

15-112 Fall 2022 Lecture 3

 Quiz 4

35 minutes

Name: ___________________________________

Andrew ID: ___________________@andrew.cmu.edu

Section: _______

• You may not use any books, notes, or electronic devices during this quiz.

• You may not ask questions about the quiz except for language clarifications.

• Show your work on the quiz (not scratch paper) to receive credit.

• If you use scratch paper, you must submit it with your Andrew ID on it, and we will ignore it.

• All code samples run without crashing unless we state otherwise. Assume any imports are already
included as required.

• Do not use these topics: sets/dictionaries and recursion.

• You may use almostEqual() and rounded() without writing them. You must write everything else.

Do not write below here

Question Points Score

1. CT 30

2. FR: removeLargestValue 30

3 FR: intersectLines 40

4. Bonus 5 (bonus)

TOTAL 100

2

1. CT [30 pts]

Indicate what these print. Place your answers (and nothing else) in the box next to each block of code.

def ct1(L):

 M = copy.copy(L)
 N = copy.deepcopy(L)
 L[0] = L[1]
 M[1] = M[2]
 L[1][1] = 3
 N[0] = L[2]
 return (M, N)
L = [[5],[6,7],[8]]
print(ct1(L))
print(L) # don't miss this!

def ct2(L):
 rows, cols = len(L), len(L[0])
 M = []
 for i in range(min(rows, cols)):
 M.append(L[i].pop(i))
 L.append(M)
L = [[1,2],[3,4],[5,6]]
ct2(L)
print(L)

3

2. Free Response: removeLargestValue [30 pts]
Write the mutating function removeLargestValue(L) that takes a rectangular 2d list L of integers, and mutates L
so that both the row and the column containing its largest value are removed. You are guaranteed that the
largest value in L occurs only once. Your function should return None.

Test Cases:
L = [[1, 2, 3],
 [4, 5, 0]]
assert(removeLargestValue(L) == None)
assert(L == [[1, 3]])

L = [[1, 2, 3, 4],
 [5, 6, 5, 4],
 [3, 2, 1, 0]]
assert(removeLargestValue(L) == None)
assert(L == [[1, 3, 4],
 [3, 1, 0]])

L = [[-1, -2],
 [-4, -5]]
assert(removeLargestValue(L) == None)
assert(L == [[-5]])

4

This page is blank (for your removeLargestValue solution, if needed).

5

3. Free Response: intersectLines [40 pts]
Background: we can represent any line like so:

 Ax + By = C

We will store the coefficients in a list. So [2,3,5] represents the line:

 2x + 3y = 5

With this in mind, write the function intersectLines(L) that takes a 2d list L that contains at least two lines (where
each line is represented by 3 numbers, as just noted). If all the lines intersect at a single point, your function
should return the x value of that point. However, if the lines do not ALL intersect at that point, your function
should return None.

Hint #1: to solve this, first find the point of intersection of the first two lines. Then, make sure the other lines
also contain that point.

For example, say:

 L = [[2,3,7],
 [3,2,8],
 [4,1,9]]

Start by intersecting these lines:

 2x + 3y = 7
 3x + 2y = 8

We did that by dividing each line by its first coefficient to get:

 x + (3/2)y = (7/2)
 x + (2/3)y = (8/3)

We then subtracted these equations to get:

 (3/2)y - (2/3)y = (7/2) - (8/3)

We then solved for y, to get:

 y = ((7/2) - (8/3)) / ((3/2) - (2/3)) = 1.0

Actually, we got 1.0000000000000002. Remember that these are floats!

We then substituted y into the first line to solve for x.

We found that these lines intersect at (2.0, 1.0).

6

We then verified that (2.0, 1.0) lies on the third line:

 4x + 1y = 9

It does, so we returned the x value, 2.0. If it did not, we would have returned None.

Hint #2: We provide you with the function almostEqual(x, y), which you may use in your code. Our test function
also uses it. Be sure to use almostEqual rather than == when comparing floats!

Hint #3: we found these two lines of code to be helpful in our helper function that checked if the first two lines
intersect, where line1 is L[0] and line2 is L[1]:

 a,b,c = line1
 d,e,f = line2

Hint #4: You are guaranteed that none of the lines are parallel, and none of the lines are vertical.

Test Cases:

These intersect at (1.0, 2.0):

assert(almostEqual(intersectLines([[2,3,8],

 [3,2,7]]), 1.0))

These 3 lines all intersect at (2.0, 1.0):

assert(almostEqual(intersectLines([[2,3,7],

 [3,2,8],

 [4,1,9]]), 2.0))

These 4 lines all intersect at (2.0, 1.0):

assert(almostEqual(intersectLines([[2,3,7],

 [3,2,8],

 [4,1,9],

 [5,-1,9]]), 2.0))

The first two intersect at (1.0, 2.0) but the third does not:

assert(intersectLines([[2,3,8],

 [3,2,7],

 [4,1,5]]) == None)

7

This page is blank (for your intersectLines solution, if needed).

8

This page is blank (for your intersectLines solution, if needed).

9

4. Bonus [5 pts]

Indicate what these print. Place your answers (and nothing else) in the box next to each block of code.

import copy

def bonusCt1(L):

 while L:

 M = copy.deepcopy(L)

 L[0].append(sum(L.pop()))

 L.reverse()

 return M[0]

print(bonusCt1([list(range(i)) for i in list(range(2,8,2))]))

def bonusCt2(L, M):

 k = len(L)

 for r in range(k):

 for c in range(k):

 try:

 M[r][c] += L[-r][-c]

 except:

 pass

 return M

L = [[1,2],

 [3,4],

 [5,6]]

M = [[10, 20],

 [30, 40]]

print(bonusCt2(L, M))

