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ABSTRACT 
Peer-to-peer architectures are a potentially powerful model for 
developing large-scale networks of text-based digital libraries, but 
peer-to-peer networks have so far provided very limited support 
for text-based federated search of digital libraries using relevance-
based ranking.  This paper addresses the problems of resource 
representation, resource ranking and selection, and result merging 
for federated search of text-based digital libraries in hierarchical 
peer-to-peer networks.  Existing approaches to text-based 
federated search are adapted and two new methods are developed 
for resource representation and resource selection according to the 
unique characteristics of hierarchical peer-to-peer networks.  
Experimental results demonstrate that the proposed approaches 
are both more accurate and more efficient than more common 
alternatives for text-based federated search in peer-to-peer 
networks.                  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Retrieval models, 
Search process, Selection process 

General Terms 
Algorithms, Design, Experimentation, Performance  

Keywords 
Peer-to-peer, Hierarchical, Federated Search, Text-Based, 
Retrieval, Digital Library 

1. INTRODUCTION 
Peer-to-peer (P2P) networks are an appealing approach to 
federated search over large networks of digital libraries.  The 
activities involved for search in peer-to-peer networks include 
issuing requests (“queries”), routing requests (“query routing”), 
and responding to requests (“retrieval”).  The nodes in peer-to-
peer networks can participate as clients and/or servers.  Client 
nodes issue queries to initiate search in peer-to-peer networks; 
server nodes provide information contents, respond to queries 
with documents that are likely to satisfy the requests, and/or route 
queries to other servers.       
The first peer-to-peer networks were based on sharing popular 
music, videos, and software.  These types of digital objects have 
relatively obvious or well-known naming conventions and 
descriptions, making it possible to represent them with just a few 
words from a name, title, or manual annotation.  From a Library 
Science or Information Retrieval perspective, these systems were 
designed for known-item searches, in which the goal is to find a 
single instance of a known object (e.g., a particular song by a 
particular artist).  In a known item search, the user is familiar with 
the object being requested, and any copy is as good as any other.  

Known-item search of popular music, video, and software file-
sharing systems is a task for which simple solutions suffice.  If 
P2P systems are to scale to more varied content and larger digital 
libraries, they must adopt more sophisticated solutions. 
A very large number of text-based digital libraries were 
developed during the last decade.  Nearly all of them use some 
form of relevance ranking, in which term frequency information 
is used to rank documents by how well they satisfy an 
unstructured text query.  Many of them allow free search access 
to their contents via the Internet, but do not provide complete 
copies of their contents, or even complete title lists for their 
contents, upon request.  Many do not allow their contents to be 
crawled by Web search engines.  They do not cooperate by 
conforming to a single method of text representation, query 
processing, or document retrieval; they don’t even provide 
information about how these operations are done.  We would 
argue that most of the recent research on peer-to-peer networks 
offers little useful guidance for providing federated search of 
current text-based digital libraries. 
This paper addresses the problem of using peer-to-peer networks 
as a federated search layer for text-based digital libraries.  We 
study federated search in two different types of environments: 
cooperative environments where each digital library provides 
accurate resource description of its content upon request, and 
uncooperative environments where resource descriptions must be 
obtained indirectly.  We start by assuming the current state of the 
art; that is, we assume that each digital library is a text database 
running a reasonably good conventional search engine, that it 
provides search access to its holdings, and that it provides 
individual documents in response to full text queries.  We present 
in this paper how resource descriptions of digital libraries are 
obtained and used for efficient query routing, and how results 
from different digital libraries are merged into a single, integrated 
ranked list in peer-to-peer networks.   
In the following section we give an overview of the prior research 
on federated search of text-based digital libraries and peer-to-peer 
networks.  Section 3 describes our approaches to federated search 
of text-based digital libraries in peer-to-peer networks.  Sections 4 
and 5 discuss our data resources and evaluation methodologies.  
Experimental settings and results are presented in Section 6.  
Section 7 concludes. 

2. OVERVIEW 
Accurate and efficient federated search in peer-to-peer networks 
of text-based digital libraries requires both the appropriate peer-
to-peer architecture and the effective search methods developed 
for the chosen architecture.  In this section we present an 



overview of the prior research on federated search of text-based 
digital libraries, peer-to-peer network architectures, and text-
based search in peer-to-peer networks in order to set the stage for 
the descriptions of our approaches to text-based federated search 
in peer-to-peer networks. 

2.1 Federated Search of Text-Based Digital 
Libraries 
Prior research on federated search of text-based digital libraries 
(also called “distributed information retrieval” in the research 
literature) identifies three problems that must be addressed: 

• Resource representation:  Discovering the contents or 
content areas covered by each resource (“resource 
description”); 

• Resource ranking and selection:  Deciding which resources 
are most appropriate for an information need based on their 
resource descriptions; and 

• Result-merging:  Merging ranked retrieval results from a set 
of selected resources. 

A directory service is responsible for acquiring resource 
descriptions of the digital libraries it serves, selecting the 
appropriate resources (digital libraries) given the query, and 
merging the retrieval results from selected resources into a single, 
integrated ranked list.  Solutions to all these three problems for 
the case of a single directory service have been developed in 
distributed information retrieval.  We briefly review them below. 

2.1.1 Resource Representation 
Different techniques for acquiring resource descriptions require 
different degrees of cooperation from digital libraries.  STARTS 
is a cooperative protocol that requires every digital library to 
provide an accurate resource description to the directory service 
upon request [6].  STARTS is a good solution in environments 
where cooperation can be guaranteed.  However, in some 
environments where digital libraries may not cooperate or may 
have an incentive to cheat, STARTS cannot be used to acquire 
accurate resource descriptions. 
Query-based sampling is an alternative approach to acquiring 
resource descriptions without requiring explicit cooperation from 
digital libraries.  The resource description of a digital library is 
constructed by sampling its documents via the normal process of 
submitting queries and retrieving documents.  Query-based 
sampling has been shown to acquire fairly accurate resource 
descriptions using a small number of queries and documents in 
distributed information retrieval environments [1].      
The total number of documents of a digital library is one of the 
most important corpus statistics required by many resource 
selection algorithms.  Capture-Recapture [12] and Sample-
Resample [20] are two methods of estimating the total number of 
documents of an uncooperative digital library.  Experimental 
results show that in most scenarios, Sample-Resample is more 
accurate and has less communication costs than the Capture-
Recapture method.      

2.1.2 Resource Ranking and Selection 
Resource selection aims at selecting a small set of resources that 
contain a lot of documents relevant to the information request.  
Resources are ranked by their likelihood to return relevant 
documents and top-ranked resources are selected to process the 

information request.   
Resource selection algorithms such as CORI [1], gGlOSS [7], and 
Kullback-Leibler (K-L) divergence-based algorithms [24] use 
techniques adapted from document retrieval for resource ranking.  
The resource description of a digital library used by these 
algorithms includes a list of terms with corresponding collection 
term frequencies, and corpus statistics such as the total number of 
terms and documents in the collection.  These algorithms have 
been shown to work well with resource descriptions provided by 
cooperative digital libraries or acquired using query-based 
sampling.       
Other resource selection algorithms including ReDDE [20] and 
DTF (the decision-theoretic framework for resource selection) 
[16] rank resources by directly estimating the number of relevant 
documents from each resource for a given query.  ReDDE relies 
on sampled documents obtained using query-based sampling for 
such estimation.  DTF has three variants DTF-rp, DTF-sample 
and DTF-normal.  DTF-rp estimates the number of relevant 
documents from a resource by assuming a linearly decreasing 
recall-precision function and calculating the expected precision 
and recall from the resource.  DTF-sample uses sampled 
documents to estimate how relevant documents are distributed 
among the available resources.  DTF-normal models the 
distribution of document scores from a resource with normal 
distribution and map document scores to probability of relevance 
using a function learned with user relevance feedback. 
Deciding how many top-ranked resources to be selected 
(“thresholding”) is a problem that is usually simplified.  Most 
resource selection algorithms use heuristic values such as 10 and 
20 for the number of selected resources.   

2.1.3 Result Merging 
Many result-merging algorithms have been proposed in 
distributed information retrieval.  Various approaches can be 
divided into two categories: approaches based on normalizing 
resource-specific document scores into resource-independent 
document scores, and approaches based on recalculating 
document scores at the directory service.   
The CORI merging algorithm uses a heuristic linear combination 
of digital library scores and document scores to normalize the 
scores of the documents from different digital libraries.  The 
intuition is to favor documents from digital libraries with high 
scores and also to enable high-scoring documents from low-
scoring digital libraries to be ranked highly.  It is effective when 
used together with the CORI resource selection and INQUERY 
document retrieval algorithms in federated search using a single 
directory service [1].   
There has been some work on using logistic regression to learn 
merging models to normalize document scores but relevance 
judgments are required for training [2].   
The Semi-Supervised Learning result-merging algorithm uses the 
documents obtained by query-based sampling as training data to 
learn score normalizing functions on a query-by-query basis.  It is 
shown to work well with a variety of resource selection and 
document retrieval algorithms and is the current state-of-the-art 
for result merging in distributed information retrieval [19].   
Document scores can be recalculated at the directory service by 
downloading all the documents in the retrieval results from 



selected resources, indexing them, and re-ranking them using a 
document retrieval algorithm.   
Downloading documents is not necessary if all the statistics 
required for score recalculation can be obtained alternatively.  
Kirsch’s algorithm [10] requires each resource to provide 
summary statistics for each of the retrieved documents.  It allows 
very accurate normalized document scores to be determined 
without the high communication cost of downloading. 
The corpus statistics required for recalculating document scores 
could also be substituted by a reference statistics database 
containing all the relevant statistics for some set of documents.  
This method is explored in [3] for federated search using a single 
directory service and shown to be effective compared with using 
the corpus statistics provided by cooperative digital libraries.   

2.2 P2P Network Architectures 
As mentioned in Section 1, the activities involved for search in 
peer-to-peer networks include issuing queries, query routing, and 
retrieval.  Query routing is essentially a problem of resource 
selection and location.  Resource location in first generation peer-
to-peer networks is characterized by Napster, which used a single 
logical directory service, and Gnutella 0.4, which used undirected 
message flooding and a search horizon.  The former proved easy 
to attack, and the latter didn’t scale; both systems demonstrated 
the importance of robust and reliable methods of locating 
information in peer-to-peer networks.  They also explored very 
different solutions:  Napster was centralized and required 
cooperation (sharing of accurate information); Gnutella 0.4 was 
decentralized and required little cooperation. 
Recent research provides a variety of solutions to the flaws of the 
Napster and Gnutella 0.4 architectures, but perhaps the most 
influential are hierarchical and structured P2P architectures.  
Structured P2P architecture associates each data item with a key 
and distributes keys among directory services using a Distributed 
Hash Table (DHT) [17, 18, 21, 22, 28].  Hierarchical P2P 
architecture [9, 11, 23] uses top-layer directory services to serve 
regions of bottom-layer digital libraries and directory services 
work collectively to cover the whole network.  The common 
characteristic of both approaches is the construction of an overlay 
network to organize the nodes that provide directory services 
(also called “look up services” by DHT-based approaches) for 
efficient query routing.  An important distinction is that structured 
P2P networks require the ability to map (via a distributed hash 
table) from an information need to the identity of the directory 
service that satisfies the need, whereas hierarchical P2P networks 
rely on message-passing to locate directory services.  Structured 
P2P networks require digital libraries to cooperatively share 
descriptions of data items in order to generate keys and construct 
distributed hash tables.  In contrast, hierarchical P2P networks 
enable directory services to automatically discover the contents of 
(possibly uncooperative) digital libraries, which is well-matched 
to networks that are dynamic, heterogeneous, or protective of 
intellectual property. 

2.3 Text-Based Search in P2P Networks 
Most of the prior research on search in peer-to-peer networks only 
support simple keyword-based search.  Matches between query 
terms and keywords of documents are used to determine how to 
route queries and which documents to be retrieved.  There has 
been some recent work on developing systems that adopt more 

sophisticated retrieval models to support text-based search (also 
called “content-based retrieval”) in peer-to-peer networks.  
Examples are PlanetP using a completed decentralized P2P 
architecture [5], pSearch using a structured P2P architecture [22], 
and content-based retrieval in hierarchical P2P networks [13].        
In PlanetP [5], a node uses a TF.IDF algorithm to decide which 
nodes to contact for information requests based on the compact 
summaries it collects about all other nodes’ inverted indexes.  
Because no special resources are dedicated to support directory 
services in completely decentralized P2P architectures, it is 
somewhat inefficient for each node to collect and store 
information about the contents of all other nodes, especially in 
dynamic P2P networks. 
pSearch [22] uses the semantic vector (generated by Latent 
Semantic Indexing) of each document as the key to distribute 
document index in a structured P2P network so that documents 
close in distance have similar contents.  The relevance of a 
document to a query is determined by the similarity between their 
semantic vectors.  To compute semantic vectors for documents 
and queries, global statistics such as the inverse document 
frequency and the basis of the semantic space need to be 
disseminated to each node in the network.  Because global 
statistics can only be obtained in completely cooperative 
environments where each digital library shares its document and 
corpus statistics, this approach cannot be easily extended to 
uncooperative and heterogeneous environments. 
There has been some prior research on content-based resource 
selection and document retrieval in hierarchical P2P networks of 
digital libraries [13].  Viewing peer-to-peer networks as a 
particular type of distributed information retrieval environment, 
content-based resource selection is extended to the case of 
multiple directory services in peer-to-peer environments where 
digital libraries cooperatively provide resource descriptions to 
connecting directory services.  Experimental results demonstrate 
that content-based resource selection and document retrieval can 
provide more accurate and more efficient solutions to federated 
search in peer-to-peer networks of text-based digital libraries 
compared with the flooding and keyword-based approaches.          
The problem of result merging in hierarchical P2P networks of 
uncooperative and barely-cooperative text-based digital libraries 
has also been studied in [15].  The Semi-Supervised Learning 
(SSL) result-merging algorithm is modified and an algorithm 
Score Estimation with Sample Statistics (SESS) which extends 
Kirsch’s approach to result merging is proposed.  Experimental 
results show that modified SSL has satisfactory precision for top-
ranked merged documents, and SESS is able to provide near 
optimal performance with a small amount of cooperation from 
digital libraries. 

3. TEXT-BASED FEDERATED SEARCH IN 
HIERARCHICAL P2P NETWORKS 
The research described in this paper adopts a hierarchical P2P 
architecture because it provides a more flexible framework to 
incorporate various solutions to resource selection and result 
merging in both cooperative and uncooperative environments.  
Following the terminology of prior research, we refer to text-
based digital libraries as “leaf” nodes, and directory services as 
“hub” nodes.  Each leaf node is a text database that provides 
functionality to process full text queries by running a document 



retrieval algorithm over its index of local document collection and 
generate responses.  Each hub acquires and maintains necessary 
information about its neighboring hub and leaf nodes and uses it 
to provide resource selection and result merging services to peer-
to-peer networks.  In addition to leaf nodes and hubs, there are 
also nodes representing users with information requests in peer-
to-peer networks.  They are referred to as “client” nodes.  In a 
hierarchical P2P network, leaf nodes and client nodes can only 
connect to hubs and hubs connect with each other.   
Search in peer-to-peer networks relies on message-passing 
between nodes.  A request message (“query”) is generated by a 
client node and routed from a client node to a hub, from one hub 
to another, or from a hub to a leaf node.  A response message 
(“queryhit”) is generated by a leaf node and routed back along the 
query path in reverse direction.  Each message in the network has 
a time-to-live (TTL) field that determines the maximum number 
of times it can be relayed in the network.  The TTL is decreased 
by 1 each time the message is routed to a node.  When the TTL 
reaches 0, the message is no longer routed.       
When a client node has an information request, it sends a query 
message to each of its connecting hubs.  A hub that receives the 
query message uses its resource selection algorithm to rank and 
select one or more neighboring leaf nodes as well as hubs and 
routes the query to them if the message’s TTL hasn’t reached 0.  
A leaf node that receives the query message uses its document 
retrieval algorithm to generate a relevance ranking of its 
documents and responds with a queryhit message to include a list 
of top-ranked documents.  Each top-level hub (the hub that 
connects directly to the client node that issues the request) 
collects the queryhit messages and uses its result merging 
algorithm to merge the documents retrieved from multiple leaf 
nodes into a single, integrated ranked list and returns it to the 
client node.  If the client node issues the request to more than one 
hub, then it also needs to merge results returned by multiple top-
level hubs.  
Figure 3.1 illustrates federated search of text-based digital 
libraries in hierarchical P2P networks.  The C (white) node is the 
client node that issues the information request, the H (black) 
nodes are hubs, and the D (gray) nodes are leaf nodes (digital 
libraries).  The edges between nodes represent connections.  The 
arrows with solid lines indicate the directions to send query 
messages and the arrows with dashed lines indicate the directions 
to send queryhit messages.       
In the following subsections, we present in more details the 
solutions to the problems of resource representation, resource 
ranking and selection, and result merging in both cooperative and 
uncooperative peer-to-peer environments.   

3.1 Resource Representation    
The description of a resource is a very compact summary of its 
content.  Compared with a copy of the complete index of a 
collection of documents, resource description requires much less 
communication and storage costs but still provides useful 
information for resource selection algorithms to determine which 
resources are more likely to contain documents relevant to the 
query.  As mentioned in Section 2.1.2, the resource description 
used by most resource selection algorithms include a list of terms 
with corresponding term frequencies (collection language model), 
and corpus statistics such as the total number of terms and 
documents provided or covered by the resource.  The resource 
here could be a single leaf node, a hub that covers multiple 
neighboring leaf nodes, or a “neighborhood” that includes all the 
nodes reachable from a hub.  Although resource descriptions for 
different types of resources have the same format, different 
methods are required to acquire them, which we introduce below.     

3.1.1 Resource Descriptions of Leaf Nodes 
Resource descriptions of leaf nodes are used by hubs for query 
routing (“resource selection”) among connecting leaf nodes.  In 
cooperative environments, each leaf node provides accurate 
resource description to its connecting hubs upon request.  In 
uncooperative environments, each hub conducts query-based 
sampling independently to obtain sampled documents from its 
connecting leaf nodes.  Sampled documents from a leaf node are 
used to generate its collection language model.  They are also 
used by the Sample-Resample method to estimate the total 
number of documents in this leaf node’s collection.     

3.1.2 Resource Descriptions of Hubs 
The resource description of a hub is the aggregation of the 
resource descriptions of its connecting leaf nodes.  Since hubs 
work collaboratively in hierarchical P2P networks, neighboring 
hubs can exchange with each other their aggregate resource 
descriptions.  However, because the aggregate resource 
descriptions of hubs only have information for nodes within 1 
hop, if they are directly used by a hub to decide which 
neighboring hubs to route query messages to, the routing would 
not be effective when the nodes with relevant documents sit 
beyond this “horizon”.  Thus for effective hub selection, a hub 
must have information about what contents can be reached if the 
query message it routes to a neighboring hub may further travel 
multiple hops.  This kind of information is referred to as the 
resource description of a neighborhood and is introduced in the 
following subsection.         

3.1.3 Resource Descriptions of Neighborhoods 
A neighborhood of a hub Hi in the direction of its neighboring 
hub Hj is a set of hubs that can be reached by following the path 
from Hi to Hj.  Figure 3.2 illustrates the concept of neighborhood.  
Hub H1 has three neighboring hubs H2, H3 and H4.  Thus it has 
three neighborhoods marked by N1,2, N1,3 and N1,4.  The resource 
description of a neighborhood provides information about the 
contents covered by all the hubs in this neighborhood.  A hub uses 
resource descriptions of neighborhoods to select and route queries 
to its neighboring hubs.   
Resource descriptions of neighborhoods provide similar 
functionality as routing indices [4].  An entry in a routing index 
records the number of documents that may be found along a path 
for a set of topics.  The key difference between resource 

Figure 3.1 Federated search in hierarchical P2P 
networks. 
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descriptions of neighborhoods and routing indices is that resource 
descriptions of neighborhoods represent contents with unigram 
language models (terms with their frequencies).  Thus by using 
resource descriptions of neighborhoods, there is no need for hubs 
and leaf nodes to cluster their documents into a set of topics and it 
is not necessary to restrict queries to topic keywords.   
Similar as exponentially aggregated routing indices [4], a hub 
calculates the resource description of a neighborhood by 
aggregating the resource descriptions of all the hubs in the 
neighborhood decayed exponentially according to the number of 
hops.  For example, in the resource description of a neighborhood 
Ni,j (the neighborhood of Hi in the direction of Hj), a term t’s 
exponentially aggregated term frequency is calculated as: 
                 }/),({ ]1),([
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where tf(t, Hk) is t’s term frequency in the resource description of 
hub Hk, and F is the average number of hub neighbors each hub 
has in the network. 
The exponentially aggregated total number of documents in a 
neighborhood is calculated as: 
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The creation of resource descriptions of neighborhoods requires 
several iterations at each hub and different hubs can run the 
creation process asynchronously.  A hub Hi in each iteration 
calculates and sends to its hub neighbor Hj the resource 
description of neighborhood Nj,i denoted by NDj,i by aggregating 
its hub description HDi and the most recent resource descriptions 
of neighborhoods it receives from all of its neighboring hubs 
excluding Hj.  NDj,i is calculated as: 
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The stopping condition could be either the number of iterations 
reaching a predefined limit, or the difference in resource 
descriptions between adjacent iterations being small enough.   
The process of maintaining and updating resource descriptions of 
neighborhoods is identical to the process used for creating them.  
The resource descriptions of neighborhoods could be updated 
when the difference between the old and the new value is 
significant, or periodically, or when a node disconnects from the 
network.    
For networks that have cycles, frequencies of some terms and the 
number of documents may be overcounted, which will affect the 
accuracies of resource descriptions.  How to deal with cycles in 
peer-to-peer networks using routing indices is discussed in detail 

in [4].  We could use the same solutions described in [4] for cycle 
avoidance or cycle detection and recovery.  For simplicity, in this 
paper, we take the “no-op” solution, which completely ignores 
cycles.  Experimental results show that resource selection using 
resource descriptions of neighborhoods generated in networks 
with cycles is still quite efficient and accurate.          

3.2 Resource Ranking and Selection 
The goal of query routing is to direct the information request to 
those nodes that are most likely to contain relevant documents 
with minimum number of query messages.  The flooding 
technique guarantees to reach nodes with relevant information 
contents but requires exponential number of query messages.  
Random forwarding the request to a small subset of neighbors can 
significantly reduce the number of query messages but the 
reached nodes may not be relevant at all.  To achieve both 
efficiency and accuracy, each hub needs to rank its neighboring 
leaf nodes by their likelihood to satisfy the information request 
and neighboring hubs by their likelihood to reach nodes with 
relevant information contents and only forwards the request to 
top-ranked neighbors.  Because the resource descriptions of leaf 
nodes and those of neighborhoods are not in the same magnitude, 
a hub handles separately the ranking and selection of its 
neighboring leaf nodes and hubs.       

3.2.1 Leaf Node Ranking 
Adapting language modeling approaches for ad-hoc information 
retrieval, we use the Kullback-Leibler (K-L) divergence-based 
method [24] for leaf node ranking.  In the language modeling 
framework, the K-L divergence resource selection algorithm 
calculates P(Li | Q), the conditional probability of predicting the 
collection of leaf node Li given the query Q and uses it to rank 
different leaf nodes.  P(Li | Q) is calculated as follows: 

                 )|(
)(

)()|(
)|( i

ii
i LQP

QP
LPLQP

QLP ∝
×

=               (4) 

with uniform prior probability for leaf nodes; 
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where tf(q | Li) is the term frequency of query term q in leaf node 
Li’s resource description (collection language model), P(q | G) is 
the background language model used for smoothing and µ is the 
smoothing parameter in Dirichlet smoothing. 

3.2.2 Leaf Node Selection with Unsupervised 
Threshold Learning 
After leaf nodes are ranked based on their P(Li | Q) values, the 
usual approach is to select the top-ranked leaf nodes up to a 
predetermined number.  In hierarchical P2P networks, the number 
of leaf nodes served by individual hubs may be quite different, 
and different hubs may cover different content areas.  In this case, 
it is not appropriate to use a static, query-independent and hub-
independent number as threshold for a hub to decide how many 
leaf nodes to select for a given query.  It is desirable that hubs 
have the ability to learn hub-specific and query type-specific 
thresholds automatically.   
The problem of learning threshold to convert relevance ranking 
scores into a binary decision has mostly been studied in 
information filtering [25, 26, 27].  However, the user relevance 

Figure 3.2 Neighborhoods in hierarchical P2P networks. 
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feedback required as training data is not as easily available for 
federated search in peer-to-peer networks as for the task of 
information filtering.  Our goal is to develop a technique for each 
hub to learn the selection threshold without supervision based on 
the information and functionality it already has.  Because each 
hub has the ability to merge the retrieval results from multiple leaf 
nodes into a single, integrated ranked list, as long as the result 
merging has reasonably good performance, we could assume that 
the top-ranked merged documents are relevant.  If so, the 
distribution of the top-ranked merged documents over the leaf 
nodes should provide useful hints on the number of relevant 
documents each leaf node is likely to retrieve.  This is analogous 
to query expansion with pseudo-relevance feedback which treats 
the top-ranked documents retrieved initially as relevant 
documents and uses them to improve the quality of the query.  
The key differences are i) our approach uses the information 
about which top-ranked merged documents are from which leaf 
nodes and ignores the actual contents of these documents, and ii) 
the direct goal here is not to improve immediately the retrieval 
quality for current query, but to learn resource selection 
thresholds that are specific to hubs and types of queries and 
improve the overall retrieval performance for a set of queries.   
For leaf node selection, if a hub selects more leaf nodes than 
necessary, although the retrieval results will include a lot of 
irrelevant documents, as long as there are enough relevant 
documents, a reasonably good result merging algorithm can rank 
most relevant documents above irrelevant documents, yielding 
good precisions at top-ranked documents.  In this case, it seems 
that a loose threshold will almost always give good performance.  
However, a loose threshold leads to low efficiency and high 
communication costs.  Because for search in peer-to-peer 
networks, accuracy and efficiency are equally important, the 
resource selection threshold must be not too loose in order to 
guarantee efficiency, and not too tight as well so that enough 
relevant documents are returned (high recall).  With the above 
criteria in mind, a hub uses the following procedure to decide the 
threshold of leaf node selection for a query: 
1. Given a query, the hub uses K-L divergence resource 

selection algorithm to calculate leaf node scores and sorts 
them in descending order; 

2. The hub selects up to 100 top-ranked leaf nodes and 
normalizes their scores using the formula: 
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SS
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where Smax is the maximum score and Smin is the minimum 
score among these selected leaf nodes; 

3. The hub forwards the query to selected leaf nodes and 
merges the retrieval results returned by these leaf nodes; 

4. The hub calculates for each selected leaf node the number of 
documents that are ranked among top 50 in the merged 
result; 

5. The hub goes down the list of leaf nodes sorted by their 
scores and stops at the leaf node which has the largest 
number of documents ranked among top 50 in the merged 
results (highest recall using pseudo-relevance feedback); 

6. The hub regards the normalized score of this leaf node as the 
threshold of its leaf node selection for the given query. 

Learning thresholds for individual queries is not useful unless the 
same queries appear again.  Thus queries need to be classified 
into different types and thresholds for individual queries are used 
to compute thresholds for different query types.  Queries can be 
classified based on their contents or statistical properties.  When 
the number of queries for training is small (which is desired due 
to its low communication cost), classifying queries by contents 
often leads to sparse and skewed training data for various query 
types.  Hence in our experiments we focused on classifying 
queries by their statistical properties and found the average 
probability of the query terms in a hub’s resource description to 
be a good feature for query classification.  Given a set of training 
queries that have average probabilities of query terms in different 
ranges, probability values ranging from 0 to the maximum term 
probability in a hub’s resource description are divided into 10 
non-overlapping bins so that all bins have roughly the same 
number of queries for training.  A query type is associated with 
each bin, so there are 10 query types in total.  A query is 
classified into one of these 10 types based on the average 
probability of its terms in the hub’s resource description.          
During the learning phase, each hub in the network learns the 
thresholds for a set of training queries and the learned thresholds 
for queries of the same type are averaged to get the threshold for 
this query type at the hub.  Given a new query, a hub determines 
the type of the query, ranks up to 100 leaf nodes, normalizes their 
scores, and uses the query type-specific threshold to select the 
leaf nodes that have normalized scores no less than the threshold.   

3.2.3 Hub Ranking and Selection  
The K-L divergence resource selection algorithm used for leaf 
ranking is also used for hub ranking.  The resource descriptions of 
neighborhoods are used to calculate the collection language 
models needed by the resource selection algorithm.  For hub 
selection, because selecting a neighboring hub is essentially 
selecting a neighborhood, using a prior distribution that favors 
larger neighborhood could lead to better search performance, 
which was indeed the case in our experiments.  Thus the prior 
probability of a neighborhood is set to be proportional to the 
exponentially aggregated total number of documents in the 
neighborhood.  Given the query Q, the probability of predicting 
the neighborhood Ni that a neighboring hub node Hi represents is 
calculated as follows and used to rank neighboring hubs: 
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where tf(q | Ni) is the term frequency of query term q in the 
resource description of neighborhood Ni (collection language 
model), P(q | G) is the background language model used for 
smoothing and µ is the smoothing parameter in Dirichlet 
smoothing. 
A fixed number of top-ranked neighboring hubs are selected.  It 
remains to be future work to apply unsupervised threshold 
learning to hub selection. 

3.3 Result Merging 
As described earlier, result merging takes place at each top-level 
hub.  In cooperative environments, Kirsch’s algorithm [10] is 



extended for result merging in peer-to-peer networks.  In addition 
to a list of retrieved documents, each resource is required to 
provide summary statistics for each of the retrieved documents, 
for example, document length and how often each query term 
matched.  The corpus statistics comes from the aggregation of the 
hub’s resource description and the resource descriptions of 
neighborhoods for all its neighboring hubs.     
The modified Semi-Supervised Learning algorithm (modified 
SSL) [15] is used for result merging in uncooperative 
environments.  Each hub along the query path contributes to result 
merging by providing document statistics for “overlap” 
documents, which are documents that appear both in the sampled 
documents maintained at the hub for its leaf node neighbors and 
in the retrieval results sent to the hub by these neighbors.  Top-
level hubs use these document statistics provided by collaborative 
hubs to recalculate document scores for “overlap” documents and 
pair them with their original scores returned in the retrieval results 
to use as training data for learning score normalizing functions.  
The main difference between result merging in cooperative 
environments and that in uncooperative environments is that in 
cooperative environments leaf nodes provide document statistics 
for all the retrieved documents to top-level hubs, while in 
uncooperative environments, hubs provide document statistics for 
a subset of retrieved documents (“overlap” documents) to top-
level hubs. 
If the client node issues the request to more than one hub, then it 
also needs to merge results returned by multiple top-level hubs.  
Because client nodes don’t maintain information about the 
contents of other nodes and corpus statistics as hubs do in 
hierarchical P2P networks, they cannot use advanced result-
merging algorithms.  Thus only simple, but probably less 
effective, merging methods can be applied at client nodes.  For 
example, results can be merged based on the document scores 
returned by top-level hubs (“raw score merge”) or in a round 
robin fashion.   

4. TEST DATA 
We used the P2P testbed [14] developed based on the TREC 
WT10g web test collection [8] to evaluate the performance of 
federated search in hierarchical P2P networks of text-based digital 
libraries.  The P2P testbed consists of 2,500 collections obtained 
by dividing WT10g data into 11,485 collections based on 
document URLs and randomly selecting 2,500 of them.  The total 
number of documents in these 2,500 collections is 1,421,088.  
Each collection defines a leaf node (digital library) in a 
hierarchical P2P network.  
There are 25 hubs in total in the P2P testbed, each of which 
covers a specific type of content.  The connections between leaf 
nodes and hubs were determined by clustering leaf nodes into 25 
clusters using a similarity-based soft clustering algorithm, 
associating each cluster with a hub, and connecting all the leaf 
nodes within a cluster to the associated hub.    
The connections between hubs were generated randomly.  Each 
hub has no less than 1 and no more than 7 hub neighbors.  A hub 
has on average 4 hub neighbors.   
Table 4.1 summarizes some statistics for the testbed.   
Experiments were run on two sets of queries.  The first set of 
queries came from the title fields of TREC topics 451-550 used 
for TREC-8 and TREC-9 Web Tracks.  The standard TREC 

relevance assessments supplied by the U. S. National Institute for 
Standards and Technology were used.   
The second set of queries was a set of 1,000 queries selected from 
the queries defined in the P2P testbed.  Queries in the P2P testbed 
were automatically generated from WT10g data by extracting key 
terms from the documents in the collection.  Table 4.2 shows the 
distribution of query lengths among the selected 1,000 queries.  
Table 4.3 shows the distribution of term frequencies in WT10g 
for all the query terms in these 1,000 queries.  Because it is 
expensive to obtain relevance judgments for these automatically 
generated queries, we used the ranked retrieval results from a 
single large collection as the baseline (“single collection” 
baseline), and measured how well federated search in the 
hierarchical P2P network could reproduce this baseline.  The 
single large collection was the subset of the WT10g used to define 
the contents of the 2,500 leaf nodes in the peer-to-peer network, 
and the 50 top-ranked documents retrieved using this single large 
collection (WT10g-subset) were treated as the relevant documents 
for each query.   
For each query, a leaf node was randomly chosen to act as a client 
node temporarily to issue the query to the network and collect the 
merged retrieval results for evaluation.     

5. EVALUATION METHODOLOGY 
A simulator was used to evaluate the performance of text-based 
federated search in hierarchical P2P networks.  Both retrieval 
accuracy and query routing efficiency are used as performance 
measures. 

5.1 Measuring Retrieval Accuracy 
Retrieval accuracy was measured by both set-based and rank-
based Recall and Precision.  Set-based Recall and Precision are 
defined as follows: 

||/||Recall Ar=                       (9) 

||/||Precision Rr=      (10) 

where R is the set of the documents returned by retrieval in the 
P2P network, A is the set of relevant documents for a query 
among the 100 TREC queries, or the set of (up to 50) top-ranked 
documents returned by retrieval using the single WT10g-subset 
collection for a query among the 1,000 WT10g queries, and r is 
the intersection of R and A.  |•| denotes the size of the set. 
The quality of document rankings was measured using precisions 

Table 4.1 Summary statistics for the testbed. 
 min avg max 

Number of documents for a leaf node 8 568 26,505 
Number of leaf nodes for a hub 10 376 1,008 
Number of hubs a leaf node connects to 1 4 12 

Table 4.2 Distribution of query length for 1,000 queries. 
Length 1 2 3 4 5 6 

Distribution 33% 33% 19% 7% 4% 4% 

Table 4.3 Distribution of term frequency for 1,000 queries. 
Frequency 

Scale 100 101 102 103 104 105 106 

Distribution 1.7 
% 

5.5 
% 

10.6 
% 

25.5 
% 

31.8 
% 

22.5 
% 

2.4 
% 



at document ranks 5, 10, 15, 20, 30, and 100. 
Set-based Recall and Precision focus attention on how well text-
based federated search in hierarchical P2P networks returns the 
“right” documents for a query, while rank-based metrics measure 
directly the performance of document ranking and result merging.   

5.2 Measuring Query Routing Efficiency 
The efficiency of query routing was measured by the average 
number of query messages routed for each query in the network.  
The average number of query messages routed from hubs to leaf 
nodes (“Hub-Leaf Messages”) for each query was also used to 
measure the efficiency of leaf node selection in some 
experiments. 

6. EXPERIMENTS AND RESULTS 
A series of experiments was conducted to study resource selection 
and result merging in both cooperative (“COOP”) and 
uncooperative (“UNCOOP”) P2P environments.  The choices of 
the algorithms used for resource representation, resource ranking 
and selection, document retrieval and result merging are shown in 
Table 6.1.  Table 6.2 shows the values of some parameters used in 
our experiments.   
Unsupervised threshold learning required a set of queries for 
training.  For each experiment that used leaf node selection with 
unsupervised threshold learning to run the 100 TREC queries, two 
runs were conducted.  The first run used the first half of the 100 
TREC queries for training and the second half for testing.  The 
second run worked the other way around.  The results from two 
runs were averaged to get the final results.  For the experiments 
that used leaf node selection with unsupervised threshold learning 
to run the 1,000 WT10g queries, the 100 TREC queries were used 
as training data.  Unsupervised threshold learning only used 
queries and retrieved documents for training.  The relevance 
judgments provided by NIST for the 100 TREC queries were not 
used to learn thresholds for leaf node selection.   
Tables 6.3a and 6.3b show respectively the results of running the 
100 TREC queries and the 1,000 WT10g queries for text-based 
federated search in a hierarchical P2P network using different 
methods.  Both cooperative and uncooperative environments were 
studied.  The “single collection” baseline which returned 50 top-
ranked documents for each query by retrieval using the single 

WT10g-subset collection is also shown in Table 6.3a for the 100 
TREC queries.   
The following subsections present the analysis of the results from 
different perspectives.         

6.1 Set-Based Recall/Precision vs. Precisions 
at Top Document Ranks 
The set-based Precision figures (column 4) are much lower than 
one might expect because the number of relevant documents was 
very small (50 on average for the 100 TREC queries using 
relevance judgments and 50 maximum for the 1,000 WT10g 
queries using the “single collection” baseline), but the total 
number of retrieved documents was at least ten times larger for 
most queries in the hierarchical P2P network.  This demonstrates 
a limitation of set-based Recall and Precision metrics for this task 
since generally users only care about the retrieval accuracy of 
top-ranked documents, but we include them as another way of 
comparing resource ranking and selection methods.   
Compared with set-based Precision, the differences between 
precisions at top document ranks for federated search in the 
hierarchical P2P network and for search using a centralized index 
are smaller.  This implies that both result merging algorithms for 
cooperative and uncooperative environments performed quite well 
by ranking most irrelevant documents lower than relevant 
documents in spite of low set-based Precision.   

6.2 TREC Queries vs. WT10g Queries 
In contrast to real queries and manual relevance judgments, the 

Table 6.1 Choices of algorithms in the experiments. 
 Algorithm 

Leaf descriptions Provided by leaf nodes in cooperative environments, OR 
 Generated by hubs using documents sampled from leaf nodes by query-based sampling in uncooperative environments 

Hub descriptions Generated by hubs by aggregating leaf descriptions 

Neighborhood descriptions Generated by hubs by aggregating hub descriptions and  
exponentially decayed neighborhood descriptions over several iterations 

Leaf node ranking K-L divergence resource selection algorithm using leaf descriptions 

Leaf node selection 1% of top-ranked leaf nodes, OR Fixed number of top-ranked leaf nodes, OR 
Top-ranked leaf nodes with normalized scores no less than the learned threshold (Section 3.2.2) 

Hub ranking K-L divergence resource selection algorithm using neighborhood descriptions 
Hub selection All neighboring hubs (flooding), OR 1 randomly selected neighboring hubs, OR Top-ranked neighboring hub 

Document retrieval K-L divergence document retrieval algorithm 

Result merging at top-level hubs Extended Kirsch’s algorithm in cooperative environments, OR 
 Modified Semi-Supervised Learning in uncooperative environments (Section 3.3) 

Result merging at client node Raw score merge (Section 3.3) 
 

Table 6.2 Parameter values used in the experiments. 
Parameters Values 

Initial TTL for messages 6 
Number of documents sampled from each leaf node Up to 300 

Number of resample queries used for Sample-Resample to 
estimate total number of documents 5 

Number of iterations to create neighborhood descriptions 6 
F  (Average number of hub neighbors each hub has)  4 

µ  (Dirichlet smoothing parameter  
in K-L divergence resource selection) 1000 

Number of documents retrieved from each leaf node Up to 50 



1,000 WT10g queries were generated automatically by extracting 
key terms from documents and the top-ranked documents 
retrieved using a single centralized index were used for relevance 
judgments.  When this set of queries was used to evaluate the 
performance of text-based federated search in hierarchical P2P 
networks, it directly measured the ability of federated search in 
hierarchical P2P networks to match the results from search in a 
centralized environment.  The strong performance indicated by 
high precisions at top document ranks in Table 6.3b demonstrates 
that federated search in the hierarchical P2P network mostly 
agreed with the centralized approach on which documents were 
most relevant.  Additional evaluations on the 100 TREC queries 
by treating the documents in the “single collection” baseline as 
relevant documents (the same evaluation methodology as we used 
for the 1,000 WT10g queries) gave very similar results (not 
shown in this paper due to space reason) as those in Table 6.3b.  
This is an encouraging sign for federated search in peer-to-peer 
networks because although distributed retrieval systems are not 
yet better than the “single collection” baseline, our results show 
that their performance can be pretty close at top-ranked 
documents.   

However, we note that Table 6.3b gives slightly overly optimistic 
view of federated search quality, because in cases where federated 
search in the hierarchical P2P network disagreed with search 
using a centralized index, federated search was more likely to 
give high rank to an irrelevant document which was ranked lowly 
by centralized search.  Therefore, the performance difference 
between federated search in the hierarchical P2P network and 
search using a centralized index is expected to be slightly larger if 
we evaluate them using real relevance judgments, as shown in 
Table 6.3a.   
In order to claim that a peer-to-peer system being able to 
reproduce the “single collection” baseline quite well is an 
effective system for federated search, we need to rely on the 
assumption that search using a centralized index is effective in 
satisfying user’s information needs, which is not necessarily the 
case.  Due to this reason, we were concerned with whether 
automatically generated queries would behave similarly as real 
queries and whether the conclusions drawn using the “single 
collection” baseline for evaluation would still be valid with real 
relevance judgments.  If we compare the figures in Table 6.3a 
with those in Table 6.3b, we can see that although the absolute 
values were quite different, the relative performance difference of 

Table 6.3a Search performance evaluated on the 100 TREC queries using relevance judgments provided by NIST. 

Environment Hub Selects  
Hub 

Hub Selects  
Leaf 

Set-based 
Recall/Precision 

# Query 
Messages 

Precision 
@ 5 

Precision 
@ 10 

Precision 
@ 15 

Precision 
@ 20 

Precision 
@ 30 

Precision 
@ 100 

Centralized N/A N/A 26.58 / 17.54 N/A 0.324 0.287 0.255 0.241 0.208 0.175 
COOP Flooding Top 1% 29.74 / 1.41 177 0.263 0.205 0.179 0.168 0.147 0.084 
COOP Random 1 Top 1% 21.76 / 1.41 63 0.240 0.191 0.170 0.154 0.130 0.066 
COOP Top 1 Top 1% 25.51 / 1.69 59 0.259 0.196 0.176 0.163 0.139 0.080 
COOP Flooding Threshold 37.39 / 1.22 212 0.295 0.236 0.202 0.187 0.164 0.099 
COOP Random 1 Threshold 23.67 / 1.23 77 0.263 0.212 0.180 0.159 0.137 0.070 
COOP Top 1 Threshold 26.59 / 1.74 58 0.263 0.214 0.187 0.169 0.148 0.082 

UNCOOP Flooding Top 1% 29.17 / 1.32 178 0.257 0.209 0.182 0.172 0.148 0.077 
UNCOOP Random 1 Top 1% 20.23 / 1.27 65 0.223 0.174 0.159 0.140 0.112 0.057 
UNCOOP Top 1 Top 1% 24.87 / 1.60 59 0.246 0.196 0.168 0.157 0.131 0.066 
UNCOOP Flooding Threshold 39.56 / 1.11 224 0.275 0.230 0.199 0.185 0.164 0.094 
UNCOOP Random 1 Threshold 24.81 / 1.12 84 0.235 0.198 0.171 0.152 0.126 0.069 
UNCOOP Top 1 Threshold 30.94 / 1.50 70 0.261 0.218 0.188 0.168 0.146 0.081 

Table 6.3b Search performance evaluated on the 1,000 WT10g queries using the “single collection” baseline. 

Environment Hub Selects  
Hub 

Hub Selects  
Leaf 

Set-based 
Recall/Precision 

# Query 
Messages 

Precision 
@ 5 

Precision 
@ 10 

Precision 
@ 15 

Precision 
@ 20 

Precision 
@ 30 

Precision 
@ 100 

COOP Flooding Top 1% 69.92 / 12.88 174 0.970 0.942 0.915 0.875 0.792 0.281 
COOP Random 1 Top 1% 50.55 / 12.50 60 0.874 0.809 0.753 0.698 0.595 0.198 
COOP Top 1 Top 1% 60.63 / 14.10 54 0.949 0.904 0.857 0.804 0.701 0.237 
COOP Flooding Threshold 72.82 / 12.47 177 0.989 0.967 0.945 0.915 0.840 0.296 
COOP Random 1 Threshold 51.11 / 13.12 58 0.890 0.830 0.768 0.716 0.615 0.199 
COOP Top 1 Threshold 60.43 / 15.42 47 0.967 0.918 0.868 0.818 0.717 0.235 

UNCOOP Flooding Top 1% 66.82 / 12.31 173 0.924 0.877 0.835 0.786 0.694 0.265 
UNCOOP Random 1 Top 1% 47.61 / 11.83 59 0.812 0.738 0.671 0.612 0.516 0.181 
UNCOOP Top 1 Top 1% 52.44 / 12.74 50 0.850 0.775 0.711 0.654 0.556 0.200 
UNCOOP Flooding Threshold 69.61 / 11.85 186 0.942 0.900 0.857 0.811 0.724 0.277 
UNCOOP Random 1 Threshold 48.36 / 12.46 61 0.834 0.758 0.694 0.632 0.530 0.184 
UNCOOP Top 1 Threshold 52.49 / 13.81 47 0.862 0.789 0.723 0.662 0.565 0.203 

 



different algorithms for the 1,000 WT10g queries was similar to 
that for the 100 TREC queries.  Therefore the same conclusions 
drawn from the results of the 100 TREC queries could be drawn 
from the results of the 1,000 WT10g queries regarding the relative 
effectiveness of various algorithms, which indicates that the 
automatically generated queries and the “single collection” 
baseline are useful resources in studying federated search in peer-
to-peer networks.     

6.3 Cooperative vs. Uncooperative 
The results in Tables 6.3a and 6.3b show that the search 
performance in uncooperative environments was comparable to 
that in cooperative environments, despite that in uncooperative 
environments hubs only obtained partial information about the 
content of each resource and used the score normalizing approach 
to result merging which was less accurate than score 
recalculation.  This indicates that query-based sampling and 
Semi-Supervised Learning for result merging are effective 
techniques for federated search of text-based digital libraries in 
uncooperative peer-to-peer networks.   

6.4 Hub Selection 
The results in Tables 6.3a and 6.3b demonstrate that compared 
with using the flooding technique for hub selection, hub selection 
based on resource descriptions of neighborhoods required around 
one third of the number of query messages with only minor drop 
in search performance, irrespective of whether leaf nodes were 
cooperative and how hubs ranked and selected leaf nodes.  Hub 
selection based on resource descriptions of neighborhoods and 
random hub selection gave similar query routing efficiency but 
the retrieval accuracy of the former was consistently higher than 
the latter.   
If we focus on the set-based Recall and Precision for three 
methods of hub selection, it is clear that random hub selection led 
to great loss in Recall with almost no change in Precision 
compared with the flooding technique, while hub selection based 
on resource descriptions of neighborhoods had consistent 
improvement in Precision over the flooding technique.  This 
indicates that hub selection based on resource descriptions of 
neighborhoods was very effective at selecting hubs that could 
reach the nodes most likely to satisfy the user’s information need 
and hence there were less irrelevant documents returned.        

6.5 Leaf Node Selection  
The power of the peer-to-peer system using learned thresholds for 
leaf node selection lies in its ability to adapt the thresholds 
automatically to different hubs and types of queries in order to 
obtain better performance.  There is no need to decide and tune 
manually the threshold values each time the system is put into a 
new environment.  As shown in Tables 6.3a and 6.3b, with the 
same hub selection method under the same environment, using 
leaf node selection with learned thresholds in general gave better 
performance for text-based federated search in the hierarchical 
P2P network than selecting a fixed percentage (1%) of top-ranked 
leaf nodes for each hub.   
Leaf node selection with learned thresholds produced better 
retrieval accuracy, but it also required more query messages.  It is 
unclear from this set of experiments whether the higher accuracy 
is due to a better method of selecting leaf nodes (i.e., learned 
thresholds), or more thorough search (i.e., more messages).  We 

ran additional experiments to further compare the performance of 
leaf node selection using learned thresholds with leaf node 
selection using fixed number.  The results are shown in Tables 
6.4a and 6.4b.  To make the comparison more clear, the number 
of query messages sent from hubs to leaf nodes were extracted 
from the total number of query messages and averaged over 
queries to get “Hub-Leaf Messages”.  In Tables 6.4a and 6.4b, for 
each combination of environment type and hub selection method, 
the fixed number (n in “Top n”) for leaf node selection was 
chosen to yield the smallest number of “Hub-Leaf Messages” that 
was larger than or equal to the number of “Hub-Leaf Messages” 
given by leaf node selection with learned thresholds (i.e., “Top n” 
yielded larger or equal number of “Hub-Leaf Messages” but “Top 
n-1” yielded smaller number of “Hub-Leaf Messages” than 
“Threshold” in the corresponding entries of the tables).  Leaf node 
selection with learned thresholds worked consistently better for 
precisions at top-ranked documents with higher or equal 
efficiency for routing queries from hubs to leaf nodes.  Therefore, 
with similar or smaller number of query messages, leaf node 
selection with learned thresholds still outperformed the simple 
solution of selecting a fixed number of top-ranked leaf nodes.             

7. CONCLUSIONS AND FUTURE WORK 
This paper studies federated search of text-based digital libraries 
in hierarchical peer-to-peer networks.  Although some existing 
approaches to resource representation, resource ranking and 
selection, and result merging for text-based federated search can 
be adapted to peer-to-peer environments in a straightforward 
manner, new development is still in demand to suit the solutions 
to the unique characteristics of hierarchical peer-to-peer networks.  
For example, in hierarchical peer-to-peer networks, hub ranking 
and selection should be based on not only the hub’s likelihood to 
provide relevant documents with its own leaf nodes, but also its 
potential to reach other hubs that are likely to satisfy the 
information request.  Thus new method is needed to represent the 
contents or content areas covered by the available resources in the 
networks.  In this paper, we define the concept of neighborhood 
and describe the method to create and use resource descriptions of 
neighborhoods for hub ranking and selection.  Experimental 
results demonstrate that hub ranking and selection based on 
resource descriptions of neighborhoods is both more accurate and 
more efficient than the alternative flooding and random selection. 
Another unique character of hierarchical peer-to-peer networks is 
that there are multiple hubs and each hub must make local 
decisions on selecting from the set of the leaf nodes it covers to 
satisfy the information request.  Because hubs are different in the 
number of leaf nodes and the content areas they cover, which 
could also change dynamically as nodes come and leave or 
change connections, the ability for hubs to learn automatically 
hub-specific and query type-specific thresholds in the networks is 
much desired.  This motivated us to develop a new approach for 
each hub to learn its own thresholds for various types of queries 
in an unsupervised manner based on the retrieval results of a set 
of training queries.  In our experiments the proposed approach 
was consistently more accurate and more efficient than the typical 
method of selecting a fixed number of top-ranked leaf nodes.  
However, there is still much to be explored on how to effectively 
make use of the information obtained from resource selection and 
result merging by running a set of training queries and we believe 
that the search performance can be further improved.     



The results shown in this paper also provide additional support for 
using automatically generated queries and “single collection” 
baseline to evaluate the search performance in peer-to-peer 
networks.  The same conclusions on the relative effectiveness of 
various algorithms for federated search in peer-to-peer networks 
can be drawn from the results of the 1,000 WT10g queries and 
from the results of the 100 TREC queries.  This is encouraging 
because the large number of queries automatically generated from 
WT10g (in the magnitude of 106) gives us the opportunity to 
study in the future how the network can learn from past queries 
and evolve in order to improve the search performance over time.          
Federated search in distributed environments is complicated, the 
main components of which include resource representation, 
resource selection, document retrieval and result merging.  The 
overall search performance is affected by the performance of each 
individual component as well as the interaction between different 
components.  Peer-to-peer networks add further complexity to the 
problem due to factors such as dynamic topology, uncertainty in 
locating relevant information, and concern in efficiency.  How the 
data are distributed over the networks and how different nodes 
interact and communicate with each other also affect the use of 

different algorithms because all algorithms are developed based 
on either explicit or implicit assumptions of the environments.  
Our next step is to further understand the unique characteristics of 
peer-to-peer networks and to develop practical algorithms that are 
more appropriate for search in dynamic and heterogeneous peer-
to-peer networks.                                
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Table 6.4a Comparison of leaf node selection methods tested on the 100 TREC queries.   The best results in ranked-based 
retrieval accuracy for cooperative and uncooperative environments are shown in bold. 

Environment Hub Selects  
Hub 

Hub Selects  
Leaf 

Set-based 
Recall/Precision 

# Hub-Leaf
Messages 

Precision 
@ 5 

Precision 
@ 10 

Precision 
@ 15 

Precision 
@ 20 

Precision 
@ 30 

Precision 
@ 100 

COOP Flooding Top 6 36.91 / 1.20 141 0.278 0.220 0.190 0.174 0.158 0.095 
COOP Flooding Threshold 37.39 / 1.22 137 0.295 0.236 0.202 0.187 0.164 0.099 
COOP Random 1 Top7 26.01 / 1.22 70 0.255 0.194 0.166 0.153 0.134 0.074 
COOP Random 1 Threshold 23.67 / 1.23 63 0.263 0.212 0.180 0.159 0.137 0.070 
COOP Top 1 Top6 28.21 / 1.64 46 0.278 0.209 0.180 0.169 0.149 0.083 
COOP Top 1 Threshold 26.59 / 1.74 46 0.263 0.214 0.187 0.169 0.148 0.082 

UNCOOP Flooding Top 7 37.53 / 1.09 163 0.282 0.225 0.191 0.177 0.159 0.091 
UNCOOP Flooding Threshold 39.56 / 1.11 148 0.275 0.230 0.199 0.185 0.164 0.094 
UNCOOP Random 1 Top 7 25.62 / 1.09 70 0.221 0.185 0.164 0.147 0.127 0.066 
UNCOOP Random 1 Threshold 24.81 / 1.12 69 0.235 0.198 0.171 0.152 0.126 0.069 
UNCOOP Top 1 Top 8 30.41 / 1.42 61 0.253 0.198 0.180 0.163 0.139 0.077 
UNCOOP Top 1 Threshold 30.99 / 1.50 58 0.263 0.216 0.187 0.168 0.147 0.081 

Table 6.4b Comparison of leaf node selection methods tested on the 1,000 WT10g queries.  The best results in rank-based 
retrieval accuracy for cooperative and uncooperative environments are shown in bold. 

Environment Hub Selects  
Hub 

Hub Selects  
Leaf 

Set-based 
Recall/Precision 

# Hub-Leaf
Messages 

Precision 
@ 5 

Precision 
@ 10 

Precision 
@ 15 

Precision 
@ 20 

Precision 
@ 30 

Precision 
@ 100 

COOP Flooding Top 5 74.21 / 11.83 111 0.973 0.949 0.930 0.899 0.828 0.302 
COOP Flooding Threshold 72.82 / 12.47 102 0.989 0.967 0.945 0.915 0.840 0.296 
COOP Random 1 Top5 51.87 / 11.76 46 0.875 0.809 0.752 0.700 0.606 0.204 
COOP Random 1 Threshold 51.11 / 13.12 45 0.890 0.830 0.768 0.716 0.615 0.199 
COOP Top 1 Top5 61.17 / 14.15 36 0.949 0.903 0.859 0.803 0.703 0.240 
COOP Top 1 Threshold 60.43 / 15.42 36 0.967 0.918 0.868 0.818 0.717 0.235 

UNCOOP Flooding Top 6 71.14 / 11.03 131 0.928 0.887 0.851 0.809 0.727 0.285 
UNCOOP Flooding Threshold 69.61 / 11.85 110 0.942 0.900 0.857 0.811 0.724 0.277 
UNCOOP Random 1 Top 6 49.20 / 10.99 54 0.822 0.752 0.689 0.630 0.531 0.193 
UNCOOP Random 1 Threshold 48.36 / 12.46 47 0.834 0.758 0.694 0.632 0.530 0.184 
UNCOOP Top 1 Top 6 53.40 / 12.20 39 0.852 0.776 0.712 0.656 0.561 0.207 
UNCOOP Top 1 Threshold 52.49 / 13.81 37 0.862 0.789 0.723 0.662 0.565 0.203 
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