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Abstract 
Collaborative filtering is a general technique for exploiting the preference patterns of a group of users to 

predict the utility of items for a particular user. Three different components need to be modeled in a 

collaborative filtering problem: users, items, and ratings. Previous research on applying probabilistic 

models to collaborative filtering has shown promising results. However, there is a lack of systematic 

studies of different ways to model each of the three components and their interactions. In this paper, we 

conduct a broad and systematic study on different mixture models for collaborative filtering. We discuss 

general issues related to using a mixture model for collaborative filtering, and propose three properties that 

a graphical model is expected to satisfy. Using these properties, we thoroughly examine five different 

mixture models, including Bayesian Clustering (BC), Aspect Model (AM), Flexible Mixture Model 

(FMM), Joint Mixture Model (JMM), and the Decoupled Model (DM). We compare these models both 

analytically and experimentally. Experiments over two datasets of movie ratings under different 

configurations show that in general, whether a model satisfies the proposed properties tends to be 

correlated with its performance. In particular, the Decoupled Model, which satisfies all the three desired 

properties, outperforms the other mixture models as well as many other existing approaches for 

collaborative filtering. Our study shows that graphical models are powerful tools for modeling 

collaborative filtering, but careful design is necessary to achieve good performance.  
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1 Introduction  

The rapid growth of information over Internet demands intelligent information agents that can sift 

through all the available information and find out the most valuable to us. These intelligent 

systems can be categorized into two classes: Collaborative Filtering (CF) systems and Content-

based Filtering (CBF) systems. The difference between them is that collaborative filtering 

systems utilize the given ratings of training users to make recommendation for test users while 

content-based filtering systems rely on contents of items for recommendation. In this paper, we 

focus on the collaborative filtering systems.   

Most collaborative filtering methods fall into two categories: Memory-based algorithms and 

Model-based algorithms (Breese et al., 1998). In memory-based algorithms, rating examples of 

different users are simply stored in a training database, and the rating of a test user on a specific 

item is predicted based on the corresponding ratings of training users who share similar tastes as 

the test user. In contrast, in model-based algorithms, statistical models are learned from the given 

ratings of training users and ratings of test users are estimated using the learned model. In the 

previous studies, both types of approaches have been shown to be effective for collaborative 

filtering (Breese et al., 1998).  

In general, most collaborative filtering approaches assume that users with similar “tastes” 

would rate items similarly, and the idea of clustering has been exploited in all approaches either 

explicitly or implicitly. Compared with memory-based approaches, model-based approaches 

provide a more principled way of performing clustering, and is also often much more efficient in 

terms of the computation cost at the prediction time.  The basic idea of a model-based approach is 

to cluster items and/or training users into classes explicitly and predict ratings of a test user using 

the ratings of classes that fit in well with the test user and/or items.  

Several different probabilistic models have been proposed and studied in the previous work 

(Breese et al., 1998, Hofmann & Puzicha 1998, Pennock et al., 2000, Popescul et al., 2001, Ross 

& Zemel 2002, Si et. al., 2003, Jin et. al., 2003, Hofmann, 2003).  These models have succeeded 

in capturing user/item similarities through probabilistic clustering in one way or the other, and 

have all been shown to be quite promising.  Most of these methods can be represented as 

graphical models. However, there has been no systematic study and comparison of different 

graphical models proposed for collaborative filtering, which is necessary for both theoretical and 

empirical reasons: (1) Theoretically, different models make different assumptions. We need to 

understand the difference and connections among these models in terms of the underlying 

assumptions. (2) Empirically, these different models are evaluated with different experimental 

settings in previous studies; it would be useful to see how they are compared with each other 
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using identical experimental settings. Moreover, a systematic study is necessary for explaining 

why some models tend to perform better than others.  

In this paper, we conduct a systematic study of a large subset of graphical models – mixture 

models – for collaborative filtering. One of the fundamental difficulties with collaborative 

filtering is the sparse data issue. It arises when most users only provide ratings for a small number 

of items. As a result, even two users have similar interests, they may not share any common items 

that are rated by both of them. Mixture models are the natural remedy to the sparse data problem. 

By grouping items with similar ratings into clusters, the mixture models are able to estimate the 

similarity among different users based on their ratings on item clusters, not individual items. 

Given that the three components, namely users, items, and ratings, involve in the collaborative 

filtering, a good mixture model for collaborative filtering should be able to not only cluster each 

component, but also model the interactions between different components appropriately. We 

propose three desirable properties that a reasonable graphical model for collaborative filtering 

should satisfy: (1) separate clustering of users and items; (2) flexibility for a user/item to be in 

multiple clusters; (3) decoupling of user preference from its rating patterns.  

We thoroughly analyze five different mixture models, including Bayesian Clustering (BC), 

Aspect Model (AM), Flexible Mixture Model (FMM), Joint Mixture Model (JMM) and the 

Decoupled Model (DM) based on the three proposed properties. We also compare these models 

empirically. Experiments over two datasets of movie ratings under several different 

configurations show that in general, the fulfillment of the proposed properties tends to be 

positively correlated with the model’s performance. In particular, the DM model, which satisfies 

all the three properties that we want, outperforms all the other mixture models as well as some 

other existing approaches to collaborative filtering. Our study shows that graphical models are 

powerful tools for modeling collaborative filtering, but careful design is necessary in order to 

achieve good performance.  

The rest of the paper is arranged as follows: Section 2 gives a general discussion of using 

graphical models for collaborative filtering and presents the three desirable properties that any 

graphical model should satisfy. In Section 3, we present and examine five different mixture 

models in terms of their connections and differences.  We discuss model estimation and rating 

prediction in Section 4 and Section 5.  Empirical studies are presented in Section 6. Conclusions 

and future work are discussed in Section 7. 
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2 Graphical Models for Collaborative Filtering  

2.1 Problem Definition 

We first introduce notations for formally describing the problem of collaborative filtering. Let 

1 2{ , ,......, }Mx x x=X%  be a set of items, 1 2{ , ,......, }Ny y y=Y%  be a set of users, and },...,1{ R  be the 

set of possible ratings. Let )},,(),.....,,,{( )()()()1()1()1( LLL ryxryx  be the training database that 

consists of ratings of different items from multiple training users. Each tuple ),,( )()()( iii ryx  

represents that item )(ix  is rated as )(ir  by user )(iy . Let ( )yR x  be the rating of item x given by 

user y and ( )X y  be the set of items rated by user y. In addition to the training database, each test 

user also provides a small number of ratings to indicate his interests and preference. The goal of 

collaborative filtering is to predict the rating r that a test user would give to an unrated item x 

given the training database and the additional rating information from the test user.  

To cast this problem into graphical models, we treat each tuple ),,( )()()( iii ryx  as an 

observation that is randomly drawn from the joint distribution of three random variables – X, Y, 

and R. Random variable X and Y can take any value from the set X% and Y%, respectively.  

Random variable R will take any integer value ranging from 1 to R. Through the training 

database, we are able to model the interaction between the three random variables. There are 

three possible choices of likelihood that we can maximize for the training data: p(r|x,y), p(r,x|y) 

and p(r,x,y). Although there is strong correlation between these quantities, maximizing data with 

a different likelihood models different aspects of the data. For the first choice, i.e., p(r|x,y), we 

focus on modeling why item x is rated by user y as r. 

The second choice, i.e., p(r,x|y), differs from the first one in that it explains not only the observed 

ratings but also why item x is chosen to be rated by user y. As a result, movies that have been 

rated by many users will have more impact on the model estimation than movies that are only 

rated by a few users. The third choice, i.e., p(r,x,y), models the joint distribution between the 

three random variables. Under this choice, the model is also concerned with the behavior of users 

(e.g., some users rate a lot of movies and others only rate a few). In particular, users with more 

ratings tend to have larger impact on the final model than users that only rate a few items. Based 

on the above discussion, it is clear that the choice of likelihood function for training data can have 

a significant impact on model estimation and thus the performance of collaborative filtering.  

Most existing probabilistic approaches to collaborative filtering fall into one of these three cases. 

For example, the personality diagnosis method is a special case of the first one, where a Gaussian 
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distribution is assumed for p(r|x,y). The aspect model can be regarded as a special case of the 

third choice, where a mixture model is used for estimating p(r,x,y). In this paper, we will focus on 

the second and third cases and systematically examine the different choices of mixture models. 

Note that we intentionally ignore the possibility of modeling conditional probability p(r,y|x). This 

is because in collaborative filtering, it is the users who actively select items to rate, not the vice 

versa. 

2.2 Major Issues in Designing a Graphical Model for Collaborative Filtering 

In general, in order to model the similarity among different users, items and ratings given the 

difficulty of sparse ratings provided by users, we need to cluster each component into groups and 

model the interactions between different components appropriately. More specifically, the 

following three important issues must be addressed:  

Issue 1: how should we model user similarity and item similarity? Generally, we may 

regard users and items as being from different types of entities and they couple with each other 

through rating information. Therefore, a good clustering model for collaborative filtering is 

expected to explicitly model both the classes of users and the classes of items and be able to 

leverage their correlations. This means that the choice of latent variables in our graphical model 

should allow for separate, yet coupled modeling of user similarity and item similarity. Of course, 

the separation of user similarity from item similarity will lead to complex clustering models that 

can be hard to estimate accurately with the data available. Models with different clustering 

strategies will be examined in this paper. 

Issue 2: should a user or an item be allowed to belong to multiple clusters? Since a user can 

have diverse interests and an item may have multiple aspects, intuitively, it is desirable to allow 

both items and users to be in multiple classes simultaneously. However, such a model may be too 

flexible to capture the similarity of users and items effectively with a limited amount of training 

data. Models with different assumptions about the membership of users and items will be 

examined in this paper. 

Issue 3: how can we capture the variances in rating patterns among the users with similar 

interest of items? One common deficiency in most existing models for collaborative filtering is 

that they are all based on the assumption that users with similar interests would rate items 

similarly. This is incorrect because the rating pattern of a user is determined not only by his/her 

interests but also by the rating strategy/habit. For example, some users are more “tolerant” than 

others, and therefore their ratings of items tend to be higher than others although they share very 

similar tastes of items. Thus, it is important for a collaborative filtering method to capture the 
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variance among rating patterns of users with similar interest of items. Methods of how to model 

such variances in a graphical model will be examined in this paper. 

Based on the above discussion, we identify three important properties that a graphical model 

for collaborative filtering should satisfy: 

• It should support clustering of both users and items 

• It should allow both users and items to be in multiple clusters 

• It should decouple the rating patterns from intrinsic preference 

In the following section, we will analyze a representative set of mixture models and examine 

them in terms of these desirable properties. 

3 Mixture Models for Collaborative Filtering  

In this section, we discuss a variety of possible mixture models and examine their 

assumptions about user and item clustering and whether they address the variances in rating 

patterns.  

3.1 Bayesian Clustering (BC) 

In Bayesian Clustering (BC), we assume that the 

same type of users would rate items similarly, thus 

users can be automatically grouped together into a 

set of user clusters, or user classes, according to their 

ratings of items. Formally, given a user class ‘z’, the 

preferences for different items expressed as ratings 

are independent, and the joint probability of user 

class ‘z’ and the ratings of items can be written as 

the standard naïve Bayes formulation: 

1 2
1

( , , ,..., ) ( ) ( | )
M

M i
i

P z r r r P z P r z
=

= ∏  (1)

where ri represents the rating for item xi. Thus, the joint probability for the ratings given by user 

y, denoted as ( )({ ( )} | )y x X yP R x y∈ , can be written as: 

( )
( )

({ ( )} | ) ( ) ( ( ) | )y x X y y
z x X y

P R x y P z P R x z∈
∈

= ∑ ∏  (2) 

According to Equation (2), this model will first select a user class ‘z’ from the distribution P(z) 

and then rate all the items using the same selected class ‘z’. In another word, this model assigns 

each user to a single user class and therefore does not allow a user to be in multiple user classes. 

Figure 1. Graphical model representation for
Bayesian Clustering. 

 Z 

   rnr1  r2
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Parameters P(r|z) can be learned automatically using the Expectation-Maximization (EM) 

algorithm. More details of this model can be found in (Breese et al. 1998).  

 According to the three criteria mentioned in the previous section, Bayesian Clustering 

appears to be the simplest mixture model: only cluster the users; each user is assumed to be of a 

single cluster; no separation for preference and rating patterns. Figure 1 illustrates the basic idea 

of the Bayesian Clustering.  

3.2 Aspect Model (AM) 

The aspect model is a probabilistic latent space model, which models individual preferences as a 

convex combination of preference factors (Hofmann & Puzicha 1999). It introduces a latent 

variable z ∈Z 1 2{ , ,....., }Kz z z= for each user-item pair (x, y), and writes the joint probability for 

each pair as: 

∑
∈

=
Zz

zyPzxPzPyxP )|()|()(),(  (3) 

where P(z) is the class prior probability, P(x|z) and P(y|z) are class-dependent distributions for 

items and users, respectively.  Intuitively, this model means that the preference pattern of a user is 

modeled by a combination of typical preference patterns, which are represented in the 

distributions of P(z), P(x|z) and P(y|z).   

There are two ways to the incorporate rating information ‘r’ into the basic aspect model:  

∑
∈

=
Zz

llllll zrPzyPzxPzPryxP )|()|()|()(),,( )()()()()()(  (4) 

∑
∈

=
Zz

lllllll xzrPzyPzxPzPryxP ),|()|()|()(),,( )()()()()()()(  (5) 

The corresponding graphical models are shown in Figure 2. Compared to the first approach in 

Equation (4), the second approach in 

Equation (5) has to estimate the conditional 

probability ),|( )()( ll xzrP , which 

corresponds to a larger parameter space and 

may not be estimated reliably.  

 Unlike the Bayesian Clustering 

algorithm, which only models ratings, the 

aspect model is able to model both users and 

items with conditional probabilities P(y|z) 

Figure 2. Graphical models for the two
extensions of aspect model in Equations (4)
and (5). 

  Z 

  X   Y 

  R 

(a) (b)

  Z

  X  Y

  R
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and P(x|z). Furthermore, unlike the Bayesian Clustering algorithm, where the joint probability for  

a set of ratings by an individual user is modeled directly, the aspect model models the joint 

probability P(x,y,r)  separately for each rated item. As a result, the aspect model allows each 

rating triplet to choose its own appropriate class while in Bayesian Clustering the same user class 

is used to rate all the items. However, the aspect model only introduces a single set of class 

variables for items, users, and ratings. This essentially encodes the clustering of users, the 

clustering of items, and the correlation between them together and thus the separate clustering of 

users and items is not attempted. Furthermore, no efforts have been made in aspect model to 

separate users’ rating patterns from their intrinsic interests.  Therefore, according to the criterion 

stated in Section 2.2, the aspect model is still a preliminary model: a simple way to model users 

and items but without clustering them separately; allowing each user and item to be in multiple 

clusters; no attempt for modeling intrinsic preference of users separately from their rating 

patterns. 

3.3 Joint Mixture Model (JMM) and Flexible Mixture Model (FMM) 

In this section, we examine two graphical models for collaborative filtering, namely Joint Mixture 

Model (JMM) and Flexible Mixture Model (FMM) (Si, et. al., 2003). They differ from both the 

Bayesian Clustering algorithm and the Aspect Model in that users and items are clustered 

separately.  

For both graphical models, the goal is to model the joint probability ( )({ ( )} | )y x X yP R x y∈ . 

They differ in the way of decomposing the joint probability. In the Joint Mixture Model, the joint 

probability is expanded as: 

( )
( )

({ ( )} | ) ( | ) ( , ( )| )
y

y x X y y y y
z x X y

P R x y P z y P x R x z∈
∈

=∑ ∏  (6) 

where variable zy stands for the class for user ‘y’. According to Equation (6), to estimate the joint 

probability, user class zy is first chosen according to distribution P(zy|y), and then the likelihood of 

every rated item is computed using the same user class zy. Thus, similar to the Bayesian clustering 

algorithm, the Joint Mixture Model assumes that each user belongs to a single user class. In 

contrast, the Flexible Mixture Model first expands ( )({ ( )} | )y x X yP R x y∈  into a product of 

likelihoods for rated items, followed by the introduction of hidden variables for user class for 

each item: 

( )
( )

({ ( )} | ) ( , ( ) | ) ( | )
y

y x X y y y y
zx X y

P R x y P x R x z P z y∈
∈

= ∑∏  (7) 
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Compared to Joint Mixture Model, the Flexible Mixture Model allow each item to choose the 

appropriate user class for its rating while the Joint Mixture Model enforces a single user class to 

be used throughout the ratings of every user. 

The key component for both the two models is the estimation of ( , | )yP x r z , i.e., the 

likelihood for the user class yz  to rate item x as r. Directly estimating ( , | )yP x r z  from training 

data may lead to a severe sparse data problem. This is because the number of different 

( , | )yP x r z  can be quite big given a large number of items and user classes. To alleviate this 

problem, hidden variable zx is further introduced to represent the classes for items, which leads to 

a new expression for ( , | )yP x r z : 

( , | ) ( , , | ) ( ) ( | ) ( | , )
x x

y x y x x x y
z z

P x r z P x r z z P z P x z P r z z= ≈∑ ∑  (8) 

where )( xzP  is the class prior for item class zx and ( | , )x yP r z z  is the likelihood for user class zy 

to rate item class zx as r. The above expression assumes that the class variable zx for items is 

independent from the class variable zy for users, or )()|( xyx zPzzP ≈ . Through the introduction 

of item class, the number of parameters for ( , | )yP x r z is decreased from M × R | |yZ×  to 

)||1(|| RZMZ yx ×++× , where |Zy| and |Zx| are the number of classes for users and items 

respectively, and M and R are the number of items and rating categories, respectively. This is a 

significant reduction when the number of user classes is large. For example, given 1000 different 

movies, 5 different rating categories, and 20 different user types, the number of parameters for 

( , | )yP x r z  is 100,000.  However, by grouping movies into 10 different classes, the number of 

parameters drops to around 11,000, which is only one tenth of the original parameter space. Of 

course, the introduction of item classes may flat the difference between similar items and thus 

lead to errors in predicting ratings. This is the tradeoff between leveraging data sparseness and 

maintaining data diversity. We will examine this issue in later experiments. Table 1 summarizes 

Table 1. Parameters for the Joint Mixture Model (JMM) and the Flexible Mixture Model (FMM) 

)|( yzP y  Likelihood of assigning user ‘y’ to the user class zy 

)( xzP  Class prior for item class zx 

( | )xP x z  Likelihood for item x to be in class zx 

),|( yx zzrP  Likelihood for any user in class zy to rate any item in class zx as ‘r’  
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the parameters used by both models and the diagrams of corresponding graphical models are 

displayed in Figure 3. 

As for the three properties in Section 2.2, both models apply separate clustering to users and 

items and thus satisfy the property 1. The Flexible Mixture Model satisfies the second property 

since it leaves each rated item the freedom to choose the appropriate user class while the Joint 

Mixture Model does not. Neither of the two models makes any attempt to explicitly model the 

difference between the rating patterns and the intrinsic preference of users.  

3.4 Decoupled Models for Rating Patterns and Intrinsic Preference (DM) 

All mixture models that have been discussed so far fail to explicitly account for the fact that users 

with similar interests may have very different rating patterns. In this section, we discuss 

decoupled model (DM), which extends the Flexible Mixture Model by introducing two hidden 

variables ZP and ZR that account for rating 

patterns and intrinsic preference of users, 

respectively. Figure 4 displays the graphical 

representation for the decoupled model. 

According to Figure 4, the decoupled model first 

determines the class Zx for item ‘X’, the class ZP 

and ZR for user ‘Y’. Class ZP accounts for the 

intrinsic preference of user ‘Y’, namely, the types 

of items that ‘Y’ likes and the types of items that 

he/she does not like. Class ZR accounts for the 

Zy  Zx 

  Y    X 
 R

Figure 3. Graphical model representation for the Joint Mixture Model and Flexible 
Mixture Model. Diagram (a) represents the joint mixture model (JMM) and (b) for 
flexible mixture model (FMM). 

 Zy 

  Z1
x   Y   X1 R1 

 Z2
x   X2 R2 

 ZM
x   XM RM 

…… 

(a) (b) 

Figure 4. Graphical model representation
for the decoupled model (DM). 
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   Y    X 
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rating patterns of user ‘Y’, namely how user ‘Y’ rates items according to his interests. Unlike the 

previous mixture models where the user type is modeled by a single class variable Zy, in the new 

model, users are clustered from two different perspectives, i.e., the clustering of intrinsic 

preference by hidden variable ZP and the clustering of rating patterns (or habits) by hidden 

variable ZR.  To decide the rating category for item ‘X’, the new model first determines the value 

of the binary random variable Zpref that indicates whether user ‘Y’ likes item ‘X’, and the rating 

variable ‘R’ is jointly determined by the preference variable Zpref and the rating class ZR of user  

‘Y’. Thus, the actual rating value is affected not only by whether the user likes an item (i.e., Zpref), 

but also by the specific rating patterns of the user (i.e., ZR). Therefore, even if a user appears to 

like a certain type of items, the rating value can still be low if he has a very ‘tough’ rating 

criterion. In summary, the new model has addressed the problem of large rating variance among 

users of similar interests in two aspects:  

1) It models the rating patterns and intrinsic preference of users separately; 

2)  The rating category of an item is decided not only by whether a user likes the item but also by 

the rating strategy of the user. 

Note that this new model satisfies all the three desirable properties: cluster users and items 

separately; allow each user to be in multiple clusters; and model the difference between 

preference patterns and rating patterns. 

Following the above description, probability ( , | )P x r y  is expressed as follows: 

, , {0,1}
( , | ) ( | ) ( | ) ( ) ( | ) ( | , ) ( | , )

P R x pref

P R x x pref P x R pref
z z z Z

P x r y P z y P z y P z P x z P z z z P r z z
=

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑  (9) 

where ),|( xPpref zzzP  is the likelihood for users in class ZP to like (Zpref = 1) or dislike (Zpref = 0)  

items in class Zx, ( | , )R prefP r z z  is the likelihood for users in class ZR to give rating ‘r’ given that 

Table 2. Parameters for the decoupled model (DM) 

)|( yzP P  Likelihood of assigning user ‘y’ to the preference class zP 

)|( yzP R  Likelihood of assigning user ‘y’ to the rating class zR 

)( xzP  Class prior for item class zx 

( | )xP x z  Likelihood for item x to be in item class zx 

( 1| , )pref P xP z z z=  Likelihood for users in preference class Pz  to favor items in class xz  

( | , )R prefP r z z  Likelihood for users in rating class zR to rate items in class zx as ‘r’ given 
that they either like the items (i.e., zpref = 1) or dislike the items (i.e., zpref = 0) 
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they like (Zpref = 1) or dislike (Zpref = 0) the items. Combined Equation (7) with Equation (9), we 

have the full description for the decoupled model that determines the likelihood for a rating 

database. Table 2 summarizes the parameters for the decoupled model. Compared to Table 1, 

more parameters are introduced in the decoupled model to account for the new variables ZP, ZR, 

and Zpref, which will raise the complexity of the model and thus has more chance to over-fit 

training data.  

 The decoupled model can be further improved by extending the binary hidden variable Zpref to 

a variable with multiple values. Thus, instead of indicating whether or not a user likes an item, 

hidden variable Zpref represents the level of preference that the user has for the item. For example, 

we can let the variable Zpref have three discrete values, with zero for no preference, one for slight 

preference and two for strong preference. In our experiments, the number of discrete values for 

variable Zpref is set to be equal to the number of different rating categories. In this case, Equation 

(9) will be rewritten as: 

, , 1
( , | ) ( | ) ( | ) ( ) ( | ) ( | , ) ( | , )

P R x pref

R

P R x x pref P x R pref
z z z z

P x r y P z y P z y P z P x z P z z z P r z z
=

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑  (9’) 

Note that by setting ( | , ) ( , )R pref prefP r z z r zδ= , the above equation will be turned into Equation 

(8), which leads to the Flexible Mixture Model. Thus, the extended decoupled model is a more 

general framework than the Flexible Mixture Model. 

3.5  Summary and Comparison 

In this section, we have discussed five different mixture models:  

• Bayesian clustering is the simplest approach and does not satisfy any of the three properties. 

It makes no effort to model either users or items and each user is restricted to a single class. 

• Aspect model improves over Bayesian clustering by introducing a hidden variable that models 

the interaction between users and items. It satisfies the second property by allowing each user 

to be in multiple different classes. However, it does not apply separate clustering to users and 

items, and it does not address the problem of rating variance within users of similar interests. 

Therefore, it violates both the first and the third properties. 

• Both the Joint Mixture Model (JMM) and Flexible Mixture Model (FMM) emphasize 

separate clustering of users and items. They differ from each other in that FMM allows each 

user to be in multiple classes while JMM restricts every user to be in a single class. Thus, 

FMM satisfies both the first and the second property while JMM only satisfies the first one. 
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• The Decoupled Model (DM) extends the Flexible Mixture Model (FMM) by separating the 

intrinsic preference of users from their rating strategies. In particular, the final rating of an 

item is affected not only by the interest of a user but also by his rating criteria. Thus, the 

decoupled model satisfies all three properties. 

Table 3 summarizes the properties of each model. On one hand, we expect models that satisfy 

more properties to provide better description for the data and achieve more accurate prediction. 

On the other hand, to satisfy more properties, we have to increase the model complexity, which 

could degrade the accuracy of prediction particularly when the number of training users is small. 

As will be seen later in the experiment section, with a large number of training users, models 

satisfying more properties usually perform better than models satisfying fewer properties. 

However, when the number of training users is small, the simple model may perform even better.  

4 Model Estimation 
 
In this section, we describe the general Expectation Maximization (EM) algorithm that is used to 

estimate the mixture models for collaborative filtering, followed by the description of the 

prediction algorithms. 

4.1 General Approach -- EM Algorithms 

In general, all the mixture models can be estimated using the EM algorithm (Demspter, et. al., 

1977). As an example, we give details on the EM algorithm for the Joint Mixture Model (JMM), 

which is slightly more complicated than the others.  

Table 3. Properties of five different mixture models for collaborative filtering. Property 1 corresponds 

to separate clustering for users and items; Property 2 corresponds to the flexibility for a single user or 

an item to be in multiple clusters; Property 3 corresponds to the capture of difference between intrinsic 

preference and rating patterns. 

 Property 1 Property 2 Property 3 

Bayesian Clustering (BC) -- -- -- 

Aspect Model (AM) -- x -- 

Joint Mixture Model (JMM) x -- -- 

Flexible Mixture Model (FMM) x x -- 

Decouple Model (DM) x x x 
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 According to the maximum likelihood approach, parameters of JMM model are estimated by 

maximizing the log-likelihood of training data, which is written as 

( )log ({ , ( )} | )y x X y
y

L P x R x y∈= ∑  (10) 

Expand ( )({ , ( )} | )y x X yP x R x y∈ using Equations (6) and (8), we have 

( )
log ( | ) ( ) ( | ) ( ( ) | , )

y x

y x x y x y
y z zx X y

L P z y P z P x z P R x z z
∈

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑∏  (11) 

To optimize the above objective function, the EM algorithm alternates between the expectation 
step and maximization step. In the expectation step, the posterior probabilities for latent variables, 
i.e., ( )( |{ , ( )} , )y y x X yP z x R x y∈  and ( | , ( ), , )x y yP z x R x y z , are computed as follows: 

( )
( )

( )

( | ) ( , ( ) | )
( |{ , ( )} , )

( | ) ( , ( ) | )
y

y y y
x X y

y y x X y
y y y

z x X y

P z y P x R x z
P z x R x y

P z y P x R x z
∈

∈

∈

=
∏

∑ ∏
 (12) 

'
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( | , ( ), , )

( ') ( | ') ( ( ) | ', )
x

x x y x y
x y y

x x y x y
z

P z P x z P R x z z
P z x R x y z

P z P x z P R x z z
=

∑
 (13) 

In the maximization step, model parameters ( | ),  ( ),  ( | ),  and ( | , )y x x x yP z y P z P x z P r z z are 

updated using the posterior probabilities that are estimated in the expectation step: 

( )( | ) ( |{ , ( )} , )y y y x X yP z y P z x R x y∈=  (14) 

( )

( )

( | , ( ), , ) ( | )
( )

( | , ( ), , ) ( | )
y

x y

x y y y
z y x X y

x
x y y y

z z y x X y

P z x R x y z P z y
P z

P z x R x y z P z y
∈

∈

=
∑∑ ∑
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4.2 Smoothing Mixture Models 

The EM algorithm is notorious for finding undesirable local optimal solutions. In this section, we 

discuss two techniques that can help avoid unfavorable solutions, both aiming at regularizing the 
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EM algorithm in some way. Again, we use the JMM as an example, but the smoothing techniques 

can be applied to other models as well. 

The first technique is called Annealed EM algorithm (AEM) (Hofmann & Puzicha, 1998). 

The idea can be described as follows: to prevent posterior distributions from being skewed at the 

early stage of EM iterations, a regularization variable ‘b’ is introduced into the expectation step.  

According to the Annealed EM algorithm, ‘annealed’ posteriors for the JMM model are written 

as: 

( )
( )

( )

( | ) ( , ( ) | )
( | { , ( )} , )

( | ) ( , ( ) | )
y

b

y y y
x X y

y y x X y b

y y y
z x X y

P z y P x R x z
P z x R x y

P z y P x R x z

∈
∈

∈

⎡ ⎤
⎢ ⎥
⎣ ⎦=

⎡ ⎤
⎢ ⎥
⎣ ⎦

∏

∑ ∏

 (18) 

' ' '

'

( ) ( | ) ( ( ) | , )
( | , ( ), , )

( ) ( | ) ( ( ) | , )
x

b
x x y x y

x y y b
x x y x y

z

P z P x z P R x z z
P z x R x y z

P z P x z P R x z z

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦∑

 (19) 

 
Note that when b=1, the above equations return back to Equations (12) and (13), which 

correspond to the expectation step of the normal EM algorithm. On the other hand, when b=0, the 

posteriors estimated in Equations (18) and (19) become uniform distributions that completely 

ignore any training data. By varying b between 0 and 1, we are able to adjust posteriors between 

uniform distributions and the distributions that are estimated from training data. In the Annealed 

EM algorithm, parameter b is increased slowly from 0 to 1. Thus, the posteriors initially start as 

uniform distributions. With the increasing value for b, the posteriors are more influenced by 

training data and move away from uniform distributions. The purpose of slowly increasing 

parameter b is to let the information from training data gradually being transferred into the model, 

which prevents the model from committing to training data at early stage and thereby helps the 

EM algorithm avoid undesirable local optimum. By viewing b as the inverse of so-called 

‘temperature’, the process of increasing b is analogous to the annealing process that slowly drops 

system temperature. 

The second smoothing strategy is to introduce a model prior into the mixture model. The 

mixture models presented in previous sections are based on the maximum likelihood estimation, 

which determine the model parameters by maximizing the likelihood of training data. To 

regularize the mixture model, this approach maximizes the posterior of training data, which is a 

product of the prior and the likelihood. It is also called maximum a posterior approach (MAP). 

Compared to the maximum likelihood approach, MAP has the advantage in that the choice of 
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parameters is affected not only by training data but also the prior preference of mixture models. It 

is particularly useful when the amount of training data is insufficient for learning a reliable 

model. Since a uniform distribution is our best guess when no rating information is exposed, in 

general, an appropriate prior should favor distributions with equal probabilities. One choice of 

such a prior is the Dirichlet prior with uniform means. Using the JMM as an example, the 

Dirichlet prior for the JMM can be written as: 

, , , ,
( | , , , ) ( ) ( | ) ( | ) ( | , )

x x y x y

c da b

x x y x y
z x z y z z z r

P a b c d P z P x z P y z P r z z
⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎪ ⎪ ⎪ ⎪∝ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

∏ ∏ ∏ ∏θ  (20) 

where { ( ), ( | ), ( | ), ( | , )}x x y x yP z P x z P z y P r z z=θ  represents the parameter space for the JMM, 

and a, b, c, and d are hyper parameters for Dirichlet distribution. Combining the prior in the 

above equation with the likelihood function in Equation (11), we have the objective function for 

MAP written as: 

( )

, , , ,

log ( | ) ( ) ( | ) ( ( ) | , )

log ( ) log ( | ) log ( | ) log ( | , )
y x

x x y x y

y x x y x y
y z zx X y

x x y x y
z x z y z r z z

L P z y P z P x z P R x z z

a P z b P x z c P z y d P r z z
∈

⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

+ + +

∑ ∑ ∑∏

∑ ∑ ∑ ∑
 (21) 

Our goal is to find the parameters that maximize the above objective function. In the above 

equation, hyper parameters a, b, c, and d have played the role of regularization, and their values 

reflect our confidence on the prior preference of the mixture models. When we are unconfident 

about the prior preference, all the hyper parameters will be set small and the resulting parameters 

will be mainly determined by the likelihood term. On the other hand, when we are confident 

about the prior preference, all the hyper parameters will be set large and the resulting parameters 

will be mainly determined by the prior term. Thus, by adjusting hyper parameters a, b, c, and d, 

we are able to make appropriate tradeoff between the training data and the prior knowledge of the 

models. The detailed EM algorithm for maximizing the objective function in Equation (21) is 

listed in Appendix A. 

5 Rating Prediction 
 
To predict the ratings of items for a test user ty , we need to estimate distributions of latent 

variables that are related to the test user. In addition to the ratings provided by training users, each 

test user also provides a small number of rated items that can be utilized to discover distributions 

of related latent class variables for the test user. Let Dtrain and Dtest stand for the rating data for 
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training users and test user ty , respectively. Let m
iih 1}{ =  be the hidden variables. Let trainθ  and 

1{ ( | )}t m
test i iP h y ==θ  represent the parameter space that is related to training users and the test 

user, respectively. In order to predict the rating of an item x by the test user yt, we need to 

estimate the likelihood ( | , , )train testP r D D x  for each rating category ‘r’, which can be 

approximated into the following expression: 

* * * * *

( | , , ) ( | , , ) ( | ) ( | , )

( | , , ) ( | ) ( | , )
test train

train test test train train train test train test
M M

test train train train test train test

P r D D x P r x P D P D

P r x P D P D

=

≈

∑ ∑ θ θ θ θ θ

θ θ θ θ θ
 (22) 

where *
trainθ  and *

testθ  stand for the optimal parameters that maximizes likelihood *( | )train trainP Dθ  

and * *( | , )train test testP Dθ θ , respectively. In the above expression, we approximate the average with 

its optimal value. The advantage of the above approach is that, to learn *
testθ , i.e., the parameters 

related to the test user, we no longer need the training data Dtrain. Instead, information inside the 

training data has been summarized into *
trainθ , i.e., parameters related to training users. Thus, *

testθ  

is decided only by *
trainθ  and Dtest. Using this approximation, we will be able to efficiently predict 

ratings for the test user. Take the JMM model as an example, the parameter space related to the 

test user is { ( | )}t
test yP z y=θ  and the optimal )|( t

y yzP  is computed by simply maximizing the 

likelihood of rating data by the test user, i.e., 

( )
log ( | ; ) ( ; ) ( | ; ) ( ( ) | , ; )

log ( | ; )

t
t

y x

y

t
y test x train x train x y trainy

z zx X y

t
y test

z

L P z y P z P x z P R x z z

c P z y

∈

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

+

∑ ∑∏

∑

θ θ θ θ

θ
 (23) 

In the above equation, we add either trainθ  or  testθ  into each probability to illustrate which 

parameter space it belongs to. Since Equation (23) only involves the rated examples from test 

user ty , finding optimal solution for )|( t
y yzP  usually can be done efficiently. 

6 Experiments 

In previous sections, we have analyzed a number of mixture models with different complexity in 

terms of their analytical properties. In this section, we present experiment results that allow us to 

examine how their analytical difference is correlated with their empirical performance. 

Specifically, we address the following five issues:  
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1) Is separate modeling of users and items important to collaborative filtering? Recall that the 

JMM and the FMM differ from the Aspect Model and Bayesian Clustering in that they 

introduce two different class variables for modeling users and items separately. Thus, by 

comparing both the JMM and the FMM to the Aspect Model and the Bayesian Clustering, we 

will be able to see if separate clustering of users and items is effective for collaborative 

filtering. 

2) Is it beneficial to allow a user/item to belong to multiple classes?  The difference between the 

JMM and the FMM is that the JMM assumes a single class for each user while the FMM 

allows each user to be in multiple classes. By comparing these two models, we will be able to 

see which assumption is more appropriate for collaborative filtering.  

3) Which smoothing technique is more effective for collaborative filtering? At the end of Section 

4, we discussed two different methods for smoothing the EM algorithm, including an 

Annealed EM algorithm (AEM) and a MAP approach. Both methods prevent the estimation 

of parameters from being skewed at the early stage of EM iterations. We will compare the 

effectiveness of the two smoothing methods for collaborative filtering. 

4) Would modeling the distinction between intrinsic preferences and rating patterns help 

improve the performance of collaborative filtering? The Decoupled Model (DM) is similar to 

the Flexible Mixture Model (FMM) except that it models the intrinsic preferences and rating 

strategies of users separately by using two different sets of class variables. We will compare 

the Decoupled Model to the Flexible Mixture Model to see whether the distinction between 

intrinsic preferences and rating patterns helps improve the performance of collaborative 

filtering. 

5) How effective are the proposed models compared to other proposed models? We compare all 

five mixture models to other approaches for collaborative filtering under various conditions. 

In previous studies, when compared with the memory-based approaches, the model-based 

approaches tend to have mixed results (Breese et al. 1998). It is thus interesting to see if some 

Table 4. Characteristics of MovieRating and EachMovie. 

 MovieRating EachMovie 

Number of Users 500 2000 

Number of Items 1000 1682 

Avg. Number of rated Items/User 87.7 129.6 

The scale of Ratings 1-5 1-6 
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sophisticated models, such as the Decoupled Model that decouples the intrinsic preferences of 

users from their rating patterns, can outperform memory-based approaches.  

Two datasets of movie ratings are used in our experiments, i.e., ‘MovieRating’ 1  and 

‘EachMovie’2. Specifically, we extracted a subset of 2,000 users with more than 40 ratings from 

‘EachMovie’ since evaluation based on users with few ratings can be unreliable. The global 

statistics of these two datasets are summarized in Table 4.  

A major challenge in collaborative filtering applications is for the system to operate 

effectively when it has not yet acquired a large amount of training data (i.e., the so-called “cold 

start” problem). To test our algorithms in such a challenging and realistic scenario, we vary the 

number of training users from a small value to a large value. To get a better sense of the data 

sparseness problem, we introduce the measurement called ‘movie coverage’, which measures the 

average number of times that each movie is rated in the training database. In particular, we 

consider three different cases of training data: 

1) Small Training Data. In this case, the training database consists of 20 different users, and the 

‘movie coverage’ for ‘MovieRating’ and ‘EachMovie’ is only 1.8 and 1.5, respectively. In 

another word, by average each movie is rated by less than 2 training users. 

2)  Medium Training Data. In this case, the training database consists of 100 different users for 

‘MovieRating’ and 200 users for ‘EachMovie’. Its ‘movie coverage’ is 8.8 and 15.4 

‘MovieRating’ and ‘EachMovie’, which is substantially larger than the small training data. 

3) Large Training Data. In this case, the training database consists of 200 different users for 

‘MovieRating’ and 400 users for ‘EachMovie’. The ‘movie coverage’ for this case is 17.7 

and 30.8. 

By varying the number of training users from a ‘small training data’ to a ‘large training data’, we 

are able to examine the robustness of the learning procedure. The other dimension is to examine 

the robustness of mixture models with respect to the number of items rated by the test user. In this 

experiment, we test mixture models against test users with 5, 10, and 20 given items. By varying 

the number of given items, we can test the robustness of the prediction procedure. 

For the aspect model (AM), we choose the variant in Figure 2(a) as a baseline algorithm since 

it consists of a smaller number of parameters and appears to be more robust than the variant in 

Figure 2(b). The number of clusters is set to be 10 for Bayesian Clustering and 20 for Aspect 

Model. The number of classes for users and items are set to be 10 and 20 respectively, for the 

Joint Mixture Model, the Flexible Mixture Model, and the Decoupled Model. These numbers are 
                                                      
1 http://www.cs.usyd.edu.au/~irena/movie_data.zip 
2 http://research.compaq.com/SRC/eachmovie 
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selected based on the results of cross validation. The number of classes for rating patterns in 

Decoupled Model is the same as the number of different rating category, which leads to 5 classes 

of rating patterns for ‘MovieRating’ and 6 for ‘EachMovie’.  

For evaluation, we look at the mean absolute deviation of the predicted ratings from the 

actual ratings on items by the test user, i.e., 

( )

1 ˆ| ( ) ( ) |t t
t t

y y
y x X y

S R x R x
m ∈

= −∑ ∑
%

 (24) 

where ˆ ( )ty
R x  is the predicted rating on item x for test user yt, ( )ty

R x  is the actual rating for test 

user yt, and m is the total number of test items that have been rated by all test users. We refer to 

this measure as the mean absolute error (MAE) in the rest of this paper.  There are some other 

measures like the Receiver Operating Characteristic (ROC) as a decision-support accuracy 

measure (Breese, et. al., 1998) and the normalized MAE. But since MAE has been the most 

commonly used metric and has been reported in most previous research (Breese, et. al., 1998; 

Herlocker, et. al., 1999; Melville, et. al., 2002; SWAMI, 2000; Pennock, et. al., 2000), we chose it 

as the evaluation measure in our experiments to make our results more comparable. 

Table 5. MAE Results for ‘MovieRating’. ‘FMM’ stands for the Flexible Mixture Model, ‘JMM’ 

stands for the Joint Mixture Model, ‘BC’ stands for Bayesian Clustering, and ‘AM’ stands for 

Aspect Model. A smaller value means a better performance. 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

FMM 1.000 0.994 0.990 

JMM 0.990 0.968 0.920 

BC 1.10 1.09 1.08 
20 

AM 0.982 0.976 0.958 

FMM 0.823 0.822 0.817 

JMM 0.868 0.868 0.854 

BC 0.968 0.946 0.941 
100 

AM 0.882 0.856 0.836 

FMM 0.804 0.801 0.799 

JMM 0.840 0.837 0.831 

BC 0.949 0.942 0.912 
200 

AM 0.891 0.850 0.818 
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6.1 Experiments with clustering of users and items 

In these experiments, we want to address the first two questions listed at the beginning of this 

section, namely whether modeling users and items separately is important to collaborative 

filtering and whether it is beneficial to allow a user/item to belong to multiple clusters. MAE 

results for the Joint Mixture Model, the Flexible Mixture Model, the Bayesian Clustering, and the 

Aspect Model for ‘MovieRating’ and ‘EachMovie’ are summarized in Tables 5 and 6, 

respectively.  

Several interesting observations can be made from Tables 5 and 6: 

1) Compared to the Joint Mixture Model (JMM), the Flexible Mixture Model (FMM) performs 

substantially better in most configurations except for the collection ‘MovieRating’ when the 

number of training users is only 20. This is because the FMM has more parameters to fit than 

the JMM and thus it fails to perform well when the number of training users is small. In the 

next experiment where smoothing methods are applied to the EM algorithm, we will see that 

the FMM is able to outperform the JMM substantially even for this single case. The only 

difference between these two models is that the FMM allows multiple classes for each user 

Table 6. MAE Results for ‘EachMovie’. ‘FMM’ stands for the Flexible Mixture Model, ‘JMM’ 

stands for the Joint Mixture Model, ‘BC’ stands for Bayesian Clustering, and ‘AM’ stands for 

Aspect Model. A smaller value means a better performance. 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

FMM 1.31 1.31 1.30 

JMM 1.38 1.37 1.36 

BC 1.46 1.45 1.44 
20 

AM 1.28 1.24 1.23 

FMM 1.08 1.06 1.05 

JMM 1.17 1.15 1.15 

BC 1.25 1.22 1.17 
200 

AM 1.27 1.18 1.14 

FMM 1.06 1.05 1.04 

JMM 1.10 1.09 1.09 

BC 1.17 1.15 1.14 
400 

AM 1.28 1.19 1.16 
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while the JMM does not. Thus, the fact that the FMM outperforms the JMM indicates that 

allowing a user to be in multiple classes is important to collaborative filtering. The hypothesis 

is further confirmed by the fact that the aspect model performs better than the Bayesian 

Clustering algorithm for most configurations (except for the EachMovie dataset when the 

number of training users is 400).  

2) Compared to the Bayesian Clustering and the Aspect Model, the Flexible Model and the Joint 

Mixture Model perform substantially better for most configurations except when the number 

of training users is small. Again, this is because both the FMM and the JMM are more 

sophisticated than the Bayesian Clustering and the Aspect Model and thus tend to overfit 

training data when the number of users is small. In the next experiment, we will see that with 

appropriate smoothing technique, both the FMM and the JMM perform well even in the case 

of small training. Since both the FMM and JMM distinguish from the Aspect Model and the 

Bayesian Clustering in that separate clustering is applied to users and items, the results from 

Tables 5 and 6 indicate that modeling users and items separately is effective for collaborative 

filtering. 

6.2 Experiments with Smoothing Methods  

In Section 3, we discussed two different methods for smoothing the EM algorithms: the Annealed 

EM algorithm that avoids undesirable local optimum by slowly increasing variable ‘b’, and the 

maximum a posterior (MAP) approach that uses Dirichlet priors to regularize the mixture models. 

In our experiments, variable ‘b’ in the Annealing EM algorithm is increased from 0 to 1 at the 

pace of 0.1. The hyper parameters ‘a’, ‘b’, ‘c’, and ‘d’ in the MAP approach are set as follows: 

| ( ) |
| |

y
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X y
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Zγ
=

∑
 

| ( ) |
| |

y
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X y
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× ×
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X y
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N Zγ
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× ×
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| ( ) |
| | | |

y

x y

X y
d

R Z Zγ
=

× × ×
∑

where |X(y)| stands for the number of items rated by the user ‘y’. Parameter γ is determined by the 

cross validation approach. It randomly selects 80% of training users as the training set and 20% 

of them as validation set. γ is ranged from 100 to 100000. The final value for γ used in our 

experiment is  10000. 

Tables 7 and 8 summarize the results for the Flexible Mixture Model using two different 

smoothing methods. The results of applying smoothing methods to the Joint Mixture Model are 

presented in Tables 9 and 10. 

 
Two observations can be drawn from Tables (7)-(10): 
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1) According to Tables (7)-(10), the MAP (i.e., maximum a posterior) approach outperforms (or 

as effective as) the Annealed EM algorithm for both the Joint Mixture Model and the Flexible 

Mixture Model in all configurations. In fact, compared to the results that do not use any 

smoothing algorithm in Tables (3) and (4), the Annealed EM algorithm only achieves the 

same performance as the original EM for all cases. Thus, our studies indicate that the MAP 

approach is a more effective smoothing method for collaborative filtering.  
 

2) With a more careful examination of Tables (7) and (8), we see that the MAP approach is able 

to improve the performance of the FMM substantially when the number of training users is 

small (i.e., 20 for both ‘MovieRating’ and ‘EachMovie’). The improvement becomes modest 

when the number of training user becomes large (i.e., 100 and 200 for ‘MovieRating’, and 

200 and 400 for ‘EachMovie’). This is consistent with the spirit of Bayesian statistics, in 

Table 7. MAE for the Flexible Mixture Model (FMM) on the ‘MovieRating’ dataset using 

Annealed EM algorithm (AEM) and maximum a posterior (MAP). 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

AEM 1.000 0.994 0.990 
20 

MAP 0.881 0.877 0.870 

AEM 0.823 0.822 0.817 
100 

MAP 0.821 0.820 0.813 

AEM 0.804 0.801 0.799 
200 

MAP 0.797 0.786 0.781 

 

Table 8. MAE for the Flexible Mixture Model (FMM) on the ‘EachMovie’ dataset using 

Annealed EM algorithm (AEM) and maximum a posterior (MAP). 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

AEM 1.31 1.31 1.30 
20 

MAP 1.23 1.22 1.22 

AEM 1.08 1.06 1.05 
200 

MAP 1.08 1.05 1.04 

AEM 1.06 1.05 1.04 
400 

MAP 1.06 1.04 1.03 
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which a model prior is useful only when the amount of training data is small. When the 

amount of training data is sufficiently large, the effect of model prior will eventually 

diminish.  

3) In the previous experiment, the aspect model is the winner in the case of small training data. 

With the help of appropriate smoothing, the FMM model is able to perform better than the 

aspect model in the case of small training. This fact again indicates that the smoothing 

method is able to effectively alleviate the problem of sparse data. 

Due to the success of the MAP method, it is used for the remaining experiments.  

6.3 Experiments with the Decoupled Model (DM) 

Compared to the other four models, the Decoupled Model is unique in that it explicitly addresses 

the distinction between preferences and ratings of users by modeling them separately. In this 

experiment we attempt to answer the question, i.e., would modeling the distinction between the 

Table 9. MAE for the Joint Mixture Model (JMM) on the ‘MovieRating’ dataset using Annealed 

EM algorithm (AEM) and maximum a posterior (MAP). 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

AEM 0.990 0.968 0.920 
20 

MAP 0.986 0.963 0.920 

AEM 0.868 0.868 0.854 
100 

MAP 0.864 0.863 0.854 

AEM 0.840 0.837 0.831 
200 

MAP 0.837 0.833 0.831 

 
Table 10. MAE for the Joint Mixture Model (JMM) on the ‘EachMovie’ dataset using Annealed 

EM algorithm (AEM) and maximum a posterior (MAP). 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

AEM 1.38 1.37 1.36 
20 

MAP 1.37 1.35 1.34 

AEM 1.17 1.15 1.15 
200 

MAP 1.17 1.15 1.14 

AEM 1.10 1.10 1.09 
400 

MAP 1.10 1.09 1.09 
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preferences and ratings help improve the performance? The results for the Decoupled Model on 

‘MovieRating’ and ‘EachMovie’ are listed in Tables 11 and 12, together with the results for the 

Flexible Mixture Model (copied from Tables 4 and 5). The Flexible Mixture Model is closely 

related to the Decoupled Model and differs from it only by the lack of modeling for rating 

patterns. By comparing the performance of these two models, we will be able to see if the 

introduction of separate class variables for preferences and ratings is effective for collaborative 

filtering. 

According to Tables 11 and 12, the Decoupled Model outperforms the Flexible Mixture Model in 

all configurations. Although the difference in performance appears to be insignificant in some 

cases, it is interesting to note that when the number of given items increases, the gap between 

these two models also increases. One possible explanation is that when there are only a small 

number of given items, it is rather difficult to determine the type of rating patterns for the testing 

Table 11. MAE for the Flexible Mixture Model (FMM) and the Decoupled Model (DM) on 

the ‘MovieRating’ dataset. A smaller value means a better performance. 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

DM 0.874 0.871 0.860 
20 

FMM 0.881 0.877 0.870 

DM 0.814 0.810 0.799 
100 

FMM 0.821 0.820 0.813 

DM 0.790 0.777 0.761 
200 

FMM 0.797 0.786 0.781 

 
Table 12. MAE for the Flexible Mixture Model (FMM) and the Decoupled Model (DM) on 

the ‘EachMovie’ dataset. A smaller value means a better performance. 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

DM 1.20 1.18 1.17 
20 

FMM 1.23 1.22 1.22 

DM 1.07 1.04 1.03 
200 

FMM 1.08 1.05 1.04 

DM 1.05 1.03 1.02 
400 

FMM 1.06 1.04 1.03 
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user. As the number of given items increases, this ambiguity will decrease quickly and therefore 

the advantage of the Decoupled Model over the Flexible Mixture Model becomes clearer. Indeed, 

it is a bit surprising that even with only five given items and a small number of training users, the 

Decoupled Model still improves the performance slightly as it has many more parameters to 

estimate than the Flexible Mixture Model. We suspect that the skewed distribution of ratings 

among items, i.e., a few items account for a large number of ratings, may have helped.  

6.4 Comparison with Other Approaches for Collaborative Filtering 

In this subsection, we compare all five mixture models to the memory-based approaches for 

collaborative filtering, including the Personal Diagnosis (PD), the Vector Similarity method (VS) 

and the Pearson Correlation Coefficient method (PCC). We first briefly introduce the three 

memory-based approaches and then present the empirical results. 

6.4.1 Memory-based Methods for Collaborative Filtering 
Memory-based algorithms store the rating examples of training users and predict a test user’s 

ratings based on the corresponding ratings of the users in the training database that are similar to 

the test user. Three commonly used methods will be compared in this experiment. They are: 

• Pearson Correlation Coefficient (PCC) 

According to (Resnick et. al., 1994), the Pearson Correlation Coefficient method predicts the 

rating of a test user yt on item x as: 

,

,
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• Vector Similarity (VS) 

This method is very similar to the PCC method except that the correlation coefficient , ty yw is 

computed as: 
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• Personality Diagnosis (PD) 

In the personality diagnosis model, the rating of test user yt on item x is assumed to be drawn 

from an independent normal distribution with the mean as the true rating as )(xRTrue
yt : 

22 2))()((
))(|)((

σxRxRTrue
yy

True
tyty

tt exRxRP
−−

∝  

where the standard deviation σ  is set to constant 1 in our experiments. Then, the probability of 

generating the observed rating values of the test user by any training user y is written as: 

∏
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Finally, the likelihood for test user yt to rate an unseen item x as r is computed as: 
22 2))(()|())(( σrxR

y
y

yy
y

tt eRRPrxRP −−∑∝=  

The predicted rating for item ‘x’ by the test user will be the rating category r that has the largest 

likelihood ))(( rxRP ty
= . Previous empirical studies have shown that the PD method performs 

better than several other approaches for collaborative filtering (Pennock et al., 2000). 

6.4.2 Comparison Results 
 
The results for five mixture models and three memory-based approaches are summarized in 

Tables 13 and 14. Both the Decoupled Model and the Flexible Mixture Model are considerably 

better in most configurations than the other methods for collaborative filtering, including the three 

mixture models and three model-based approaches for most cases. The only exception is when 

the number of training user is 20, in which the memory-based models perform substantially better 

than the model-based approaches. The overall success of the Decoupled Model and the Flexible 

Mixture Model suggests that, compared to the memory-based approaches, graphical models are 

not only advantageous in principle, but also empirically superior due to their capabilities of 

capturing the distinction between the intrinsic preferences and rating patterns in a principled way.  

The fact that memory-based approaches perform better in the case of small training data is 

because the number of parameters used by the model-based approaches is larger than the size of 

training data. When there are only 20 training users, the number of rated items is less than 3,000 

(1700 for the ‘MovieRating’ dataset and 2500 for ‘EachMovie’ dataset), but the number of 

parameters is actually over 20,000 for all the models (over 20,000 for ‘MovieRating’ dataset and 

30,000 for ‘EachMovie’ dataset.). Therefore, when there are only 20 training users, the amount of 

training data is insufficient for creating a reliable and effective model for collaborative filtering.  
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Table 13. MAE for eight different models on the ‘MovieRating’ dataset, including a Pearson 

Correlation Coefficient approach (PCC), a Vector Similarity approach (VS), a Personality 

Diagnosis approach (PD), a Aspect Model (AM), a Bayesian Clustering approach (BC), a 

Decoupled Model (DM), a Flexible Mixture Model (FMM) and a Joint Mixture Model (JMM). A 

smaller value means a better performance. 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

PCC 0.912 0.840 0.812 

VS 0.912 0.840 0.812 

PD 0.888 0.882 0.875 

AM 0.982 0.976 0.958 

BC 1.10 1.09 1.08 

DM 0.874 0.871 0.860 

FMM 0.881 0.877 0.870 

20 

JMM 0.986 0.963 0.920 

PCC 0.881 0.832 0.809 

VS 0.859 0.834 0.823 

PD 0.839 0.826 0.818 

AM 0.882 0.856 0.836 

BC 0.968 0.946 0.941 

DM 0.814 0.810 0.799 

FMM 0.821 0.820 0.813 

100 

JMM 0.864 0.863 0.854 

PCC 0.878 0.828 0.801 

VS 0.862 0.950 0.854 

PD 0.835 0.816 0.806 

AM 0.891 0.850 0.818 

BC 0.949 0.942 0.912 

DM 0.790 0.777 0.761 

FMM 0.797 0.786 0.781 

200 

JMM 0.837 0.833 0.831 
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Table 14. MAE for eight different models on the ‘EachMovie’ dataset, including a Pearson 

Correlation Coefficient approach (PCC), a Vector Similarity approach (VS), a Personality 

Diagnosis approach (PD), a Aspect Model (AM), a Bayesian Clustering approach (BC), a 

Decoupled Model (DM), a Flexible Mixture Model (FMM) and a Joint Mixture Model (JMM). 

A smaller value means a better performance. 

Training 

Users Size 
Algorithms 

5 Items 

Given 

10 Items 

Given 

20 Items 

Given  

PCC 1.26 1.19 1.18 

VS 1.24 1.19 1.17 

PD 1.25 1.24 1.23 

AM 1.28 1.24 1.23 

BC 1.46 1.45 1.44 

DM 1.20 1.18 1.17 

FMM 1.23 1.22 1.22 

20 

JMM 1.37 .135 1.34 

PCC 1.22 1.16 1.13 

VS 1.25 1.24 1.26 

PD 1.19 1.16 1.15 

AM 1.27 1.18 1.14 

BC 1.25 1.22 1.17 

DM 1.07 1.04 1.03 

FMM 1.08 1.05 1.04 

200 

JMM 1.17 1.15 1.14 

PCC 1.22 1.16 1.13 

VS 1.32 1.33 1.37 

PD 1.18 1.16 1.15 

AM 1.28 1.19 1.16 

BC 1.17 1.15 1.14 

DM 1.05 1.03 1.02 

FMM 1.06 1.04 1.03 

400 

JMM 1.10 1.09 1.09 
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This analysis indicates that the performance of model-based approaches usually depends 

strongly on the availability of training data. When the amount of training data is small, it is better 

to use memory-based approaches for collaborative filtering. 

7 Conclusions and Future Work 

In this paper, we conduct a systematic study of a large subset of graphicals models – mixture 

models – for collaborative filtering. In general, there are three components that need to be 

modeled carefully: the users, the items and the ratings.  We proposed three desirable properties 

that a reasonable graphical model for collaborative filtering should satisfy: (1) separate clustering 

of users and items; (2) flexibility for a user/item to be in multiple clusters; (3) decoupling of 

users’ preferences and rating patterns.  

We thoroughly analyzed five different mixture models, including the Bayesian Clustering 

(BC), the Aspect Model (AM), the Flexible Mixture Model (FMM), the Joint Mixture Model 

(JMM) and the Decoupled Model (DM) based on the three proposed properties, and found that 

(1) The DM is the only model that satisfies all the three properties, and all others fail to decouple 

user preferences and rating patterns; (2) The JMM and FMM models allow separate clustering of 

users and items, whereas the BC and AM do not; and (3) Compared with JMM, the FMM further 

allows a user to be in multiple clusters.   

We study the empirical impact of such analytical difference on real datasets. Experiments 

over two datasets of movie ratings under several different configurations show that in general, the 

fulfillment of the proposed properties tends to be positively correlated with the model’s 

performance. In particular, the Decoupled Model, which satisfies all three properties, outperforms 

the other mixture models as well as most memory-based approaches for collaborative filtering. 

Experiments also show that the Flexible Mixture Model is consistently better than the Joint 

Mixture Model by the MAE measure, which indicates that it is beneficial to allow a user to be in 

multiple classes. Meanwhile, the success of the FMM over the Bayesian Clustering algorithm and 

the Aspect Model indicates that it is important to have separate clustering of users and items for 

collaborative filtering.  

We also empirically study two smoothing methods, the Annealed EM algorithm (AEM) and 

the Maximum A Posterior (MAP), and found that smoothing is important for improving the 

performance of collaborative filtering systems, particularly when the number of training users is 

small. Empirical results show that the MAP is a more effective method for collaborative filtering. 

In summary, our study shows that graphical models are powerful tools for modeling 

collaborative filtering, but careful design of the model is necessary to achieve good performance. 
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There are several interesting directions for extending this work. First, given the success of 

decoupling user preferences from rating patterns, it would be very interesting to explore other 

ways of modeling preferences as done in some related work (Ha & Haddawy 1998; Freund et al. 

1998;Cohen et al. 1999). One potentially promising direction is to treat the rating problem as a 

ranking problem, and apply the existing ranking algorithms, such as Prank and RankBoost, to 

collaborative filtering. In the future, we plan to study how to incorporate the ranking algorithm 

into the graphical models. Second, we also believe that the decoupling problem that we addressed 

may represent a more general need of modeling “noise” in similar problems such as gene 

microarray data analysis in bioinformatics. We plan to explore a more general probabilistic 

framework for all these similar problems.  
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Appendix A: The EM Algorithm for the Joint Mixture Model using Maximum A 

Posterior (MAP) Approach 

We studied the MAP approach for mixture models in Section 4.2. The idea is to introduce the 

model priors that express the preference of parameters given no training data. The resulting 

parameters will not only maximize the likelihood of training data but also satisfy the prior 

preference. The E-step for the Joint Mixture Model using MAP approach is same as the original 

one that is already stated in Equations (12) and (13). The updating equations in M-step are 

changed to the following expressions: 
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Compared to the EM algorithm for the JMM in Equations (14)-(17), hyper parameters a, b, c, and 

d in the above equations behave like pseudo counts. In addition to the ‘counts’ that are collected 

from training data, all probabilities are also affected by the pseudo counts that come from hyper 

parameters. When the number of training examples is small, the pseudo counts will dominate 

over the estimation and thus most distribution tend to be uniform. On the other hand, when the 

amount of training data is large, the effect of pseudo counts will be ignored and the results 

obtained from the maximum a posterior approach will be similar to the maximum likelihood 

approach. 
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