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Abstract
Collaborative filtering is a general technique for exploiting the preference patterns of a group of users to
predict the utility of items for a particular user. Three different components need to be modeled in a
collaborative filtering problem: users, items, and ratings. Previous research on applying probabilistic
models to collaborative filtering has shown promising results. However, there is a lack of systematic
studies of different ways to model each of the three components and their interactions. In this paper, we
conduct a broad and systematic study on different mixture models for collaborative filtering. We discuss
general issues related to using a mixture model for collaborative filtering, and propose three properties that
a graphical model is expected to satisfy. Using these properties, we thoroughly examine five different
mixture models, including Bayesian Clustering (BC), Aspect Model (AM), Flexible Mixture Model
(FMM), Joint Mixture Model (JMM), and the Decoupled Model (DM). We compare these models both
analytically and experimentally. Experiments over two datasets of movie ratings under different
configurations show that in general, whether a model satisfies the proposed properties tends to be
correlated with its performance. In particular, the Decoupled Model, which satisfies all the three desired
properties, outperforms the other mixture models as well as many other existing approaches for
collaborative filtering. Our study shows that graphical models are powerful tools for modeling

collaborative filtering, but careful design is necessary to achieve good performance.
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1 Introduction

The rapid growth of information over Internet demands intelligent information agents that can sift
through all the available information and find out the most valuable to us. These intelligent
systems can be categorized into two classes: Collaborative Filtering (CF) systems and Content-
based Filtering (CBF) systems. The difference between them is that collaborative filtering
systems utilize the given ratings of training users to make recommendation for test users while
content-based filtering systems rely on contents of items for recommendation. In this paper, we
focus on the collaborative filtering systems.

Most collaborative filtering methods fall into two categories: Memory-based algorithms and
Model-based algorithms (Breese et al., 1998). In memory-based algorithms, rating examples of
different users are simply stored in a training database, and the rating of a test user on a specific
item is predicted based on the corresponding ratings of training users who share similar tastes as
the test user. In contrast, in model-based algorithms, statistical models are learned from the given
ratings of training users and ratings of test users are estimated using the learned model. In the
previous studies, both types of approaches have been shown to be effective for collaborative
filtering (Breese et al., 1998).

In general, most collaborative filtering approaches assume that users with similar “tastes”
would rate items similarly, and the idea of clustering has been exploited in all approaches either
explicitly or implicitly. Compared with memory-based approaches, model-based approaches
provide a more principled way of performing clustering, and is also often much more efficient in
terms of the computation cost at the prediction time. The basic idea of a model-based approach is
to cluster items and/or training users into classes explicitly and predict ratings of a test user using
the ratings of classes that fit in well with the test user and/or items.

Several different probabilistic models have been proposed and studied in the previous work
(Breese et al., 1998, Hofmann & Puzicha 1998, Pennock et al., 2000, Popescul et al., 2001, Ross
& Zemel 2002, Si et. al., 2003, Jin et. al., 2003, Hofmann, 2003). These models have succeeded
in capturing user/item similarities through probabilistic clustering in one way or the other, and
have all been shown to be quite promising. Most of these methods can be represented as
graphical models. However, there has been no systematic study and comparison of different
graphical models proposed for collaborative filtering, which is necessary for both theoretical and
empirical reasons: (1) Theoretically, different models make different assumptions. We need to
understand the difference and connections among these models in terms of the underlying
assumptions. (2) Empirically, these different models are evaluated with different experimental

settings in previous studies; it would be useful to see how they are compared with each other
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using identical experimental settings. Moreover, a systematic study is necessary for explaining
why some models tend to perform better than others.

In this paper, we conduct a systematic study of a large subset of graphical models — mixture
models — for collaborative filtering. One of the fundamental difficulties with collaborative
filtering is the sparse data issue. It arises when most users only provide ratings for a small number
of items. As a result, even two users have similar interests, they may not share any common items
that are rated by both of them. Mixture models are the natural remedy to the sparse data problem.
By grouping items with similar ratings into clusters, the mixture models are able to estimate the
similarity among different users based on their ratings on item clusters, not individual items.
Given that the three components, namely users, items, and ratings, involve in the collaborative
filtering, a good mixture model for collaborative filtering should be able to not only cluster each
component, but also model the interactions between different components appropriately. We
propose three desirable properties that a reasonable graphical model for collaborative filtering
should satisfy: (1) separate clustering of users and items; (2) flexibility for a user/item to be in
multiple clusters; (3) decoupling of user preference from its rating patterns.

We thoroughly analyze five different mixture models, including Bayesian Clustering (BC),
Aspect Model (AM), Flexible Mixture Model (FMM), Joint Mixture Model (JMM) and the
Decoupled Model (DM) based on the three proposed properties. We also compare these models
empirically. Experiments over two datasets of movie ratings under several different
configurations show that in general, the fulfililment of the proposed properties tends to be
positively correlated with the model’s performance. In particular, the DM model, which satisfies
all the three properties that we want, outperforms all the other mixture models as well as some
other existing approaches to collaborative filtering. Our study shows that graphical models are
powerful tools for modeling collaborative filtering, but careful design is necessary in order to
achieve good performance.

The rest of the paper is arranged as follows: Section 2 gives a general discussion of using
graphical models for collaborative filtering and presents the three desirable properties that any
graphical model should satisfy. In Section 3, we present and examine five different mixture
models in terms of their connections and differences. We discuss model estimation and rating
prediction in Section 4 and Section 5. Empirical studies are presented in Section 6. Conclusions

and future work are discussed in Section 7.
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2 Graphical Models for Collaborative Filtering

2.1 Problem Definition
We first introduce notations for formally describing the problem of collaborative filtering. Let

RKO={x,, X,.,......, X,, } be a set of items, %:{yl, Yy, Yy } D€ @ set of users, and {1,...,R} be the
set of possible ratings. Let {(X(l) »Yay l'(l)), ----- ,(X(L) Y I‘(L))} be the training database that
consists of ratings of different items from multiple training users. Each tuple (X(i), y(i),r(i))

represents that item Xy is rated as rj;, by user y, . Let R (x) be the rating of item x given by

user y and X (y) be the set of items rated by user y. In addition to the training database, each test

user also provides a small number of ratings to indicate his interests and preference. The goal of
collaborative filtering is to predict the rating r that a test user would give to an unrated item x

given the training database and the additional rating information from the test user.

To cast this problem into graphical models, we treat each tuple (X, Yy i) as an

observation that is randomly drawn from the joint distribution of three random variables - X, Y,

and R. Random variable X and Y can take any value from the set Xt and %, respectively.
Random variable R will take any integer value ranging from 1 to R. Through the training
database, we are able to model the interaction between the three random variables. There are
three possible choices of likelihood that we can maximize for the training data: p(r|x,y), p(r.,x|y)
and p(r,x,y). Although there is strong correlation between these quantities, maximizing data with
a different likelihood models different aspects of the data. For the first choice, i.e., p(r|x,y), we
focus on modeling why item x is rated by user y as r.

The second choice, i.e., p(r,x|y), differs from the first one in that it explains not only the observed
ratings but also why item x is chosen to be rated by user y. As a result, movies that have been
rated by many users will have more impact on the model estimation than movies that are only
rated by a few users. The third choice, i.e., p(r,x,y), models the joint distribution between the
three random variables. Under this choice, the model is also concerned with the behavior of users
(e.g., some users rate a lot of movies and others only rate a few). In particular, users with more
ratings tend to have larger impact on the final model than users that only rate a few items. Based
on the above discussion, it is clear that the choice of likelihood function for training data can have
a significant impact on model estimation and thus the performance of collaborative filtering.
Most existing probabilistic approaches to collaborative filtering fall into one of these three cases.
For example, the personality diagnosis method is a special case of the first one, where a Gaussian

4
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distribution is assumed for p(r|x,y). The aspect model can be regarded as a special case of the
third choice, where a mixture model is used for estimating p(r,x,y). In this paper, we will focus on
the second and third cases and systematically examine the different choices of mixture models.

Note that we intentionally ignore the possibility of modeling conditional probability p(r,y|x). This
is because in collaborative filtering, it is the users who actively select items to rate, not the vice

versa.

2.2 Major Issues in Designing a Graphical Model for Collaborative Filtering

In general, in order to model the similarity among different users, items and ratings given the
difficulty of sparse ratings provided by users, we need to cluster each component into groups and
model the interactions between different components appropriately. More specifically, the
following three important issues must be addressed:

Issue 1: how should we model user similarity and item similarity? Generally, we may
regard users and items as being from different types of entities and they couple with each other
through rating information. Therefore, a good clustering model for collaborative filtering is
expected to explicitly model both the classes of users and the classes of items and be able to
leverage their correlations. This means that the choice of latent variables in our graphical model
should allow for separate, yet coupled modeling of user similarity and item similarity. Of course,
the separation of user similarity from item similarity will lead to complex clustering models that
can be hard to estimate accurately with the data available. Models with different clustering
strategies will be examined in this paper.

Issue 2: should a user or an item be allowed to belong to multiple clusters? Since a user can
have diverse interests and an item may have multiple aspects, intuitively, it is desirable to allow
both items and users to be in multiple classes simultaneously. However, such a model may be too
flexible to capture the similarity of users and items effectively with a limited amount of training
data. Models with different assumptions about the membership of users and items will be
examined in this paper.

Issue 3: how can we capture the variances in rating patterns among the users with similar
interest of items? One common deficiency in most existing models for collaborative filtering is
that they are all based on the assumption that users with similar interests would rate items
similarly. This is incorrect because the rating pattern of a user is determined not only by his/her
interests but also by the rating strategy/habit. For example, some users are more “tolerant” than
others, and therefore their ratings of items tend to be higher than others although they share very

similar tastes of items. Thus, it is important for a collaborative filtering method to capture the
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variance among rating patterns of users with similar interest of items. Methods of how to model
such variances in a graphical model will be examined in this paper.

Based on the above discussion, we identify three important properties that a graphical model
for collaborative filtering should satisfy:

e It should support clustering of both users and items

e It should allow both users and items to be in multiple clusters

e It should decouple the rating patterns from intrinsic preference
In the following section, we will analyze a representative set of mixture models and examine

them in terms of these desirable properties.

3 Mixture Models for Collaborative Filtering

In this section, we discuss a variety of possible mixture models and examine their
assumptions about user and item clustering and whether they address the variances in rating

patterns.

3.1 Bayesian Clustering (BC)

In Bayesian Clustering (BC), we assume that the
same type of users would rate items similarly, thus
users can be automatically grouped together into a
set of user clusters, or user classes, according to their @

ratings of items. Formally, given a user class ‘z’, the

preferences for different items expressed as ratings

are independent, and the joint probability of user ~ Figure 1. Graphical model representation for
) ] ) Bayesian Clustering.

class ‘z’ and the ratings of items can be written as

the standard naive Bayes formulation:

P nhen)=P@I[PGID ()

where r; represents the rating for item x;. Thus, the joint probability for the ratings given by user
y, denoted as P({R, (X)}xcx(y) | ¥) » €an be written as:
PUR, (W}hex(y IN=2.P@ [T PR,(12) )
z xeX(y)
According to Equation (2), this model will first select a user class ‘z’ from the distribution P(z)
and then rate all the items using the same selected class ‘z’. In another word, this model assigns

each user to a single user class and therefore does not allow a user to be in multiple user classes.
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Parameters P(r|lz) can be learned automatically using the Expectation-Maximization (EM)
algorithm. More details of this model can be found in (Breese et al. 1998).

According to the three criteria mentioned in the previous section, Bayesian Clustering
appears to be the simplest mixture model: only cluster the users; each user is assumed to be of a
single cluster; no separation for preference and rating patterns. Figure 1 illustrates the basic idea

of the Bayesian Clustering.

3.2 Aspect Model (AM)

The aspect model is a probabilistic latent space model, which models individual preferences as a
convex combination of preference factors (Hofmann & Puzicha 1999). It introduces a latent
variable zeZ={z,,2,,....., 2, } for each user-item pair (x, y), and writes the joint probability for

each pair as:

P(x,y) =Y P(2)P(x| 2)P(y]2) 3)

zeZ

where P(z) is the class prior probability, P(x|z) and P(y|z) are class-dependent distributions for
items and users, respectively. Intuitively, this model means that the preference pattern of a user is
modeled by a combination of typical preference patterns, which are represented in the
distributions of P(z), P(x|z) and P(y|z).

There are two ways to the incorporate rating information ‘r’ into the basic aspect model:

P(X(|)’ Yy r(|)) = Z P(Z)P(X(I) | Z)P(y(|) | Z)P(ru) | 2) (4)

P(Xay: Yay:Ty) = ZZP(Z)P(X(I) [ 2)P(yqy | 2)P(rgy 12, X)) (5)

The corresponding graphical models are shown in Figure 2. Compared to the first approach in

Equation (4), the second approach in

Equation (5) has to estimate the conditional

@ probability ~ P(r,, |z,X,)) .,  which
@ @ ° @ corresponds to a larger parameter space and
@ ° may not be estimated reliably.

Unlike the Bayesian  Clustering

() (b)

Figure 2. Graphical models for the two )
extensions of aspect model in Equations (4) aspect model is able to model both users and
and (5).

algorithm, which only models ratings, the

items with conditional probabilities P(y|z)
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and P(x|z). Furthermore, unlike the Bayesian Clustering algorithm, where the joint probability for
a set of ratings by an individual user is modeled directly, the aspect model models the joint
probability P(x,y,r) separately for each rated item. As a result, the aspect model allows each
rating triplet to choose its own appropriate class while in Bayesian Clustering the same user class
is used to rate all the items. However, the aspect model only introduces a single set of class
variables for items, users, and ratings. This essentially encodes the clustering of users, the
clustering of items, and the correlation between them together and thus the separate clustering of
users and items is not attempted. Furthermore, no efforts have been made in aspect model to
separate users’ rating patterns from their intrinsic interests. Therefore, according to the criterion
stated in Section 2.2, the aspect model is still a preliminary model: a simple way to model users
and items but without clustering them separately; allowing each user and item to be in multiple
clusters; no attempt for modeling intrinsic preference of users separately from their rating

patterns.

3.3 Joint Mixture Model (JMM) and Flexible Mixture Model (FMM)

In this section, we examine two graphical models for collaborative filtering, namely Joint Mixture
Model (JMM) and Flexible Mixture Model (FMM) (Si, et. al., 2003). They differ from both the
Bayesian Clustering algorithm and the Aspect Model in that users and items are clustered
separately.

For both graphical models, the goal is to model the joint probability P({R, (X)}xcx y) | Y) -

They differ in the way of decomposing the joint probability. In the Joint Mixture Model, the joint
probability is expanded as:

PR (hexy) V) =2P(z, 1Y) TT PR, (12)) (©)

xeX(y)

where variable z, stands for the class for user *y’. According to Equation (6), to estimate the joint
probability, user class z, is first chosen according to distribution P(z,ly), and then the likelihood of
every rated item is computed using the same user class z,. Thus, similar to the Bayesian clustering
algorithm, the Joint Mixture Model assumes that each user belongs to a single user class. In

contrast, the Flexible Mixture Model first expands P({R,(X)}x(y|Y) into a product of

likelihoods for rated items, followed by the introduction of hidden variables for user class for

each item:

PR, (Ohxex(n V)= TI 2P(XR,(\)[2,)P(z,Y) )

xeX(y) z,
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Table 1. Parameters for the Joint Mixture Model (JMM) and the Flexible Mixture Model (FMM)

P(z, 1Y) Likelihood of assigning user ‘y” to the user class z,

P(z,) Class prior for item class z,

P(x|z,) Likelihood for item x to be in class z,

P(r|z,,z,) | Likelihood for any user in class z, to rate any item in class z as ‘r’

Compared to Joint Mixture Model, the Flexible Mixture Model allow each item to choose the
appropriate user class for its rating while the Joint Mixture Model enforces a single user class to
be used throughout the ratings of every user.

The key component for both the two models is the estimation of P(x,r|z,), i.e., the
likelihood for the user class z, to rate item x as r. Directly estimating P(x,r|z,) from training

data may lead to a severe sparse data problem. This is because the number of different

P(x,r|z,) can be quite big given a large number of items and user classes. To alleviate this

problem, hidden variable z, is further introduced to represent the classes for items, which leads to

a new expression for P(x,r|z,):
P(xr2,) =T P(1,2,12,) * TP )P(XI 2)P(1] 2,2,) g
ZX ZX

where P(z,) is the class prior for item class z, and P(r|z,,z,) is the likelihood for user class z,

X1 Zy
to rate item class z, as r. The above expression assumes that the class variable z, for items is

independent from the class variable z, for users, or P(z, | z,) ~ P(z,) . Through the introduction
of item class, the number of parameters for P(x,r|z,) is decreased from M x R><|Zy| to
|Zy [x@+M+|Z,|xR) , where [Z,| and [Z( are the number of classes for users and items

respectively, and M and R are the number of items and rating categories, respectively. This is a
significant reduction when the number of user classes is large. For example, given 1000 different
movies, 5 different rating categories, and 20 different user types, the number of parameters for

P(x,r|z,) is 100,000. However, by grouping movies into 10 different classes, the number of

parameters drops to around 11,000, which is only one tenth of the original parameter space. Of
course, the introduction of item classes may flat the difference between similar items and thus
lead to errors in predicting ratings. This is the tradeoff between leveraging data sparseness and

maintaining data diversity. We will examine this issue in later experiments. Table 1 summarizes




Journal Of Information Retrieval (In Press)

oJorcEe
-6 &

D@6 OO

(a) (b)

Figure 3. Graphical model representation for the Joint Mixture Model and Flexible
Mixture Model. Diagram (a) represents the joint mixture model (JMM) and (b) for
flexible mixture model (FMM).

the parameters used by both models and the diagrams of corresponding graphical models are
displayed in Figure 3.

As for the three properties in Section 2.2, both models apply separate clustering to users and
items and thus satisfy the property 1. The Flexible Mixture Model satisfies the second property
since it leaves each rated item the freedom to choose the appropriate user class while the Joint
Mixture Model does not. Neither of the two models makes any attempt to explicitly model the

difference between the rating patterns and the intrinsic preference of users.

3.4 Decoupled Models for Rating Patterns and Intrinsic Preference (DM)

All mixture models that have been discussed so far fail to explicitly account for the fact that users
with similar interests may have very different rating patterns. In this section, we discuss
decoupled model (DM), which extends the Flexible Mixture Model by introducing two hidden

variables Zp and Zz that account for rating

patterns and intrinsic preference of users,

e e respectively. Figure 4 displays the graphical
representation for the decoupled model.

° @ ° According to Figure 4, the decoupled model first
determines the class Z, for item “X’, the class Zp

and Zg for user ‘Y’. Class Zp accounts for the

intrinsic preference of user “Y’, namely, the types

Figure 4. Graphical model representation  of items that “Y” likes and the types of items that

for the decoupled model (DM).
P (DM) he/she does not like. Class Zg accounts for the
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Table 2. Parameters for the decoupled model (DM)

P(zp |Y) Likelihood of assigning user ‘y’ to the preference class zp

P(zr |Y) Likelihood of assigning user ‘y’ to the rating class zg

P(z,) Class prior for item class z,

P(x|z,) Likelihood for item x to be in item class z,

P(z,er =112p,2,) | Likelihood for users in preference class z to favor items in class z,

P(r{zg,Z ) Likelihood for users in rating class zz to rate items in class z, as ‘r’ given
that they either like the items (i.e., Zyrer = 1) or dislike the items (i.e., Zprer = 0)

rating patterns of user “Y’, namely how user ‘Y’ rates items according to his interests. Unlike the
previous mixture models where the user type is modeled by a single class variable Z,, in the new
model, users are clustered from two different perspectives, i.e., the clustering of intrinsic
preference by hidden variable Zp and the clustering of rating patterns (or habits) by hidden
variable Zr. To decide the rating category for item “X’, the new model first determines the value
of the binary random variable Z, that indicates whether user *Y” likes item “X’, and the rating
variable ‘R’ is jointly determined by the preference variable Z,.s and the rating class Zg of user
“Y’. Thus, the actual rating value is affected not only by whether the user likes an item (i.e., Zyrer),
but also by the specific rating patterns of the user (i.e., Zg). Therefore, even if a user appears to
like a certain type of items, the rating value can still be low if he has a very ‘tough’ rating
criterion. In summary, the new model has addressed the problem of large rating variance among
users of similar interests in two aspects:

1) It models the rating patterns and intrinsic preference of users separately;

2) The rating category of an item is decided not only by whether a user likes the item but also by
the rating strategy of the user.

Note that this new model satisfies all the three desirable properties: cluster users and items
separately; allow each user to be in multiple clusters; and model the difference between
preference patterns and rating patterns.

Following the above description, probability P(x,r|y) is expressed as follows:

Zpy IRy Zoer {01}

P(xrly)= 2. P(ZpIy)P(ZRly)P(Zx)P(XIZX){ 2. Py |ZP’ZX)P(r|ZR!Zpref)} ©)

where P(z . | 2p,2,) is the likelihood for users in class Zp to like (Zprer = 1) or dislike (Zprer = 0)

items in class Zy, P(r|zg,z,. ) is the likelihood for users in class Zg to give rating ‘r’ given that

pref

11
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they like (Zyrer = 1) or dislike (Zprer = 0) the items. Combined Equation (7) with Equation (9), we
have the full description for the decoupled model that determines the likelihood for a rating
database. Table 2 summarizes the parameters for the decoupled model. Compared to Table 1,
more parameters are introduced in the decoupled model to account for the new variables Zp, Zg,
and Zper, Which will raise the complexity of the model and thus has more chance to over-fit
training data.

The decoupled model can be further improved by extending the binary hidden variable Z to
a variable with multiple values. Thus, instead of indicating whether or not a user likes an item,
hidden variable Z,; represents the level of preference that the user has for the item. For example,
we can let the variable Z,s have three discrete values, with zero for no preference, one for slight
preference and two for strong preference. In our experiments, the number of discrete values for
variable Z, is set to be equal to the number of different rating categories. In this case, Equation

(9) will be rewritten as:

P(x.rly)= X F’(ZpIY)P(ZRIY)P(ZX)P(XIZX){ i P(Z e |ZP'ZX)P(r|ZR!Zpref)} ©)

Zp, 2R, 2y Zpe =1

Note that by setting P(r|zg,Z,.f) =0(r,Z, ) , the above equation will be turned into Equation

(8), which leads to the Flexible Mixture Model. Thus, the extended decoupled model is a more

general framework than the Flexible Mixture Model.

3.5 Summary and Comparison

In this section, we have discussed five different mixture models:

e Bayesian clustering is the simplest approach and does not satisfy any of the three properties.
It makes no effort to model either users or items and each user is restricted to a single class.

o Aspect model improves over Bayesian clustering by introducing a hidden variable that models
the interaction between users and items. It satisfies the second property by allowing each user
to be in multiple different classes. However, it does not apply separate clustering to users and
items, and it does not address the problem of rating variance within users of similar interests.
Therefore, it violates both the first and the third properties.

e Both the Joint Mixture Model (JMM) and Flexible Mixture Model (FMM) emphasize
separate clustering of users and items. They differ from each other in that FMM allows each
user to be in multiple classes while JMM restricts every user to be in a single class. Thus,

FMM satisfies both the first and the second property while JMM only satisfies the first one.

12



Journal Of Information Retrieval (In Press)

Table 3. Properties of five different mixture models for collaborative filtering. Property 1 corresponds
to separate clustering for users and items; Property 2 corresponds to the flexibility for a single user or
an item to be in multiple clusters; Property 3 corresponds to the capture of difference between intrinsic
preference and rating patterns.

Property 1 Property 2 Property 3
Bayesian Clustering (BC) - - -
Aspect Model (AM) - X -
Joint Mixture Model (JMM) X - -
Flexible Mixture Model (FMM) X X -
Decouple Model (DM) X X X

e The Decoupled Model (DM) extends the Flexible Mixture Model (FMM) by separating the
intrinsic preference of users from their rating strategies. In particular, the final rating of an
item is affected not only by the interest of a user but also by his rating criteria. Thus, the
decoupled model satisfies all three properties.

Table 3 summarizes the properties of each model. On one hand, we expect models that satisfy

more properties to provide better description for the data and achieve more accurate prediction.

On the other hand, to satisfy more properties, we have to increase the model complexity, which

could degrade the accuracy of prediction particularly when the number of training users is small.

As will be seen later in the experiment section, with a large number of training users, models

satisfying more properties usually perform better than models satisfying fewer properties.

However, when the number of training users is small, the simple model may perform even better.

4 Model Estimation

In this section, we describe the general Expectation Maximization (EM) algorithm that is used to
estimate the mixture models for collaborative filtering, followed by the description of the

prediction algorithms.

4.1 General Approach -- EM Algorithms

In general, all the mixture models can be estimated using the EM algorithm (Demspter, et. al.,
1977). As an example, we give details on the EM algorithm for the Joint Mixture Model (JMM),

which is slightly more complicated than the others.

13
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According to the maximum likelihood approach, parameters of JMM model are estimated by

maximizing the log-likelihood of training data, which is written as
L =2 log P({X,R, (X)}xex(y) | ¥) (10)
y

Expand P({X, R, (X)}x(y) | ¥) using Equations (6) and (8), we have

L= ZlOQ{ZP(Z 1) TT 2Pz )P(X|z,)P(R,(X)]z,.2 )} (11)

xeX(y) zy

To optimize the above objective function, the EM algorithm alternates between the expectation
step and maximization step. In the expectation step, the posterior probabilities for latent variables,

i.e., P(z, [{x R, (N)}ex(yY) and P(z,|x R, (X),y,z,), are computed as follows:
P(z,ly) IT P(xR,(9)1z,)

xeX(y)

P(zyl{va (X)}xex(y)iy) ZP(Z |y) H P(X R (X)|Z ) (12)
xeX(y)
_ PP Z)P(R,(¥)[Z,.2,)
P(z, | xR, (X).Y,2,) = S P )PXIZ PR (M 2,.2,) (13)

In the maximization step, model parameters P(z,|y), P(z,), P(x|z,), and P(r|z,,z,) are

updated using the posterior probabilities that are estimated in the expectation step:

P(Zy | y) = P(Zy |{X! Ry (X)}xgx(y) ’ y) (14)
3 T PEIR00.9.2,)P( 1Y)
7,y xeX(y
B=5ys % PG IR, (.%.2,)PG, 1Y) (15)
7, 7, y xeX(y
ST S Pz, 1X0R, (X).Y,2,)P(z, | Y)5(x = X)
P(x] z,) = 2L (16)
T 3 PR 007,21
z, y X'eX(y
3 3 PR, 00,5.2)P, [YSR,0)=1)
) 7.) = LXK
(rl2e2,)= X T PEIR00Y.5)PE 1) ()
y X'eX(y

4.2 Smoothing Mixture Models

The EM algorithm is notorious for finding undesirable local optimal solutions. In this section, we

discuss two techniques that can help avoid unfavorable solutions, both aiming at regularizing the
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EM algorithm in some way. Again, we use the JMM as an example, but the smoothing technigues
can be applied to other models as well.

The first technique is called Annealed EM algorithm (AEM) (Hofmann & Puzicha, 1998).
The idea can be described as follows: to prevent posterior distributions from being skewed at the
early stage of EM iterations, a regularization variable ‘b’ is introduced into the expectation step.

According to the Annealed EM algorithm, ‘annealed’ posteriors for the JMM model are written

as:
b
{P(zyly) I1 P(X,Ry(x)|zy)}
P(z, [{X, Ry (X)}ex () ¥) = XX (y) b .
Z[P(zyly) I1 P(X,Ry(x)|zy)}
%y xeX (y)
b
P(z, |X.R, (X),Y,2,) = [P(z)P(xIZ)P(R, (0] 2,.2,)] -

5[ PEIP(IZ)P(R, (9172, |
Note that when b=1, the above equations return back to Equations (12) and (13), which
correspond to the expectation step of the normal EM algorithm. On the other hand, when b=0, the
posteriors estimated in Equations (18) and (19) become uniform distributions that completely
ignore any training data. By varying b between 0 and 1, we are able to adjust posteriors between
uniform distributions and the distributions that are estimated from training data. In the Annealed
EM algorithm, parameter b is increased slowly from 0 to 1. Thus, the posteriors initially start as
uniform distributions. With the increasing value for b, the posteriors are more influenced by
training data and move away from uniform distributions. The purpose of slowly increasing
parameter b is to let the information from training data gradually being transferred into the model,
which prevents the model from committing to training data at early stage and thereby helps the
EM algorithm avoid undesirable local optimum. By viewing b as the inverse of so-called
‘temperature’, the process of increasing b is analogous to the annealing process that slowly drops
system temperature.

The second smoothing strategy is to introduce a model prior into the mixture model. The
mixture models presented in previous sections are based on the maximum likelihood estimation,
which determine the model parameters by maximizing the likelihood of training data. To
regularize the mixture model, this approach maximizes the posterior of training data, which is a
product of the prior and the likelihood. It is also called maximum a posterior approach (MAP).
Compared to the maximum likelihood approach, MAP has the advantage in that the choice of
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parameters is affected not only by training data but also the prior preference of mixture models. It
is particularly useful when the amount of training data is insufficient for learning a reliable
model. Since a uniform distribution is our best guess when no rating information is exposed, in
general, an appropriate prior should favor distributions with equal probabilities. One choice of
such a prior is the Dirichlet prior with uniform means. Using the JMM as an example, the

Dirichlet prior for the JMM can be written as:

a b c d
P(Gla,b,c,d)*{HP(Zx)} {H P(><|Zx)} {H I:’(ylzy)} { [1 P(YIZX,Zy)} (20)
z, X,Zy v,z 2,,2,.F

where 0 ={P(z,),P(x]z,),P(z,1Y),P(r|z.,z,)} represents the parameter space for the JMM,

and a, b, ¢, and d are hyper parameters for Dirichlet distribution. Combining the prior in the
above equation with the likelihood function in Equation (11), we have the objective function for
MAP written as:

L=2log {Z P(z,ly) I1 2P(z)P(x|z)P(R,(X)]z,, Zy)}+
y z,

xeX () z,

aY logP(z,)+b) logP(x|z,)+c > logP(z,|y)+d % logP(r|z,z,)

x 2y Y.y r2y.2y

(21)

Our goal is to find the parameters that maximize the above objective function. In the above
equation, hyper parameters a, b, ¢, and d have played the role of regularization, and their values
reflect our confidence on the prior preference of the mixture models. When we are unconfident
about the prior preference, all the hyper parameters will be set small and the resulting parameters
will be mainly determined by the likelihood term. On the other hand, when we are confident
about the prior preference, all the hyper parameters will be set large and the resulting parameters
will be mainly determined by the prior term. Thus, by adjusting hyper parameters a, b, ¢, and d,
we are able to make appropriate tradeoff between the training data and the prior knowledge of the
models. The detailed EM algorithm for maximizing the objective function in Equation (21) is

listed in Appendix A.

S Rating Prediction

To predict the ratings of items for a test user y', we need to estimate distributions of latent

variables that are related to the test user. In addition to the ratings provided by training users, each
test user also provides a small number of rated items that can be utilized to discover distributions

of related latent class variables for the test user. Let Dy.in and Dy Stand for the rating data for
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training users and test user y', respectively. Let {h}", be the hidden variables. Let 0,.,,, and

0. ={P(h | y")}", represent the parameter space that is related to training users and the test

user, respectively. In order to predict the rating of an item x by the test user y', we need to

estimate the likelihood P(r|Dy,,, Dest,X) for each rating category ‘r’, which can be

approximated into the following expression:

P(r | Dtrain’ Dtest ’ X) = Z Z P(r | etest letrain 1 X)P(etrain | Dtrain)P(etesl |etrain’ Dlest)
MlE‘Sﬁ eram
- : - (22)
~ P(r | etest letrain ’ X) P(etrain | Dtrain)P(etesl | etrain’ Dtest)

where 0, and 0, stand for the optimal parameters that maximizes likelihood P(8;, | Dyain)

traln

and P(0; D), respectively. In the above expression, we approximate the average with

train | test ’
its optimal value. The advantage of the above approach is that, to learn 0, , i.e., the parameters
related to the test user, we no longer need the training data Dyi,. Instead, information inside the

training data has been summarized into ©;_. , i.e., parameters related to training users. Thus, 0;,

train ? test

is decided only by 0y, and D Using this approximation, we will be able to efficiently predict
ratings for the test user. Take the JMM model as an example, the parameter space related to the
test user is 0, ={P(z, | y"} and the optimal P(z, | y') is computed by simply maximizing the

likelihood of rating data by the test user, i.e.,

xeX (y') Z

Iog{zp(z |y Btest) H ZP(ZX'Btraln)P(XlZx'etraln)P(R (X)IZX' y’ train)} (23)
+cY logP(z, | Y':0q)

In the above equation, we add either 0, or 0., into each probability to illustrate which
parameter space it belongs to. Since Equation (23) only involves the rated examples from test

user y', finding optimal solution for P(z, | y') usually can be done efficiently.

6 Experiments

In previous sections, we have analyzed a number of mixture models with different complexity in
terms of their analytical properties. In this section, we present experiment results that allow us to
examine how their analytical difference is correlated with their empirical performance.

Specifically, we address the following five issues:
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Table 4. Characteristics of MovieRating and EachMovie.

1)

2)

3)

4)

5)

MovieRating EachMovie
Number of Users 500 2000
Number of Items 1000 1682
Avg. Number of rated Items/User 87.7 129.6
The scale of Ratings 1-5 1-6

Is separate modeling of users and items important to collaborative filtering? Recall that the
JMM and the FMM differ from the Aspect Model and Bayesian Clustering in that they
introduce two different class variables for modeling users and items separately. Thus, by
comparing both the JMM and the FMM to the Aspect Model and the Bayesian Clustering, we
will be able to see if separate clustering of users and items is effective for collaborative
filtering.

Is it beneficial to allow a user/item to belong to multiple classes? The difference between the
JMM and the FMM s that the JMM assumes a single class for each user while the FMM
allows each user to be in multiple classes. By comparing these two models, we will be able to
see which assumption is more appropriate for collaborative filtering.

Which smoothing technique is more effective for collaborative filtering? At the end of Section
4, we discussed two different methods for smoothing the EM algorithm, including an
Annealed EM algorithm (AEM) and a MAP approach. Both methods prevent the estimation
of parameters from being skewed at the early stage of EM iterations. We will compare the
effectiveness of the two smoothing methods for collaborative filtering.

Would modeling the distinction between intrinsic preferences and rating patterns help
improve the performance of collaborative filtering? The Decoupled Model (DM) is similar to
the Flexible Mixture Model (FMM) except that it models the intrinsic preferences and rating
strategies of users separately by using two different sets of class variables. We will compare
the Decoupled Model to the Flexible Mixture Model to see whether the distinction between
intrinsic preferences and rating patterns helps improve the performance of collaborative
filtering.

How effective are the proposed models compared to other proposed models? We compare all
five mixture models to other approaches for collaborative filtering under various conditions.
In previous studies, when compared with the memory-based approaches, the model-based

approaches tend to have mixed results (Breese et al. 1998). It is thus interesting to see if some
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sophisticated models, such as the Decoupled Model that decouples the intrinsic preferences of

users from their rating patterns, can outperform memory-based approaches.

Two datasets of movie ratings are used in our experiments, i.e., ‘MovieRating’* and

‘EachMovie’?. Specifically, we extracted a subset of 2,000 users with more than 40 ratings from

‘EachMovie’ since evaluation based on users with few ratings can be unreliable. The global

statistics of these two datasets are summarized in Table 4.

A major challenge in collaborative filtering applications is for the system to operate
effectively when it has not yet acquired a large amount of training data (i.e., the so-called “cold
start” problem). To test our algorithms in such a challenging and realistic scenario, we vary the
number of training users from a small value to a large value. To get a better sense of the data
sparseness problem, we introduce the measurement called ‘movie coverage’, which measures the
average number of times that each movie is rated in the training database. In particular, we
consider three different cases of training data:

1) Small Training Data. In this case, the training database consists of 20 different users, and the
‘movie coverage’ for ‘MovieRating’ and ‘EachMovie’ is only 1.8 and 1.5, respectively. In
another word, by average each movie is rated by less than 2 training users.

2) Medium Training Data. In this case, the training database consists of 100 different users for
‘MovieRating” and 200 users for ‘EachMovie’. Its ‘movie coverage’ is 8.8 and 15.4
‘MovieRating’ and ‘EachMovie’, which is substantially larger than the small training data.

3) Large Training Data. In this case, the training database consists of 200 different users for
‘MovieRating’ and 400 users for ‘EachMovie’. The ‘movie coverage’ for this case is 17.7
and 30.8.

By varying the number of training users from a ‘small training data’ to a ‘large training data’, we

are able to examine the robustness of the learning procedure. The other dimension is to examine

the robustness of mixture models with respect to the number of items rated by the test user. In this
experiment, we test mixture models against test users with 5, 10, and 20 given items. By varying
the number of given items, we can test the robustness of the prediction procedure.

For the aspect model (AM), we choose the variant in Figure 2(a) as a baseline algorithm since
it consists of a smaller number of parameters and appears to be more robust than the variant in
Figure 2(b). The number of clusters is set to be 10 for Bayesian Clustering and 20 for Aspect
Model. The number of classes for users and items are set to be 10 and 20 respectively, for the

Joint Mixture Model, the Flexible Mixture Model, and the Decoupled Model. These numbers are

L http:/fwww.cs.usyd.edu.au/~irena/movie_data.zip
2 http://research.compag.com/SRC/eachmovie
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Table 5. MAE Results for ‘MovieRating’. ‘FMM’ stands for the Flexible Mixture Model, ‘JIMM’
stands for the Joint Mixture Model, ‘BC’ stands for Bayesian Clustering, and ‘AM’ stands for
Aspect Model. A smaller value means a better performance.

Training ) 5 Items 10 Items 20 Items
] Algorithms ) ] ]
Users Size Given Given Given
FMM 1.000 0.994 0.990
20 JMM 0.990 0.968 0.920
BC 1.10 1.09 1.08
AM 0.982 0.976 0.958
FMM 0.823 0.822 0.817
100 JMM 0.868 0.868 0.854
BC 0.968 0.946 0.941
AM 0.882 0.856 0.836
FMM 0.804 0.801 0.799
JMM 0.840 0.837 0.831
200
BC 0.949 0.942 0.912
AM 0.891 0.850 0.818

selected based on the results of cross validation. The number of classes for rating patterns in
Decoupled Model is the same as the number of different rating category, which leads to 5 classes
of rating patterns for ‘MovieRating” and 6 for ‘EachMovie’.

For evaluation, we look at the mean absolute deviation of the predicted ratings from the
actual ratings on items by the test user, i.e.,

S==3 3 IR, (0-R, (0] (24)

v oxeXy')
where Ryl (X) is the predicted rating on item x for test user y', Ry, (X) is the actual rating for test

user y', and m is the total number of test items that have been rated by all test users. We refer to
this measure as the mean absolute error (MAE) in the rest of this paper. There are some other
measures like the Receiver Operating Characteristic (ROC) as a decision-support accuracy
measure (Breese, et. al., 1998) and the normalized MAE. But since MAE has been the most
commonly used metric and has been reported in most previous research (Breese, et. al., 1998;
Herlocker, et. al., 1999; Melville, et. al., 2002; SWAMI, 2000; Pennock, et. al., 2000), we chose it

as the evaluation measure in our experiments to make our results more comparable.
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Table 6. MAE Results for ‘EachMovie’. ‘FMM’ stands for the Flexible Mixture Model, ‘JIMM’
stands for the Joint Mixture Model, ‘BC’ stands for Bayesian Clustering, and ‘AM’ stands for
Aspect Model. A smaller value means a better performance.

Training ) 5 Items 10 Items 20 Items
. Algorithms ) ) )
Users Size Given Given Given
FMM 1.31 1.31 1.30
20 JMM 1.38 1.37 1.36
BC 1.46 1.45 1.44
AM 1.28 1.24 1.23
FMM 1.08 1.06 1.05
JMM 1.17 1.15 1.15
200
BC 1.25 1.22 1.17
AM 1.27 1.18 1.14
FMM 1.06 1.05 1.04
JMM 1.10 1.09 1.09
400
BC 1.17 1.15 1.14
AM 1.28 1.19 1.16

6.1 Experiments with clustering of users and items

In these experiments, we want to address the first two questions listed at the beginning of this
section, namely whether modeling users and items separately is important to collaborative
filtering and whether it is beneficial to allow a user/item to belong to multiple clusters. MAE
results for the Joint Mixture Model, the Flexible Mixture Model, the Bayesian Clustering, and the
Aspect Model for ‘MovieRating” and ‘EachMovie’ are summarized in Tables 5 and 6,
respectively.

Several interesting observations can be made from Tables 5 and 6:

1) Compared to the Joint Mixture Model (JMM), the Flexible Mixture Model (FMM) performs
substantially better in most configurations except for the collection ‘MovieRating’ when the
number of training users is only 20. This is because the FMM has more parameters to fit than
the JMM and thus it fails to perform well when the number of training users is small. In the
next experiment where smoothing methods are applied to the EM algorithm, we will see that
the FMM is able to outperform the JMM substantially even for this single case. The only

difference between these two models is that the FMM allows multiple classes for each user
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while the JMM does not. Thus, the fact that the FMM outperforms the JMM indicates that
allowing a user to be in multiple classes is important to collaborative filtering. The hypothesis
is further confirmed by the fact that the aspect model performs better than the Bayesian
Clustering algorithm for most configurations (except for the EachMovie dataset when the
number of training users is 400).

2) Compared to the Bayesian Clustering and the Aspect Model, the Flexible Model and the Joint
Mixture Model perform substantially better for most configurations except when the number
of training users is small. Again, this is because both the FMM and the JMM are more
sophisticated than the Bayesian Clustering and the Aspect Model and thus tend to overfit
training data when the number of users is small. In the next experiment, we will see that with
appropriate smoothing technique, both the FMM and the JMM perform well even in the case
of small training. Since both the FMM and JMM distinguish from the Aspect Model and the
Bayesian Clustering in that separate clustering is applied to users and items, the results from
Tables 5 and 6 indicate that modeling users and items separately is effective for collaborative

filtering.

6.2 Experiments with Smoothing Methods

In Section 3, we discussed two different methods for smoothing the EM algorithms: the Annealed
EM algorithm that avoids undesirable local optimum by slowly increasing variable ‘b’, and the
maximum a posterior (MAP) approach that uses Dirichlet priors to regularize the mixture models.
In our experiments, variable ‘b’ in the Annealing EM algorithm is increased from 0 to 1 at the

pace of 0.1. The hyper parameters ‘a’, ‘b’, ‘c’, and ‘d’ in the MAP approach are set as follows:

4o 2 X )] oo 2o XY oo 2y X d 2| X

712, Sy xMx|Z,| ~yxNx|Z, | ~yxRx|Z,[x|Z, |

where |X(y)| stands for the number of items rated by the user ‘y’. Parameter y is determined by the
cross validation approach. It randomly selects 80% of training users as the training set and 20%
of them as validation set. y is ranged from 100 to 100000. The final value for y used in our
experiment is 10000.

Tables 7 and 8 summarize the results for the Flexible Mixture Model using two different
smoothing methods. The results of applying smoothing methods to the Joint Mixture Model are

presented in Tables 9 and 10.

Two observations can be drawn from Tables (7)-(10):
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Annealed EM algorithm (AEM) and maximum a posterior (MAP).

Training ) 5 Items 10 Items 20 Items

Users Size Algortthms Given Given Given
AEM 1.000 0.994 0.990

20 MAP 0.881 0.877 0.870
AEM 0.823 0.822 0.817

100 MAP 0.821 0.820 0.813
AEM 0.804 0.801 0.799

200 MAP 0.797 0.786 0.781

Table 8. MAE for the Flexible Mixture Model (FMM) on the ‘EachMovie’ dataset using
Annealed EM algorithm (AEM) and maximum a posterior (MAP).

Training ) 5 Items 10 Items 20 Items
] Algorithms ] ] ]
Users Size Given Given Given
20 AEM 1.31 1.31 1.30
MAP 1.23 1.22 1.22
AEM 1.08 1.06 1.05
200
MAP 1.08 1.05 1.04
AEM 1.06 1.05 1.04
400
MAP 1.06 1.04 1.03

1) According to Tables (7)-(10), the MAP (i.e., maximum a posterior) approach outperforms (or
as effective as) the Annealed EM algorithm for both the Joint Mixture Model and the Flexible
Mixture Model in all configurations. In fact, compared to the results that do not use any
smoothing algorithm in Tables (3) and (4), the Annealed EM algorithm only achieves the
same performance as the original EM for all cases. Thus, our studies indicate that the MAP

approach is a more effective smoothing method for collaborative filtering.

2) With a more careful examination of Tables (7) and (8), we see that the MAP approach is able
to improve the performance of the FMM substantially when the number of training users is
small (i.e., 20 for both ‘MovieRating’ and ‘EachMovie’). The improvement becomes modest
when the number of training user becomes large (i.e., 100 and 200 for ‘MovieRating’, and

200 and 400 for ‘EachMovie’). This is consistent with the spirit of Bayesian statistics, in
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Table 9. MAE for the Joint Mixture Model (JMM) on the ‘MovieRating’ dataset using Annealed
EM algorithm (AEM) and maximum a posterior (MAP).

Training ) 5 Items 10 Items 20 Items

Users Size Algortthms Given Given Given
AEM 0.990 0.968 0.920

20 MAP 0.986 0.963 0.920
AEM 0.868 0.868 0.854

100 MAP 0.864 0.863 0.854
AEM 0.840 0.837 0.831

200 MAP 0.837 0.833 0.831

Table 10. MAE for the Joint Mixture Model (JMM) on the ‘EachMovie’ dataset using Annealed
EM algorithm (AEM) and maximum a posterior (MAP).

Training ] 5 Items 10 Items 20 Items
] Algorithms ] ] ]
Users Size Given Given Given
20 AEM 1.38 1.37 1.36
MAP 1.37 1.35 1.34
AEM 1.17 1.15 1.15
200
MAP 1.17 1.15 1.14
AEM 1.10 1.10 1.09
400
MAP 1.10 1.09 1.09

which a model prior is useful only when the amount of training data is small. When the
amount of training data is sufficiently large, the effect of model prior will eventually
diminish.

3) In the previous experiment, the aspect model is the winner in the case of small training data.
With the help of appropriate smoothing, the FMM model is able to perform better than the
aspect model in the case of small training. This fact again indicates that the smoothing
method is able to effectively alleviate the problem of sparse data.

Due to the success of the MAP method, it is used for the remaining experiments.

6.3 Experiments with the Decoupled Model (DM)

Compared to the other four models, the Decoupled Model is unique in that it explicitly addresses
the distinction between preferences and ratings of users by modeling them separately. In this

experiment we attempt to answer the guestion, i.e., would modeling the distinction between the
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Table 11. MAE for the Flexible Mixture Model (FMM) and the Decoupled Model (DM) on

the “MovieRating’ dataset. A smaller value means a better performance.

Training ) 5 Items 10 Items 20 Items
) Algorithms ) ) )

Users Size Given Given Given
20 DM 0.874 0.871 0.860
FMM 0.881 0.877 0.870
100 DM 0.814 0.810 0.799
FMM 0.821 0.820 0.813
DM 0.790 0.777 0.761

200
FMM 0.797 0.786 0.781

Table 12. MAE for the Flexible Mixture Model (FMM) and the Decoupled Model (DM) on

the ‘EachMovie’ dataset. A smaller value means a better performance.

Training ] 5 Items 10 Items 20 Items
] Algorithms ] ] ]
Users Size Given Given Given
20 DM 1.20 1.18 1.17
FMM 1.23 1.22 1.22
DM 1.07 1.04 1.03
200
FMM 1.08 1.05 1.04
DM 1.05 1.03 1.02
400
FMM 1.06 1.04 1.03

preferences and ratings help improve the performance? The results for the Decoupled Model on
‘MovieRating’” and ‘EachMovie’ are listed in Tables 11 and 12, together with the results for the
Flexible Mixture Model (copied from Tables 4 and 5). The Flexible Mixture Model is closely
related to the Decoupled Model and differs from it only by the lack of modeling for rating
patterns. By comparing the performance of these two models, we will be able to see if the
introduction of separate class variables for preferences and ratings is effective for collaborative
filtering.

According to Tables 11 and 12, the Decoupled Model outperforms the Flexible Mixture Model in
all configurations. Although the difference in performance appears to be insignificant in some
cases, it is interesting to note that when the number of given items increases, the gap between
these two models also increases. One possible explanation is that when there are only a small

number of given items, it is rather difficult to determine the type of rating patterns for the testing
25



Journal Of Information Retrieval (In Press)

user. As the number of given items increases, this ambiguity will decrease quickly and therefore
the advantage of the Decoupled Model over the Flexible Mixture Model becomes clearer. Indeed,
it is a bit surprising that even with only five given items and a small number of training users, the
Decoupled Model still improves the performance slightly as it has many more parameters to
estimate than the Flexible Mixture Model. We suspect that the skewed distribution of ratings

among items, i.e., a few items account for a large number of ratings, may have helped.

6.4 Comparison with Other Approaches for Collaborative Filtering

In this subsection, we compare all five mixture models to the memory-based approaches for
collaborative filtering, including the Personal Diagnosis (PD), the Vector Similarity method (VS)
and the Pearson Correlation Coefficient method (PCC). We first briefly introduce the three
memory-based approaches and then present the empirical results.

6.4.1 Memory-based Methods for Collaborative Filtering
Memory-based algorithms store the rating examples of training users and predict a test user’s

ratings based on the corresponding ratings of the users in the training database that are similar to
the test user. Three commonly used methods will be compared in this experiment. They are:

e Pearson Correlation Coefficient (PCC)

According to (Resnick et. al., 1994), the Pearson Correlation Coefficient method predicts the
rating of a test user y' on item x as:

) Zwy“y(Ry(x)—ﬁy)
Ry () =R+ yer

W,
Yy
yeY

where the coefficient W is computed as
> (ROM-R)R,(0-R,)
l xeXy)" Ry')

" > RM-RY [ ¥ (RyM-R.Y

xe Xy Xey') xeXy)" Ry')

e Vector Similarity (VS)

This method is very similar to the PCC method except that the correlation coefficient W is

computed as:

SRR ()

W = xRy

vy 2 2
\/ > RO [ X R
xeXgy) xeXgy')
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e Personality Diagnosis (PD)
In the personality diagnosis model, the rating of test user y' on item x is assumed to be drawn

from an independent normal distribution with the mean as the true rating as R;{“e(x) :

(R ()-RIE(X)* /20"

P(R,, (x) | RI™ (x) o &

where the standard deviation o is set to constant 1 in our experiments. Then, the probability of
generating the observed rating values of the test user by any training user y is written as:
~(Ry(\)-R (x))? /20
P(R, |R,) o I1e O/

xeX (y')
Finally, the likelihood for test user y' to rate an unseen item x as r is computed as:

PR, () =) TR, IR )e " e

The predicted rating for item ‘x’ by the test user will be the rating category r that has the largest

likelihood P(Ry[ (X) =r) . Previous empirical studies have shown that the PD method performs

better than several other approaches for collaborative filtering (Pennock et al., 2000).

6.4.2 Comparison Results

The results for five mixture models and three memory-based approaches are summarized in
Tables 13 and 14. Both the Decoupled Model and the Flexible Mixture Model are considerably
better in most configurations than the other methods for collaborative filtering, including the three
mixture models and three model-based approaches for most cases. The only exception is when
the number of training user is 20, in which the memory-based models perform substantially better
than the model-based approaches. The overall success of the Decoupled Model and the Flexible
Mixture Model suggests that, compared to the memory-based approaches, graphical models are
not only advantageous in principle, but also empirically superior due to their capabilities of
capturing the distinction between the intrinsic preferences and rating patterns in a principled way.

The fact that memory-based approaches perform better in the case of small training data is
because the number of parameters used by the model-based approaches is larger than the size of
training data. When there are only 20 training users, the number of rated items is less than 3,000
(1700 for the ‘MovieRating’ dataset and 2500 for ‘EachMovie’ dataset), but the number of
parameters is actually over 20,000 for all the models (over 20,000 for ‘MovieRating’ dataset and
30,000 for ‘EachMovie’ dataset.). Therefore, when there are only 20 training users, the amount of

training data is insufficient for creating a reliable and effective model for collaborative filtering.
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Table 13. MAE for eight different models on the ‘MovieRating’ dataset, including a Pearson
Correlation Coefficient approach (PCC), a Vector Similarity approach (VS), a Personality
Diagnosis approach (PD), a Aspect Model (AM), a Bayesian Clustering approach (BC), a
Decoupled Model (DM), a Flexible Mixture Model (FMM) and a Joint Mixture Model (JMM). A

smaller value means a better performance.

Training ) 5 Items 10 Items 20 Items
Users Size Algorithms Given Given Given
PCC 0.912 0.840 0.812
VS 0.912 0.840 0.812
PD 0.888 0.882 0.875
AM 0.982 0.976 0.958
20 BC 1.10 1.09 1.08
DM 0.874 0.871 0.860
FMM 0.881 0.877 0.870
JMM 0.986 0.963 0.920
PCC 0.881 0.832 0.809
VS 0.859 0.834 0.823
PD 0.839 0.826 0.818
100 AM 0.882 0.856 0.836
BC 0.968 0.946 0.941
DM 0.814 0.810 0.799
FMM 0.821 0.820 0.813
JMM 0.864 0.863 0.854
PCC 0.878 0.828 0.801
VS 0.862 0.950 0.854
PD 0.835 0.816 0.806
200 AM 0.891 0.850 0.818
BC 0.949 0.942 0.912
DM 0.790 0.777 0.761
FMM 0.797 0.786 0.781
JMM 0.837 0.833 0.831
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Table 14. MAE for eight different models on the ‘EachMovie’ dataset, including a Pearson
Correlation Coefficient approach (PCC), a Vector Similarity approach (VS), a Personality
Diagnosis approach (PD), a Aspect Model (AM), a Bayesian Clustering approach (BC), a
Decoupled Model (DM), a Flexible Mixture Model (FMM) and a Joint Mixture Model (JMM).

A smaller value means a better performance.

Training ) 5 Items 10 Items 20 Items
Users Size Algorithms Given Given Given
PCC 1.26 1.19 1.18
VS 1.24 1.19 1.17
PD 1.25 1.24 1.23
20 AM 1.28 1.24 1.23
BC 1.46 1.45 1.44
DM 1.20 1.18 1.17
FMM 1.23 1.22 1.22
JMM 1.37 135 1.34
PCC 1.22 1.16 1.13
VS 1.25 1.24 1.26
PD 1.19 1.16 1.15
200 AM 1.27 1.18 1.14
BC 1.25 1.22 1.17
DM 1.07 1.04 1.03
FMM 1.08 1.05 1.04
JMM 1.17 1.15 1.14
PCC 1.22 1.16 1.13
VS 1.32 1.33 1.37
PD 1.18 1.16 1.15
400 AM 1.28 1.19 1.16
BC 1.17 1.15 1.14
DM 1.05 1.03 1.02
FMM 1.06 1.04 1.03
JMM 1.10 1.09 1.09
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This analysis indicates that the performance of model-based approaches usually depends
strongly on the availability of training data. When the amount of training data is small, it is better

to use memory-based approaches for collaborative filtering.

7 Conclusions and Future Work

In this paper, we conduct a systematic study of a large subset of graphicals models — mixture
models — for collaborative filtering. In general, there are three components that need to be
modeled carefully: the users, the items and the ratings. We proposed three desirable properties
that a reasonable graphical model for collaborative filtering should satisfy: (1) separate clustering
of users and items; (2) flexibility for a user/item to be in multiple clusters; (3) decoupling of
users’ preferences and rating patterns.

We thoroughly analyzed five different mixture models, including the Bayesian Clustering
(BC), the Aspect Model (AM), the Flexible Mixture Model (FMM), the Joint Mixture Model
(JMM) and the Decoupled Model (DM) based on the three proposed properties, and found that
(1) The DM is the only model that satisfies all the three properties, and all others fail to decouple
user preferences and rating patterns; (2) The JMM and FMM models allow separate clustering of
users and items, whereas the BC and AM do not; and (3) Compared with JMM, the FMM further
allows a user to be in multiple clusters.

We study the empirical impact of such analytical difference on real datasets. Experiments
over two datasets of movie ratings under several different configurations show that in general, the
fulfillment of the proposed properties tends to be positively correlated with the model’s
performance. In particular, the Decoupled Model, which satisfies all three properties, outperforms
the other mixture models as well as most memory-based approaches for collaborative filtering.
Experiments also show that the Flexible Mixture Model is consistently better than the Joint
Mixture Model by the MAE measure, which indicates that it is beneficial to allow a user to be in
multiple classes. Meanwhile, the success of the FMM over the Bayesian Clustering algorithm and
the Aspect Model indicates that it is important to have separate clustering of users and items for
collaborative filtering.

We also empirically study two smoothing methods, the Annealed EM algorithm (AEM) and
the Maximum A Posterior (MAP), and found that smoothing is important for improving the
performance of collaborative filtering systems, particularly when the number of training users is
small. Empirical results show that the MAP is a more effective method for collaborative filtering.

In summary, our study shows that graphical models are powerful tools for modeling

collaborative filtering, but careful design of the model is necessary to achieve good performance.
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There are several interesting directions for extending this work. First, given the success of
decoupling user preferences from rating patterns, it would be very interesting to explore other
ways of modeling preferences as done in some related work (Ha & Haddawy 1998; Freund et al.
1998;Cohen et al. 1999). One potentially promising direction is to treat the rating problem as a
ranking problem, and apply the existing ranking algorithms, such as Prank and RankBoost, to
collaborative filtering. In the future, we plan to study how to incorporate the ranking algorithm
into the graphical models. Second, we also believe that the decoupling problem that we addressed
may represent a more general need of modeling “noise” in similar problems such as gene
microarray data analysis in bioinformatics. We plan to explore a more general probabilistic

framework for all these similar problems.
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Appendix A: The EM Algorithm for the Joint Mixture Model using Maximum A
Posterior (MAP) Approach

We studied the MAP approach for mixture models in Section 4.2. The idea is to introduce the
model priors that express the preference of parameters given no training data. The resulting
parameters will not only maximize the likelihood of training data but also satisfy the prior
preference. The E-step for the Joint Mixture Model using MAP approach is same as the original
one that is already stated in Equations (12) and (13). The updating equations in M-step are
changed to the following expressions:

c+P(z,ly) I P(X,Ry(X)]z,)

P(Zy |{X1Ry(x)}xex(y)'y) = il (14!)
Z{H P(z, 1Y) H( )P(X,Ry(X)IZy)}
zy xeX (y
a+22 2 P(zIxRy(x)y,2,)P(z,]y)
Plad = (15
Z{EHZZ > P(z xR (X),y.Zy)P(Zny)}
Zy z, ¥y xeX(y)
b+zz z P(lex',R (x),y,z )P(Zy|y)5(xle)
z, y x'eX(y)
P(XlZX): | , (16!)
Mb+2> ;( )P(ZXIXyR (x).y.2,)P(z, 1Y)
z, y X'eX(y

d+2 2 P(Z xR, (X).Y,2,)P(z, [Y)S(R,(X)=T)

Y xeX(y) ’
P(rliz.z,) = RA+Y Y P(z %R, (X),Y,2,)P(z, 1Y) o

y xeX(y)

Compared to the EM algorithm for the JMM in Equations (14)-(17), hyper parameters a, b, ¢, and
d in the above equations behave like pseudo counts. In addition to the ‘counts’ that are collected
from training data, all probabilities are also affected by the pseudo counts that come from hyper
parameters. When the number of training examples is small, the pseudo counts will dominate
over the estimation and thus most distribution tend to be uniform. On the other hand, when the
amount of training data is large, the effect of pseudo counts will be ignored and the results
obtained from the maximum a posterior approach will be similar to the maximum likelihood

approach.
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