% ebp),%edi #edi =to
4 Rtn Adr cmpl %edi ,%eax # from : to
0 Old $ebp jge L8 #if>= goto done
4 Old $edi leal (% edi,% eax),% ebx # from +to
- sarl $1,% ebx # middle
8 Old Sesi pushl %ebx #2nd arg : middle
-12 Old $ebx pushl %eax #1st arg : from
call _r_prod # 1st call
$eax pushl %edi #2nd arg:to
from movl %eax ,%esi #esi = ProdA
return Values II"IC| %ebX # m|dd|e +1
pushl %ebx #... 1st arg
Callee Save Regs. call _r_prod # 2nd call
$ebx middle imull %eax,% esi # ProdA * ProdB
$edi to movl %esi ,%eax # Return value
$esi prodA L8: # done:_ _
cee # Finish

class07. ppt

Binary Splitting Example

r_prod(1,3)

[bfact 6) |

A

720

v
r_prod(1,6)

r_prod(4,6)

r_prod(6,6)

/ N\
[r_prod(l,Z)T] [r_prod(3,3)]
2

/f
1
/ N

/
[r_prod(4,5) T]
«
/4 5
/

[r_prod(l,l)

J r_prod(2,2)

] [r_prod.4)] (r_prod(s,5)

J

class07. ppt

Multi-Way Recursive Code Finish

12 from

8 to

4 Rtn Adr
0 Old $ebp
4 Old $edi
-8 Old $esi
-12 Old $ebx
-16 Arg 2
-20 Arg 1

Stack

» After making recursive
Finishing Code

» Moves stack pointer to

» Pops registers

class07. ppt

L8: # done:
leal -12(% ebp),%esp # Set Stack

popl %ebx # Restore %
popl %esi # Restore %
popl %edi # Restore %
movl %ebp ,%esp # Restore %
popl %ebp # Restore %
ret # Return

calls, still has two a rguments on top

start of saved register a rea

Ptr
ebx
esi
edi
esp
ebp

. int left_prod
Mutual Recursion |t efpint srigntp)
int left =*leftp ;
if (left >=* rightp)
Top-Level Call return left;
else {
int Irfact (int x) int plusl = left+1;
{ return left *
int left = 1; ri ght _prod(&plusl, rightp);
return }
left_prod(&lef t, &X); }
} int right_prod
(int* leftp, int *rightp)
{
int right="* rightp;
if (* leftp == right)
return right;
else {
int minusl = right-1;
return right *
| ef t _pr od(leftp, &minusl);
}
}

class07. ppt

Implementation

Call to Recursive Routine
int left=1;

of

Stack at time of ca |l

return left_pro d(&left, &x);

Code for Call
leal 8(% ebp),%edx # edx=&x 4
pushl %edx # push &x)
leal -4(% ebp),% eax# eax = &left -8
pushl %eax # push &left 12
call _left_prod # Call 16

class07. ppt

Irfact

X

Rtn adr

Old %ebp

4—

left=1

Unused

&x @

&left *

—

%ebp

%esp

Mutually Recursive Execution Example

Calling
* Recursive routines pa ss two
arguments Ifact (4)
—Pointer to own local variable left: 24
—>
—Poi_nter to caller’s local X: ‘ -
variable left_prod(,)* 3
plusl: 2 —> 24
right_prod(,)@ @
minus1; —> 24
left_prod(,).{
plusi: —>6
right_prod(,)¥ .//
—» 3
class07. ppt
Implementation of left _prod
Call to Recursive Routine .
Stack at time of ca |l
int plusl = left+1;
return left * 12 | rightp *
right_prod(&pl usl, rightp leftp
Rtn adr
Old %ebp¢— |%ebp
%ebx holds left 4 e
#%edx holds rightp) plus ‘\
leal 1(% ebx),%ecx # left+1 -8
movl %ecx,-4(% ebp) # Store in plusl -12 | Unused
pushl %edx # Push rightp
leal -4(% ebp),% eax # &plusl -16
pushl %eax # Push &plusl rightp ®
call _right_pro d # Call
~M9P &plus1®— oesp

class07. ppt

Tail Recursion

Tail Recursive Procedure

Removing Tail Recursion

Optimized General Form

Resulting Code

int t_helper General Form t_helper(x, val) int t_helper
(intx, intval) { (intx, intval)
t_helper(x, val) start: {
if (x<=1) { see start:
return val ; °e val = Vexpr; if (x <= 1)
return return X= Xexpr: return val ;
t_helper(x-1, val*x); t_helper(Xexpr, Vexpr) goto start; val =val *x;
} } } X = x-1;
goto start;
}
- Form .. .
Top-Level Call orm Effect of Optimization
int tfact (int x) : bD|rectIy return \ﬁalue returne d e Turn recursive chain into single procedure
{ y recursive ca .
return t_helper (x, 1); Consequence No stack frame need. ed
} o | » Constant space require ment
* Can convertinto loop —Vs. linear for recursive version

class07. ppt class07. ppt

Generated Code for Tail Recursive Proc.

Optimized Form Code for Loop

int t helper # %edx = X
(intx, intval) # %ecx = val
{ L53: # start:
start: cmpl $1,% edx #x:1
if (x <=1) jle L52 #if <= goto done
return v*al ; movl %edx ,%eax #eax =X
val =val *x; imull %ecx,% eax #eax = val*x
X = x-1; decl %edx # X--
goto start; movl %eax ,%ecx #val = val*x
} jmp L53 #goto start
L52: # done:
Registers
$edx x
$ecx val

class07. ppt

