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Abstract. Traditional model checking produces one counterexample to illustrate a violation of a property by a
model of the system. Some applications benefit from having all counterexamples, not just one. We call this set of
counterexamples a scenario graph. In this chapter we present two different algorithms for producing scenario graphs
and explain how scenario graphs are a natural representation for attack graphs used in the security community.
Through a detailed concrete example, we show how we can model a computer network and generate and analyze
attack graphs automatically. The attack graph we produce for a network model shows all ways in which an intruder
can violate a given desired security property.

1 Overview

Model checking is a technique for determining whether a formal model of a system satisfies a given property. If the
property is false in the model, model checkers typically produce a single counterexample. The developer uses this
counterexample to revise the model (or the property), which often means fixing a bug in the design of the system. The
developer then iterates through the process, rechecking the revised model against the (possibly revised) property.

Sometimes, however, we would like all counterexamples, not just one. Rather than produce one example of how the
model does not satisfy a given property, why not produce all of them at once? We call the set of all counterexamples
a scenario graph. For a traditional use of model checking, e.g., to find bugs, each path in the graph represents a
counterexample, i.e., a failure scenario. In our application to security, each path represents an attack, a way in which
an intruder can attack a system. Attack graphs are a special case of scenario graphs.

This chapter first gives two algorithms for producing scenario graphs. The first algorithm was published in [15];
the second in [13]. Then, we interpret scenario graphs as attack graphs. We walk through a simple example to show
how to model the relevant aspects of a computer network and we present some example attack graphs. We highlight
two automated analyses that system administrators might perform once they have attack graphs at their disposal. We
summarize our practical experience with generating attack graphs using our algorithms and discuss related work. We
close with some suggestions for future work on scenario graphs in general and attack graphs more specifically.

2 Algorithms for Generating Scenario Graphs

We present two algorithms for generating scenario graphs. The first is based on symbolic model checking and produces
counterexamples for only safety properties, as expressed in terms of a computational tree logic. The second is based
on explicit-state model checking and produces counterexamples for both safety and liveness properties, as expressed
in terms of a linear temporal logic.

Both algorithms produce scenario graphs that guarantee the following informally stated properties:

– Soundness: Each path in the graph is a violation of the given property.
– Exhaustive: The graph contains all executions of the model that violate the given property.
– Succinctness of states: Each node in the graph represents a state that participates in some counterexample.
– Succinctness of transitions: Each edge in the graph represents a state transition that participates in some coun-

terexample.

These properties of our scenario graphs are not obvious, in particular for the second algorithm. See [21] for formal
definitions and proofs.



Input:
S – set of states
R ⊆ S × S – transition relation
S0 ⊆ S – set of initial states
L : S → 2AP – labeling of states with propositional formulas
p = AG(¬unsafe) – a safety property

Output:
Scenario graph Gp = 〈Sunsafe , R

p, Sp
0 , Sp

s 〉
Algorithm: GenerateScenarioGraph (S, R, S0, L, p)

1. Sreach = reachable(S, R,S0, L)
(* Use model checking to find the set of states Sunsafe that

violate the safety property AG(¬unsafe). *)
2. Sunsafe = modelCheck (Sr, R, S0, L, p).

(* Restrict the transition relation R to states in the set Sunsafe *)
3. Rp = R ∩ (Sunsafe × Sunsafe).

Sp
0 = S0 ∩ Sunsafe .

Sp
s = {s|s ∈ Sunsafe ∧ unsafe ∈ L(s)}.

4. Return Gp = 〈Sunsafe , R
p, Sp

0 , Sp
s 〉.

Fig. 1. Symbolic Algorithm for Generating Scenario Graphs

2.1 Symbolic Algorithm

Our first algorithm for producing scenario graphs is inspired by the symbolic model checking algorithm as imple-
mented in model checkers such as NuSMV [17]. Our presentation and discussion of the algorithm in this section is
taken almost verbatim from [22].

In the model checker NuSMV, the model M is a finite labeled transition system and p is a property written in
Computation Tree Logic (CTL). In this section, we consider only safety properties, which in CTL have the form AGf
(i.e., p = AGf , where f is a formula in propositional logic). If the model M satisfies the property p, NuSMV reports
“true.” If M does not satisfy p, NuSMV produces a counterexample. A single counterexample shows a scenario that
leads to a violation of the safety property.

Scenario graphs depict ways in which the execution of the model of a system can lead into an unsafe state. We can
express the property that an unsafe state cannot be reached as:

AG(¬unsafe)

When this property is false, there are unsafe states that are reachable from the initial state. The precise meaning of
unsafe depends on the system being modeled. For security, unsafe might mean that an intruder has gained root access
to a host on a network.

We briefly describe the algorithm (Figure 1) for constructing scenario graphs for the property AG(¬unsafe). We
start with a set of states, S, a state transition relation, R, a set of initial states, S0, a labeling function, L, and a
safety property, p. The labeling function defines what atomic propositions are true in a given state. The first step in
the algorithm is to determine the set of states Sreach that are reachable from the initial state. (This is a standard step
in symbolic model checkers, where Sreach is represented symbolically, not explicitly.) Next, the algorithm computes
the set of reachable states Sunsafe that have a path to an unsafe state. The set of states Sunsafe is computed using an
iterative algorithm derived from a fix-point characterization of the AG operator [4]. Let R be the transition relation of
the model, i.e., (s, s′) ∈ R if and only if there is a transition from state s to s ′. By restricting the domain and range
of R to Sunsafe we obtain a transition relation Rp that encapsulates the edges of the scenario graph. Therefore, the
scenario graph is 〈Sunsafe , Rp, Sp

0 , Sp
s 〉, where Sunsafe and Rp represent the set of nodes and set of edges of the graph,

respectively, Sp
0 = S0 ∩ Sunsafe is the set of initial states, and Sp

s = {s|s ∈ Sunsafe ∧ unsafe ∈ L(s)} is the set of
success states.
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Input:
M – the model Bücchi automaton
p – an LTL property

Output:
Scenario graph Mp = M ∩ ¬p

Algorithm: GenerateScenarioGraph (M, p)
1. Convert LTL formula ¬p to equivalent Bücchi automaton Np.
2. Construct the intersection automaton I = M ∩ ¬Np.

I accepts the language L(M) \ L(p), which is precisely
the set of of executions of M forbidden by p.

3. Compute SCC, the set of strongly-connected components of I that
include at least one acceptance state.

4. Return Mp, which consists of SCC plus all the paths to
any component in SCC from any initial state of I .

Fig. 2. Explicit-State Algorithm for Generating Scenario Graphs

In symbolic model checkers, such as NuSMV, the transition relation and sets of states are represented using or-
dered binary decision diagrams (BDDs) [3], a compact representation for boolean functions. There are efficient BDD
algorithms for all operations used in our algorithm.

2.2 Explicit-State Algorithm

Our second algorithm for producing scenario graphs uses an explicit-state model checking algorithm based on ω-
automata theory. Model checkers such as SPIN [12] use explicit-state model checking. Our presentation and discussion
of the algorithm in this section is taken almost verbatim from [13].

Figure 2 contains a high-level outline of our second algorithm for generating scenario graphs. We model our system
as a Bücchi automaton M . Bücchi automata are finite state machines that accept infinite executions. A Bücchi automa-
ton specifies a subset of acceptance states. The automaton accepts any infinite execution that visits an acceptance state
infinitely often. The property p is specified in Linear Temporal Logic (LTL). The property p induces a language L(p)
of executions that are permitted under the property. The executions of the model M that are not permitted by p thus
constitute the language L(M) \ L(p). The scenario graph is the automaton, M p = M ∩ ¬p, accepting this language.
The construction procedure for Mp uses Gerth et.al.’s algorithm [11] for converting LTL formulae to Bücchi automata
(Step 1). The Bücchi acceptance condition implies that any scenario accepted by M p must eventually reach a strongly
connected component of the graph that contains at least one acceptance state. Such components are found in Step 3
using Tarjan’s classic strongly connected component algorithm [26]. This step isolates the relevant parts of the graph
and prunes states that do not participate in any scenarios.

3 Attack Graphs are Scenario Graphs

In the security community, Red Teams construct attack graphs to show how a system is vulnerable to attack. Each
path in an attack graph shows a way in which an intruder can compromise the security of a system. These graphs are
drawn by hand. A typical result of such intensive manual effort is a floor-to-ceiling, wall-to-wall “white board” attack
graph, such as the one produced by a Red Team at Sandia National Labs for DARPA’s CC20008 Information battle
space preparation experiment and shown in Figure 3. Each box in the graph designates a single intruder action. A path
from one of the leftmost boxes in the graph to one of the rightmost boxes is a sequence of actions corresponding to an
attack scenario. At the end of any such scenario, the intruder has broken the network security in some way. The graph
is included here for illustrative purposes only, so we omit the description of specific details.

Since these attack graphs are drawn by hand, they are prone to error: they might be incomplete (missing attacks),
they might have redundant paths or redundant subgraphs, or they might have irrelevant nodes, transitions, or paths.
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Fig. 3. Sandia Red Team Attack Graph
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The correspondence between scenario graphs and attack graphs is simple. For a given desired security property, we
generate the scenario graph for a model of the system to be protected. An example security property is that an intruder
should never gain root access to a specific host. Since each scenario graph is property-specific, in practice, we might
need to generate many scenario graphs to represent the entire attack graph that a Red Team might construct manually.

Our main contribution is that we automate the process of producing attack graphs: (1) Our technique scales beyond
what humans can do by hand; and (2) since our algorithms guarantee to produce scenario graphs that are sound,
exhaustive, and succinct, our attack graphs are not subject to the errors that humans are prone to make.

4 Network Attack Graphs

Network attack graphs represent a collection of possible penetration scenarios in a computer network. Each penetration
scenario is a sequence of actions taken by the intruder, typically culminating in a particular goal—administrative access
on a particular host, access to a database, service disruption, etc. For appropriately constructed network models, attack
graphs give a bird’s-eye view of every scenario that can lead to a serious security breach.

4.1 Network Attack Model

We model a network using either the tuple of inputs, 〈S, R, S0, L〉, in the first algorithm (Figure 1) or the Bücchi
automaton, M , of the second algorithm (Figure 2).

To be concrete, for the remainder of this chapter we will work in the context of the second algorithm. Also, rather
than use the full Bücchi automaton to model attacks on a network, for our application to network security, we use a
simpler attack model M = 〈S, τ, s0〉, where S is a finite set of states, τ ⊆ S × S is a transition relation, and s0 ∈ S
is an initial state. The state space S represents a set of three agents I = {E, D, N}. Agent E is the attacker, agent D
is the defender, and agent N is the system under attack. Each agent i ∈ I has its own set of possible states S i, so that
S = ×i∈ISi.

With each agent i ∈ I we associate a set of actions Ai, so that the total set of actions in the model is A =
⋃

i∈I Ai.
A state transition in a network attack model corresponds to a single action by the intruder, a defensive action by the
system administrator (or security software installed on the network), or a routine network action. The single root state
s0 represents the initial state of each agent before any action has taken place. In general, the attacker’s actions move
the system “toward” some undesirable (from the system’s point of view) state, and the defender’s actions attempt
to counteract that effect. For instance, in a computer network the attacker’s actions would be the steps taken by the
intruder to compromise the network, and the defender’s actions would be the steps taken by the system administrator
to disrupt the attack.

Real networks consist of a large variety of hardware and software pieces, most of which are not involved in cyber
attacks. We have chosen six network components relevant to constructing network attack models. The components
were chosen to include enough information to represent a wide variety of networks and attack scenarios, yet keep the
model reasonably simple and small. The following is a list of the components:

1. H, a set of hosts connected to the network
2. C, a connectivity relation expressing the network topology and inter-host reachability
3. T, a relation expressing trust between hosts
4. I, a model of the intruder
5. A, a set of individual actions (exploits) that the intruder can use to construct attack scenarios
6. Ids, a model of the intrusion detection system

We construct an attack model M based on these components. Table 1 defines each agent i’s state S i and action set Ai

in terms of the network components. This construction gives the system administrator an entirely passive “detection”
role, embodied in the alarm action of the intrusion detection system. For simplicity, regular network activity is omitted
entirely.

It remains to make explicit the transition relation of the attack model M . Each transition (s 1, s2) ∈ τ is either an
action by the intruder, or an alarm action by the system administrator. An alarm action happens whenever the intrusion
detection system is able to flag an intruder action. An action a ∈ A requires that the preconditions of a hold in state
s1 and the effects of a hold in s2. Action preconditions and effects are explained in Section 4.2.
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Agent i ∈ I Si Ai

E I A

D Ids {alarm}
N H × C × T 	

Table 1. Network attack model

4.2 Network Components

We now give details about each network component.

Hosts. Hosts are the main hubs of activity on a network. They run services, process network requests, and maintain
data. With rare exceptions, every action in an attack scenario will target a host in some way. Typically, an action takes
advantage of vulnerable or misconfigured software to gain information or access privileges for the attacker. The main
goal in modeling hosts is to capture as much information as possible about components that may contribute to creating
an exploitable vulnerability.

A host h ∈ H is a tuple 〈id, svcs, sw, vuls〉, where

– id is a unique host identifier (typically, name and network address)
– svcs is a list of service name/port number pairs describing each service that is active on the host and the port on

which the service is listening
– sw is a list of other software operating on the host, including the operating system type and version
– vuls is a list of host-specific vulnerable components. This list may include installed software with exploitable

security flaws (example: a setuid program with a buffer overflow problem), or mis-configured environment settings
(example: existing user shell for system-only users, such as ftp)

Network Connectivity. Following Ritchey and Ammann [20], connectivity is expressed as a ternary relation C ⊆
H × H × P , where P is a set of integer port numbers. C(h1, h2, p) means that host h2 is reachable from host h1 on
port p. Note that the connectivity relation incorporates firewalls and other elements that restrict the ability of one host
to connect to another. Slightly abusing notation, we say R(h 1, h2) when there is a network route from h1 to h2.

Trust. We model trust as a binary relation T ⊆ H × H , where T (h1, h2) indicates that a user may log in from host
h2 to host h1 without authentication (i.e., host h1 “trusts” host h2).

Services. The set of services S is a list of unique service names, one for each service that is present on any host on the
network. We distinguish services from other software because network services so often serve as a conduit for exploits.
Furthermore, services are tied to the connectivity relation via port numbers, and this information must be included in
the model of each host. Every service name in each host’s list of services comes from the set S.

Intrusion Detection System. We associate a boolean variable with each action, abstractly representing whether or
not the IDS can detect that particular action. Actions are classified as being either detectable or stealthy with respect
to the IDS. If an action is detectable, it will trigger an alarm when executed on a host or network segment monitored
by the IDS; if an action is stealthy, the IDS does not see it.

We specify the IDS as a function ids: H × H × A → {d, s, b}, where ids(h1, h2, a) = d if action a is detectable
when executed with source host h1 and target host h2; ids(h1, h2, a) = s if action a is stealthy when executed with
source host h1 and target host h2; and ids(h1, h2, a) = b if action a has both detectable and stealthy strains, and
success in detecting the action depends on which strain is used. When h1 and h2 refer to the same host, ids(h1, h2, a)
specifies the intrusion detection system component (if any) located on that host. When h 1 and h2 refer to different
hosts, ids(h1, h2, a) specifies the intrusion detection system component (if any) monitoring the network path between
h1 and h2.
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Actions. Each action is a triple 〈r, hs, ht〉, where hs ∈ H is the host from which the action is launched, ht ∈ H
is the host targeted by the action, and r is the rule that describes how the intruder can change the network or add
to his knowledge about it. A specification of an action rule has four components: intruder preconditions, network
preconditions, intruder effects, and network effects. The intruder preconditions component places conditions on the
intruder’s store of knowledge and the privilege level required to launch the action. The network preconditions specifies
conditions on target host state, network connectivity, trust, services, and vulnerabilities that must hold before launching
the action. Finally, the intruder and network effects components list the action’s effects on the intruder and on the
network, respectively.

Intruder. The intruder has a store of knowledge about the target network and its users. The intruder’s store of knowl-
edge includes host addresses, known vulnerabilities, user passwords, information gathered with port scans, etc. Also
associated with the intruder is the function plvl: Hosts → {none, user, root}, which gives the level of privilege that
the intruder has on each host. For simplicity, we model only three privilege levels. There is a strict total order on the
privilege levels: none ≤ user ≤ root.

Omitted Complications. Although we do not model actions taken by user services for the sake of simplicity, doing
so in the future would let us ask questions about effects of intrusions on service quality. A more complex model
could include services provided by the network to its regular users and other routine network traffic. These details
would reflect more realistically the interaction between intruder actions and regular network activity at the expense of
additional complexity.

Another activity worth modeling explicitly is administrative steps taken either to hinder an attack in progress or to
repair the damage after an attack has occurred. The former corresponds to transitioning to states of the model that offer
less opportunity for further penetration; the latter means “undoing” some of the damage caused by successful attacks.

5 Example Network

Database

Intruder
firewall

Windows

Linux

Squidfirewall

IIS Web 
Server

IDS

LICQ

Fig. 4. Example Network

Figure 4 shows an example network. There are two target hosts, Windows and Linux, on an internal company
network, and a Web server on an isolated “demilitarized zone” (DMZ) network. One firewall separates the internal
network from the DMZ and another firewall separates the DMZ from the rest of the Internet. An intrusion detection
system (IDS) watches the network traffic between the internal network and the outside world.

The Linux host on the internal network is running several services—Linux “I Seek You” (LICQ) chat software,
Squid web proxy, and a Database. The LICQ client lets Linux users exchange text messages over the Internet. The
Squid web proxy is a caching server. It stores requested Internet objects on a system closer to the requesting site than
to the source. Web browsers can then use the local Squid cache as a proxy, reducing access time as well as bandwidth
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consumption. The host inside the DMZ is running Microsoft’s Internet Information Services (IIS) on a Windows
platform.

The intruder launches his attack starting from a single computer, which lies on the outside network. To be concrete,
let us assume that his eventual goal is to disrupt the functioning of the database. To achieve this goal, the intruder needs
root access on the database host Linux. The five actions at his disposal are summarized in Table 2.

Each of the five actions corresponds to a real-world vulnerability and has an entry in the Common Vulnerabilities
and Exposures (CVE) database. CVE [8] is a standard list of names for vulnerabilities and other information security
exposures. A CVE identifier is an eight-digit string prefixed with the letters “CVE” (for accepted vulnerabilities) or
“CAN” (for candidate vulnerabilities).

The IIS buffer overflow action exploits a buffer overflow vulnerability in the Microsoft IIS Web Server to gain
administrative privileges remotely.

The Squid action lets the attacker scan network ports on machines that would otherwise be inaccessible to him,
taking advantage of a misconfigured access control list in the Squid web proxy.

The LICQ action exploits a problem in the URL parsing function of the LICQ software for Unix-flavor systems. An
attacker can send a specially-crafted URL to the LICQ client to execute arbitrary commands on the client’s computer,
with the same access privileges as the user of the LICQ client.

The scripting action lets the intruder gain user privileges on Windows machines. Microsoft Internet Explorer 5.01
and 6.0 allow remote attackers to execute arbitrary code via malformed Content-Disposition and Content-Type header
fields that cause the application for the spoofed file type to pass the file back to the operating system for handling
rather than raise an error message. This vulnerability may also be exploited through HTML formatted email. The
action requires some social engineering to entice a user to visit a specially-formatted Web page. However, the action
can work against firewalled networks, since it requires only that internal users be able to browse the Web through the
firewall.

Finally, the local buffer overflow action can exploit a multitude of existing vulnerabilities to let a user without
administrative privileges gain them illegitimately. For the CVE number referenced in the table, the action exploits
a buffer overflow flaw in the at program. The at program is a Linux utility for queueing shell commands for later
execution.

Action Effect Example CVE ID

IIS buffer overflow remotely get root CAN-2002-0364
Squid port scan port scan CVE-2001-1030
LICQ gain user gain user privileges remotely CVE-2001-0439
scripting exploit gain user privileges remotely CAN-2002-0193
local buffer overflow locally get root CVE-2002-0004

Table 2. Intruder actions

Some of the actions that we model have multiple instantiations in the CVE database. For example, the local buffer
overflow action exploits a common coding error that occurs in many Linux programs. Each program vulnerable to
local buffer overflow has a separate CVE entry, and all such entries correspond to the same action rule. The table lists
only one example CVE identifier for each rule.

5.1 Example Network Components

Services, Vulnerabilities, and Connectivity. We specify the state of the network to include services running on each
host, existing vulnerabilities, and connectivity between hosts. There are five boolean variables for each host, specifying
whether any of the three services are running and whether either of two other vulnerabilities are present on that host
(Table 3).

The model of the target network includes connectivity information among the four hosts. The initial value of the
connectivity relation R is shown in Table 4. An entry in the table corresponds to a pair of hosts (h 1, h2). IIS and
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variable meaning

w3svch IIS web service running on host h

squidh Squid proxy running on host h

licqh LICQ running on host h

scriptingh HTML scripting is enabled on host h

vul-ath at executable vulnerable to overflow on host h

Table 3. Variables specifying a host

Squid listen on port 80 and the LICQ client listens on port 5190, and the connectivity relation specifies which of these
services can be reached remotely from other hosts. Each entry consists of three boolean values. The first value is ‘y’
if h1 and h2 are connected by a physical link, the second value is ‘y’ if h 1 can connect to h2 on port 80, and the third
value is ‘y’ if h1 can connect to h2 on port 5190.

Host Intruder IIS Web Server Windows Linux

Intruder y,y,y y,y,n n,n,n n,n,n
IIS Web Server y,n,n y,y,y y,y,y y,y,y
Windows n,n,n y,y,n y,y,y y,y,y
Linux n,n,n y,y,n y,y,y y,y,y

Table 4. Connectivity relation

We use the connectivity relation to reflect the settings of the firewall as well as the existence of physical links. In the
example, the intruder machine initially can reach only the Web server on port 80 due to a strict security policy on the
external firewall. The internal firewall is initially used to restrict internal user activity by disallowing most outgoing
connections. An important exception is that internal users are permitted to contact the Web server on port 80.

In this example the connectivity relation stays unchanged throughout an attack. In general, the connectivity relation
can change as a result of intruder actions. For example, an action may enable the intruder to compromise a firewall
host and relax the firewall rules.

Intrusion Detection System. A single network-based intrusion detection system protects the internal network. The
paths between hosts Intruder and Web and between Windows and Linux are not monitored; the IDS can see
the traffic between any other pair of hosts. There are no host-based intrusion detection components. The IDS always
detects the LICQ action, but cannot see any of the other actions. The IDS is represented with a two-dimensional array
of bits, shown in Table 5. An entry in the table corresponds to a pair of hosts (h 1, h2). The value is ‘y’ if the path
between h1 and h2 is monitored by the IDS, and ‘n’ otherwise.

Host Intruder IIS Web Server Windows Linux

Intruder n n y y
IIS Web Server n n y y
Windows y y n n
Linux y y n n

Table 5. IDS locations
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Intruder. The intruder’s store of knowledge consists of a single boolean variable ‘scan’. The variable indicates
whether the intruder has successfully performed a port scan on the target network. For simplicity, we do not keep
track of specific information gathered by the scan. It would not be difficult to do so, at the cost of increasing the size
of the state space.

Initially, the intruder has root access on his own machine Intruder, but no access to the other hosts. The ‘scan’
variable is set to false.

Actions. There are five action rules corresponding to the five actions in the intruder’s arsenal. Throughout the descrip-
tion, S is used to designate the source host and T the target host. R(S, T, p) says that host T is reachable from host S
on port p. The abbreviation plvl(X) refers to the intruder’s current privilege level on host X .

Recall that a specification of an action rule has four components: intruder preconditions, network preconditions,
intruder effects, and network effects. The intruder preconditions component places conditions on the intruder’s store
of knowledge and the privilege level required to launch the action. The network preconditions component specifies
conditions on target host state, network connectivity, trust, services, and vulnerabilities that must hold before launching
the action. Finally, the intruder and network effects components list the effects of the action on the intruder’s state and
on the network, respectively.

Sometimes the intruder has no logical reason to execute a specific action, even if all technical preconditions for
the action have been met. For instance, if the intruder’s current privileges include root access on the Web Server, the
intruder would not need to execute the IIS buffer overflow action against the Web Server host. We have chosen to
augment each action’s preconditions with a clause that disables the action in instances when the primary purpose of
the action has been achieved by other means. This change is not strictly conservative, as it prevents the intruder from
using an action for its secondary side effects. However, we feel that this is a reasonable price to pay for removing
unnecessary transitions from the attack graphs.

IIS Buffer Overflow. This remote-to-root action immediately gives a remote user a root shell on the target machine.

action IIS-buffer-overflow is
intruder preconditions

plvl(S) ≥ user User-level privileges on host S
plvl(T ) < root No root-level privileges on host T

network preconditions
w3svcT Host T is running vulnerable IIS server
R(S, T, 80) Host T is reachable from S on port 80

intruder effects
plvl(T ) := root Root-level privileges on host T

network effects
¬w3svcT Host T is not running IIS

end

Squid Port Scan. The Squid port scan action uses a misconfigured Squid web proxy to conduct a port scan of neigh-
boring machines and report the results to the intruder.

action squid-port-scan is
intruder preconditions

plvl(S) = user User-level privileges on host S
¬scan We have not yet performed a port scan

network preconditions
squidT Host T is running vulnerable Squid proxy
R(S, T, 80) Host T is reachable from S on port 80
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intruder effects
scan We have performed a port scan on the network

network effects
� No changes to the network component

end

LICQ Remote to User. This remote-to-user action immediately gives a remote user a user shell on the target machine.
The action rule assumes that a port scan has been performed previously, modeling the fact that such actions typically
become apparent to the intruder only after a scan reveals the possibility of exploiting software listening on lesser-
known ports.

action LICQ-remote-to-user is
intruder preconditions

plvl(S) ≥ user User-level privileges on host S
plvl(T ) = none No user-level privileges on host T
scan We have performed a port scan on the network

network preconditions
licqT Host T is running vulnerable LICQ software
R(S, T, 5190) Host T is reachable from S on port 5190

intruder effects
plvl(T ) := user User-level privileges on host T

network effects
� No changes to the network component

end

Scripting Action. This remote-to-user action immediately gives a remote user a user shell on the target machine. The
action rule does not model the social engineering required to get a user to download a specially-created Web page.

action client-scripting is
intruder preconditions

plvl(S) ≥ user User-level privileges on host S
plvl(T ) = none No user-level privileges on host T

network preconditions
scriptingT HTML scripting is enabled on host T
R(T, S, 80) Host S is reachable from T on port 80

intruder effects
plvl(T ) := user User-level privileges on host T

network effects
� No changes to the network component

end

Local Buffer Overflow. If the intruder has acquired a user shell on the target machine, this action exploits a buffer
overflow vulnerability on a setuid root file (in this case, the at executable) to gain root access.

action local-setuid-buffer-overflow is
intruder preconditions

plvl(T ) = user User-level privileges on host T

11



network preconditions
vul-atT There is a vulnerable at executable

intruder effects
plvl(T ) := root Root-level privileges on host T

network effects
� No changes to the network component

end

5.2 Sample Attack Graphs

Begin

IIS buffer
overflow

CAN-2002-0364
Squid portscan
CVE-2001-1030LICQ remote-

to-user
CVE-2001-0439

Local buffer
overflow

CVE-2002-0004

Done!

Highlighted scenario

Fig. 5. Example Attack Graph

Figure 5 shows a screenshot of the attack graph generated with our attack graph toolkit (Section 7.2) for the security
property

G (intruder.privilege[lin] < root)

which states that the intruder will never attain root privileges on the Linux host. In Figure 5, a sample attack scenario
is highlighted with solid square nodes, with each attack step identified by name and CVE number. Since the external
firewall restricts most network connections from the outside, the intruder has no choice with respect to the initial step—
it must be a buffer overflow action on the IIS Web server. Once the intruder has access to the Web server machine, his
options expand. The highlighted scenario is the shortest route to success. The intruder uses the Web server machine
to launch a port scan via the vulnerable Squid proxy running on the Linux host. The scan discovers that it is possible
to obtain user privileges on the Linux host with the LICQ exploit. After that, a simple local buffer overflow gives the
intruder administrative control over the Linux machine. The last transition in the action path is a bookkeeping step,
signifying the intruder’s success.

Any information explicitly represented in the model is available for inspection and analysis in the attack graph.
For instance, with a few clicks using our graphical user interface tool, we are able to highlight portions of the graph
“covered” by the intrusion detection system. Figure 6 shades the nodes where the IDS alarm has been sounded. These
nodes lie on paths that use the LICQ action along a network path monitored by the IDS. It is clear that while a
substantial portion of the graph is covered by the IDS, the intruder can escape detection and still succeed by taking
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one of the paths on the right side of the graph. One such attack scenario is highlighted with square nodes in Figure 6.
It is very similar to the attack scenario discussed in the previous paragraph, except that the LICQ action is launched
from the internal Windows machine, where the intrusion detection system does not see it. To prepare for launching
the LICQ action from the Windowsmachine, an additional step is needed to obtain user privileges in the machine. For
that, the intruder uses the client scripting exploit on the Windows host immediately after taking over the Web machine.

Begin

Squid portscan
CVE-2001-1030

LICQ remote-
to-user

CVE-2001-0439

Local buffer
overflow

CVE-2002-0004 Done!

Scripting remote-
to-user

CAN-2002-0193

IIS buffer
overflow

CAN-2002-0364

Highlighted scenario

Alarm has sounded

Fig. 6. Alternative Attack Scenario Avoiding the IDS

6 Attack Graph Analysis

Attack graphs serve as the basis of further analysis in several areas of network security, including intrusion detection,
defense, and forensic analysis. System administrators use attack graphs for the following reasons:

– To gather information: Attack graphs can answer questions like “What attacks is my system vulnerable to?” and
“From an initial configuration, how many different ways can an intruder reach a final state to achieve his goal?”

– To make decisions: Attack graphs can answer questions like “ Which set of actions should I prevent to ensure
the intruder cannot achieve his goal?” or “Which set of security measures should I deploy to ensure the intruder
cannot achieve his goal?”

Since we can produce attack graphs automatically, we make it convenient for system administrators to do “What
if?” analysis. Administrators can look at a graph we produce and determine what would happen if they were to change
firewall rules, add an intrusion detection system, install a software patch, or remove a host from the network. Does
making a change to the system make the graph smaller and in what way?

In this section we look at two kinds of analyses that we can perform on an attack graph: single action removal
and critical action set minimization. The first lets administrators see the effect of removing a single action from the
intruder’s arsenal. The second identifies a set of actions that if removed would then prevent the intruder from achieving
his goal.

To demonstrate the analyses, we expand the example from Section 5.1 with an extra host User on the external
network and several new actions. An authorized user W of the internal network owns the new host and uses it as a
terminal to work remotely on the internal Windows host. The new actions permit the intruder to take over the host
User, sniff user W ’s login credentials, and log in to the internal Windows host using the stolen credentials. We omit
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the details of the new actions, as they are not essential to understanding the examples. Figure 7(a) shows the full graph
for the modified example. The graph is significantly larger, reflecting the expanded number of choices available to the
intruder.

6.1 Single Action Removal.

A simple kind of analysis determines the impact of removing one action from the intruder’s arsenal. Recall from
Section 4 that each action is a triple 〈r, hs, ht〉, where hs ∈ H is the host from which the attack is launched, ht ∈ H
is the host targeted by the attack, and r is an action rule. The user specifies a set A rem of action triples to be removed
from the attack graph. Our toolkit deletes the transitions corresponding to each triple in the set A rem from the graph
and then removes the nodes that have become unreachable from the initial state.

As demonstrated in Figure 7, this procedure can be repeated several times, reducing the size of the attack graph
at each step. The full graph in Figure 7(a) has 362 states. Removing one of two ways the intruder can sniff user W ’s
login credentials produces the graph in Figure 7(b), with 213 states. Removing one of the local buffer overflow actions
produces the graph in Figure 7(c), with 66 states. At each step, the user is able to judge visually the impact of removing
a single action from the intruder’s arsenal.

6.2 Critical Action Set Minimization

Let’s turn to a more sophisticated analysis, which is a kind of minimization analysis [14]. Suppose the system ad-
ministrator must decide among several different firewall configurations, or among several vulnerabilities to patch, or
among several intrusion detection systems to set up. Each choice prevents a different subset of actions. What should
the system administrator do?

We cast this question in terms of the Minimum Critical Set of Actions (MCSA) Problem: What is a minimum set
of actions that must be prevented to guarantee the intruder cannot achieve his goal? The sketch of our solution is:

1. Reduce MCSA to the Minimum Hitting Set (MHS) Problem [14].
2. Reduce MHS to the Minimum Set Covering (MSC) Problem [2].
3. Use a textbook Greedy Approximation Algorithm to approximate a solution [5].

The first reduction can be briefly understood as follows: Each path in the graph is an attack. Label each edge in the
path with the action that causes the state transition. (Note that an action might label more than one edge in the path.)
The path thus defines a set of actions used to “realize” an attack. An attack graph is thus a set, R, of “realizable” sets
of actions. We need to hit each set in R. If we hit each set in R, then we cut the graph. If we cut the graph, then there
is no path from the initial state to any final (success) state in the graph. To find a minimum critical set of actions then
reduces to finding a minimum hitting set for R. That is, a minimum hitting set for R will identify a set of actions that
the intruder must have in his arsenal in order for him to succeed (achieve his goal). This set is a critical set of actions.

In short, once an attack graph is generated, we can use an approximation algorithm to find an approximately-
optimal critical set of actions that will completely disconnect the initial state from states where the intruder has
achieved his goals [21]. A related algorithm can find an approximately-optimal set of security measures that ac-
complish the same goal. With a single click using our graphical user interface tool, the user can invoke both of these
exposure minimization algorithms.

The effect of the critical action set algorithm on the modified example attack graph is shown in Figure 8(a). The
algorithm finds a critical action set of size 1, containing the port scan action exploiting the Squid web proxy. The graph
nodes and edges corresponding to actions in the critical set computed by the algorithm are highlighted in the toolkit
by shading the relevant nodes. The shaded nodes are seen clearly when we zoom in to inspect a part of the graph on a
larger scale (Figure 8(b)).

Since the computed action set is always critical, removing every action triple in the set from the intruder’s arsenal is
guaranteed to result in an empty attack graph. In the example, we might patch the Linux machine with a new version
of the Squid proxy, thereby removing every action triple that uses the Squid port scan rule on the Linux machine
from the intruder’s arsenal.
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7 Practical Experience

7.1 Performance

In practice we found that the explicit-state algorithm has good performance: the speed to generate the attack graph
is linear in the number of reachable state transitions [21]. We also found that for our limited number of examples,
our explicit-state algorithm is better than our symbolic algorithm in terms of time to generate graphs. In all of our
examples, our models are large due to their large number of state variables, but at the same time they have a very
small reachable state space. Thus we have a double whammy against the symbolic algorithm: Small reachable state
spaces are better for explicit-state model checking, and larger numbers of state variables are worse for symbolic model
checking.

These performance results, however, are not definitive. For one, we did not try to fine tune the implementation
of our symbolic model checking algorithm. But most importantly, our application to security biases our experimental
results in favor of our explicit-state algorithm. For other applications, the symbolic algorithm might be the better
choice, in particular for general scenario graphs.

7.2 Toolkit

We built a toolkit that allows us to model networked systems [23]. We write XML input specifications that model the
following kinds of information of a system: connectivity between hosts on the network, services running on each host,
firewall rules, host-based and network-based intrusion detection systems, and most importantly, the actions an intruder
might take in attempting to attack a system. We chose XML as our input specification language for modularity: we
can plug in any model checker as our attack graph generator and translate our XML input specifications into the input
language of the model checker. In our toolkit, we use our modifications of the NuSMV and SPIN model checkers,
reflecting our two algorithms, to produce attack graphs.

One of the challenges to using our tools is providing a model of the network. We rely on external data sources to
supply information necessary to build a network attack model. Specifically, it is necessary to know the topology of the
target network, configuration of the network hosts, and vulnerabilities present on the network. In addition, we require
access to a database of action rules to build the transition relation of the attack model.

We could expect the user to specify all of the necessary information manually, but such a task is tedious, error-
prone, and unrealistic for networks of more than a few nodes. Thus, we recommend deploying the attack graph toolkit
in conjunction with information-gathering systems that supply some of the data automatically and with existing vul-
nerability databases. In our work, to give us network topology and host configuration data, we integrated the attack
graph generator with two such systems, MITRE Corp’s Outpost and Lockheed Martin’s ANGI [23]. For our action
rules, we specified a library of actions based on a vulnerability database provided to us by SEI/CERT. This database
has over 150 actions representing many published CVEs. We wrote precondition/effects specifications as in Section 5.

8 Related Work

Generating a set of all counterexamples is a novel addition to the repertoire of model checking techniques. Sheyner’s
dissertation [21] gives the most comprehensive description of scenario graphs and algorithms for generating them.

We restrict the remainder of our discussion of related work to attack graphs.
Phillips and Swiler [19] propose the concept of attack graphs that is similar to the one described here. However,

they take an “attack-centric” view of the system. Since we work with a general modeling language, we can express
in our model both seemingly benign system events (such as failure of a link) and malicious events (such as attacks).
Therefore, our attack graphs are more general than the one proposed by Phillips and Swiler. Swiler et al. describe a
tool [25] for generating attack graphs based on their previous work. Their tool constructs the attack graph by forward
exploration starting from the initial state.

The advantage of using model checking instead of forward search is that the technique can be expanded to include
liveness properties, which can model service guarantees in the face of malicious activity. For example, a model of a
banking network could have a liveness security property such as
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G (CheckDeposited → (F CheckCleared))

which specifies that every check deposited at a bank branch must eventually clear.
Templeton and Levitt [27] propose a requires/provides model for attacks. The model links atomic attacks into

scenarios, with earlier atomic attacks supplying the prerequisites for the later ones. Templeton and Levitt point out
that relating seemingly innocuous system behavior to known attack scenarios can help discover new atomic attacks.
However, they do not consider combining their attack scenarios into attack graphs.

Cuppens and Ortalo [7] propose a declarative language (LAMBDA) for specifying attacks in terms of pre- and
post-conditions. LAMBDA is a superset of the simple language we used to model attacks in our work. The language
is modular and hierarchical; higher-level attacks can be described using lower-level attacks as components. LAMBDA
also includes intrusion detection elements. Attack specifications includes information about the steps needed to detect
the attack and the steps needed to verify that the attack has already been carried out. Using a database of attacks spec-
ified in LAMBDA, Cuppens and Miege [6] propose a method for alert correlation based on matching post-conditions
of some attacks with pre-conditions of other attacks that may follow. In effect, they exploit the fact that alerts about
attacks are more likely to be related if the corresponding attacks can be a part of the same attack scenario.

Dacier [9] proposes the concept of privilege graphs. Each node in the privilege graph represents a set of privileges
owned by the user; edges represent vulnerabilities. Privilege graphs are then explored to construct attack state graphs,
which represents different ways in which an intruder can reach a certain goal, such as root access on a host. He also
defines a metric, called the mean effort to failure or METF, based on the attack state graphs. Orlato et al. describe an
experimental evaluation of a framework based on these ideas [18]. At the surface, our notion of attack graphs seems
similar to the one proposed by Dacier. However, as is the case with Phillips and Swiler, Dacier takes an “attack-
centric” view of the world. As pointed out above, our attack graphs are more general. From the experiments conducted
by Orlato et al. it appears that even for small examples the space required to construct attack state graphs becomes
prohibitive. By basing our algorithm on model checking we take advantage of advances in representing large state
spaces and can thus hope to represent large attack graphs.

Ritchey and Ammann [20] also use model checking for vulnerability analysis of networks. They use the (unmod-
ified) model checker SMV [24]. They can obtain only one counterexample, i.e., only one attack corresponding to an
unsafe state. In contrast, we modified the model checker NuSMV to produce attack graphs, representing all possible
attacks. We also described post-facto analyses that can be performed on these attack graphs. These analysis techniques
cannot be meaningfully performed on single attacks.

Graph-based data structures have also been used in network intrusion detection systems, such as NetSTAT [28].
There are two major components in NetSTAT: a set of probes placed at different points in the network and an analyzer.
The analyzer processes events generated by the probes and generates alarms by consulting a network fact base and a
scenario database. The network fact base contains information (such as connectivity) about the network being mon-
itored. The scenario database has a directed graph representation of various atomic attacks. For example, the graph
corresponding to an IP spoofing attack shows various steps that an intruder takes to mount that specific attack. The
authors state that “in the analysis process the most critical operation is the generation of all possible instances of an
attack scenario with respect to a given target network.”

Ammann et. al. present a scalable attack graph representation [1]. They encode attack graphs as dependencies
among exploits and security conditions, under the assumption of monotonicity. Informally, monotonicity means that
no action an intruder can take interferes with the intruder’s ability to take any other actions. The authors treat vul-
nerabilities, intruder access privileges, and network connectivity as atomic boolean attributes. Actions are treated as
atomic transformations that, given a set of preconditions on the attributes, establish a set of postconditions. In this
model, monotonicity means that (1) once a postcondition is satisfied, it can never become “unsatisfied,” and (2) the
negation operator cannot be used in expressing action preconditions.

The authors show that under the monotonicity assumption it is possible to construct an efficient (low-order poly-
nomial) attack graph representation that scales well. They present an efficient algorithm for extracting minimal attack
scenarios from the representation, and suggest that a standard graph algorithm can produce a critical set of actions that
disconnects the goal state of the intruder from the initial state.

This approach is less general than our treatment of attack graphs. In addition to the monotonicity requirement, it
can handle only simple safety properties. Further, the compact attack graph representation is less explicit, and therefore
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harder for a human to read. The advantage of the approach is that it has a worst-case bound on the size of the graph that
is polynomial in the number of atomic attributes in the model, and therefore can scale better than full-fledged model
checking to large networks.

9 Future Work

We are now producing scenario graphs so large that humans have a hard time interpreting them. We plan to address
the problem of size in several ways:

– Apply optimization techniques from the model checking literature to reduce the size of scenario graphs. For exam-
ple, we can use symmetry and partial-order reduction techniques. One open problem is what a set of “all counterex-
amples” means when using the counterexample-guided-abstraction-and-refinement model checking technique.

– Find ways to compress either or both the internal representation of the scenario graph and the external one dis-
played to the user.
• One novel approach we took was to apply the Google PageRank algorithm to the graphs we produce [16]. We

use the in-degree and out-degree of a node in the graph as an estimate of how likely an attacker is to visit a
state in a given attack, i.e., path in the graph.

• Rather than generate the entire scenario graph, we could do “query-directed” scenario graph generation. An
example query might be “What are all paths in the scenario graph that involve a particular action?” For attack
graphs, the system administrator might want to see subgraphs involving a particular host, service, or intrusion
detection system. We could use such queries to reduce the graph that is then displayed to the user.

– Design and implement new graph-based analyses on scenario graphs. The minimization analysis discussed in 6.2
is only the tip of the iceberg. We would like to explore more such analyses for scenario graphs in general.

We are also interested in pursuing further uses of attack graphs, e.g., in using them in conjunction with on-line
intrusion detection systems and in using them to help with alert correlation. One potential approach is to use the edit-
distance algorithm (e.g., used on DNA sequences) to match an abstraction of a sequence of alerts with a subpath of
some attack in an attack graph [10]. The closer the match, the higher the likelihood that the alerts signal a real attack.

Finally, we are interested in exploring applications of scenario graphs to other domains. The model checking al-
gorithms we present for producing all counterexamples are both extremely general. Model checkers, which produce
a single counterexample, are already used for a broad range of applications, including hardware design, software de-
bugging, embedded systems verification, program analysis, e-commerce, authentication protocols, and computational
biology. We leave for future work what the analogue of “all counterexamples” means in these and other applications.
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Fig. 7. Reducing Action Arsenal
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Fig. 8. Finding Critical Action Sets
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