
Federated Search of Text-Based Digital Libraries in
Hierarchical Peer-to-Peer Networks
Jie Lu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
jielu@cs.cmu.edu

Jamie Callan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
callan@cs.cmu.edu

ABSTRACT
Peer-to-peer architectures are a potentially powerful model for
developing large-scale networks of text-based digital libraries, but
peer-to-peer networks have so far provided very limited support
for text-based federated search of digital libraries using relevance-
based ranking. This paper addresses the problems of resource
representation, resource ranking and selection, and result merging
for federated search of text-based digital libraries in hierarchical
peer-to-peer networks. Existing approaches to text-based
federated search are adapted and two new methods are developed
for resource representation and resource selection according to the
unique characteristics of hierarchical peer-to-peer networks.
Experimental results demonstrate that the proposed approaches
are both more accurate and more efficient than more common
alternatives for text-based federated search in peer-to-peer
networks.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Retrieval models,
Search process, Selection process

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Peer-to-peer, Hierarchical, Federated Search, Text-Based,
Retrieval, Digital Library

1. INTRODUCTION
Peer-to-peer (P2P) networks are an appealing approach to
federated search over large networks of digital libraries. The
activities involved for search in peer-to-peer networks include
issuing requests (“queries”), routing requests (“query routing”),
and responding to requests (“retrieval”). The nodes in peer-to-
peer networks can participate as clients and/or servers. Client
nodes issue queries to initiate search in peer-to-peer networks;
server nodes provide information contents, respond to queries
with documents that are likely to satisfy the requests, and/or route
queries to other servers.
The first peer-to-peer networks were based on sharing popular
music, videos, and software. These types of digital objects have
relatively obvious or well-known naming conventions and
descriptions, making it possible to represent them with just a few
words from a name, title, or manual annotation. From a Library
Science or Information Retrieval perspective, these systems were
designed for known-item searches, in which the goal is to find a
single instance of a known object (e.g., a particular song by a
particular artist). In a known item search, the user is familiar with
the object being requested, and any copy is as good as any other.

Known-item search of popular music, video, and software file-
sharing systems is a task for which simple solutions suffice. If
P2P systems are to scale to more varied content and larger digital
libraries, they must adopt more sophisticated solutions.
A very large number of text-based digital libraries were
developed during the last decade. Nearly all of them use some
form of relevance ranking, in which term frequency information
is used to rank documents by how well they satisfy an
unstructured text query. Many of them allow free search access
to their contents via the Internet, but do not provide complete
copies of their contents, or even complete title lists for their
contents, upon request. Many do not allow their contents to be
crawled by Web search engines. They do not cooperate by
conforming to a single method of text representation, query
processing, or document retrieval; they don’t even provide
information about how these operations are done. We would
argue that most of the recent research on peer-to-peer networks
offers little useful guidance for providing federated search of
current text-based digital libraries.
This paper addresses the problem of using peer-to-peer networks
as a federated search layer for text-based digital libraries. We
study federated search in two different types of environments:
cooperative environments where each digital library provides
accurate resource description of its content upon request, and
uncooperative environments where resource descriptions must be
obtained indirectly. We start by assuming the current state of the
art; that is, we assume that each digital library is a text database
running a reasonably good conventional search engine, that it
provides search access to its holdings, and that it provides
individual documents in response to full text queries. We present
in this paper how resource descriptions of digital libraries are
obtained and used for efficient query routing, and how results
from different digital libraries are merged into a single, integrated
ranked list in peer-to-peer networks.
In the following section we give an overview of the prior research
on federated search of text-based digital libraries and peer-to-peer
networks. Section 3 describes our approaches to federated search
of text-based digital libraries in peer-to-peer networks. Sections 4
and 5 discuss our data resources and evaluation methodologies.
Experimental settings and results are presented in Section 6.
Section 7 concludes.

2. OVERVIEW
Accurate and efficient federated search in peer-to-peer networks
of text-based digital libraries requires both the appropriate peer-
to-peer architecture and the effective search methods developed
for the chosen architecture. In this section we present an

overview of the prior research on federated search of text-based
digital libraries, peer-to-peer network architectures, and text-
based search in peer-to-peer networks in order to set the stage for
the descriptions of our approaches to text-based federated search
in peer-to-peer networks.

2.1 Federated Search of Text-Based Digital
Libraries
Prior research on federated search of text-based digital libraries
(also called “distributed information retrieval” in the research
literature) identifies three problems that must be addressed:

• Resource representation: Discovering the contents or
content areas covered by each resource (“resource
description”);

• Resource ranking and selection: Deciding which resources
are most appropriate for an information need based on their
resource descriptions; and

• Result-merging: Merging ranked retrieval results from a set
of selected resources.

A directory service is responsible for acquiring resource
descriptions of the digital libraries it serves, selecting the
appropriate resources (digital libraries) given the query, and
merging the retrieval results from selected resources into a single,
integrated ranked list. Solutions to all these three problems for
the case of a single directory service have been developed in
distributed information retrieval. We briefly review them below.

2.1.1 Resource Representation
Different techniques for acquiring resource descriptions require
different degrees of cooperation from digital libraries. STARTS
is a cooperative protocol that requires every digital library to
provide an accurate resource description to the directory service
upon request [6]. STARTS is a good solution in environments
where cooperation can be guaranteed. However, in some
environments where digital libraries may not cooperate or may
have an incentive to cheat, STARTS cannot be used to acquire
accurate resource descriptions.
Query-based sampling is an alternative approach to acquiring
resource descriptions without requiring explicit cooperation from
digital libraries. The resource description of a digital library is
constructed by sampling its documents via the normal process of
submitting queries and retrieving documents. Query-based
sampling has been shown to acquire fairly accurate resource
descriptions using a small number of queries and documents in
distributed information retrieval environments [1].
The total number of documents of a digital library is one of the
most important corpus statistics required by many resource
selection algorithms. Capture-Recapture [12] and Sample-
Resample [20] are two methods of estimating the total number of
documents of an uncooperative digital library. Experimental
results show that in most scenarios, Sample-Resample is more
accurate and has less communication costs than the Capture-
Recapture method.

2.1.2 Resource Ranking and Selection
Resource selection aims at selecting a small set of resources that
contain a lot of documents relevant to the information request.
Resources are ranked by their likelihood to return relevant
documents and top-ranked resources are selected to process the

information request.
Resource selection algorithms such as CORI [1], gGlOSS [7], and
Kullback-Leibler (K-L) divergence-based algorithms [24] use
techniques adapted from document retrieval for resource ranking.
The resource description of a digital library used by these
algorithms includes a list of terms with corresponding collection
term frequencies, and corpus statistics such as the total number of
terms and documents in the collection. These algorithms have
been shown to work well with resource descriptions provided by
cooperative digital libraries or acquired using query-based
sampling.
Other resource selection algorithms including ReDDE [20] and
DTF (the decision-theoretic framework for resource selection)
[16] rank resources by directly estimating the number of relevant
documents from each resource for a given query. ReDDE relies
on sampled documents obtained using query-based sampling for
such estimation. DTF has three variants DTF-rp, DTF-sample
and DTF-normal. DTF-rp estimates the number of relevant
documents from a resource by assuming a linearly decreasing
recall-precision function and calculating the expected precision
and recall from the resource. DTF-sample uses sampled
documents to estimate how relevant documents are distributed
among the available resources. DTF-normal models the
distribution of document scores from a resource with normal
distribution and map document scores to probability of relevance
using a function learned with user relevance feedback.
Deciding how many top-ranked resources to be selected
(“thresholding”) is a problem that is usually simplified. Most
resource selection algorithms use heuristic values such as 10 and
20 for the number of selected resources.

2.1.3 Result Merging
Many result-merging algorithms have been proposed in
distributed information retrieval. Various approaches can be
divided into two categories: approaches based on normalizing
resource-specific document scores into resource-independent
document scores, and approaches based on recalculating
document scores at the directory service.
The CORI merging algorithm uses a heuristic linear combination
of digital library scores and document scores to normalize the
scores of the documents from different digital libraries. The
intuition is to favor documents from digital libraries with high
scores and also to enable high-scoring documents from low-
scoring digital libraries to be ranked highly. It is effective when
used together with the CORI resource selection and INQUERY
document retrieval algorithms in federated search using a single
directory service [1].
There has been some work on using logistic regression to learn
merging models to normalize document scores but relevance
judgments are required for training [2].
The Semi-Supervised Learning result-merging algorithm uses the
documents obtained by query-based sampling as training data to
learn score normalizing functions on a query-by-query basis. It is
shown to work well with a variety of resource selection and
document retrieval algorithms and is the current state-of-the-art
for result merging in distributed information retrieval [19].
Document scores can be recalculated at the directory service by
downloading all the documents in the retrieval results from

selected resources, indexing them, and re-ranking them using a
document retrieval algorithm.
Downloading documents is not necessary if all the statistics
required for score recalculation can be obtained alternatively.
Kirsch’s algorithm [10] requires each resource to provide
summary statistics for each of the retrieved documents. It allows
very accurate normalized document scores to be determined
without the high communication cost of downloading.
The corpus statistics required for recalculating document scores
could also be substituted by a reference statistics database
containing all the relevant statistics for some set of documents.
This method is explored in [3] for federated search using a single
directory service and shown to be effective compared with using
the corpus statistics provided by cooperative digital libraries.

2.2 P2P Network Architectures
As mentioned in Section 1, the activities involved for search in
peer-to-peer networks include issuing queries, query routing, and
retrieval. Query routing is essentially a problem of resource
selection and location. Resource location in first generation peer-
to-peer networks is characterized by Napster, which used a single
logical directory service, and Gnutella 0.4, which used undirected
message flooding and a search horizon. The former proved easy
to attack, and the latter didn’t scale; both systems demonstrated
the importance of robust and reliable methods of locating
information in peer-to-peer networks. They also explored very
different solutions: Napster was centralized and required
cooperation (sharing of accurate information); Gnutella 0.4 was
decentralized and required little cooperation.
Recent research provides a variety of solutions to the flaws of the
Napster and Gnutella 0.4 architectures, but perhaps the most
influential are hierarchical and structured P2P architectures.
Structured P2P architecture associates each data item with a key
and distributes keys among directory services using a Distributed
Hash Table (DHT) [17, 18, 21, 22, 28]. Hierarchical P2P
architecture [9, 11, 23] uses top-layer directory services to serve
regions of bottom-layer digital libraries and directory services
work collectively to cover the whole network. The common
characteristic of both approaches is the construction of an overlay
network to organize the nodes that provide directory services
(also called “look up services” by DHT-based approaches) for
efficient query routing. An important distinction is that structured
P2P networks require the ability to map (via a distributed hash
table) from an information need to the identity of the directory
service that satisfies the need, whereas hierarchical P2P networks
rely on message-passing to locate directory services. Structured
P2P networks require digital libraries to cooperatively share
descriptions of data items in order to generate keys and construct
distributed hash tables. In contrast, hierarchical P2P networks
enable directory services to automatically discover the contents of
(possibly uncooperative) digital libraries, which is well-matched
to networks that are dynamic, heterogeneous, or protective of
intellectual property.

2.3 Text-Based Search in P2P Networks
Most of the prior research on search in peer-to-peer networks only
support simple keyword-based search. Matches between query
terms and keywords of documents are used to determine how to
route queries and which documents to be retrieved. There has
been some recent work on developing systems that adopt more

sophisticated retrieval models to support text-based search (also
called “content-based retrieval”) in peer-to-peer networks.
Examples are PlanetP using a completed decentralized P2P
architecture [5], pSearch using a structured P2P architecture [22],
and content-based retrieval in hierarchical P2P networks [13].
In PlanetP [5], a node uses a TF.IDF algorithm to decide which
nodes to contact for information requests based on the compact
summaries it collects about all other nodes’ inverted indexes.
Because no special resources are dedicated to support directory
services in completely decentralized P2P architectures, it is
somewhat inefficient for each node to collect and store
information about the contents of all other nodes, especially in
dynamic P2P networks.
pSearch [22] uses the semantic vector (generated by Latent
Semantic Indexing) of each document as the key to distribute
document index in a structured P2P network so that documents
close in distance have similar contents. The relevance of a
document to a query is determined by the similarity between their
semantic vectors. To compute semantic vectors for documents
and queries, global statistics such as the inverse document
frequency and the basis of the semantic space need to be
disseminated to each node in the network. Because global
statistics can only be obtained in completely cooperative
environments where each digital library shares its document and
corpus statistics, this approach cannot be easily extended to
uncooperative and heterogeneous environments.
There has been some prior research on content-based resource
selection and document retrieval in hierarchical P2P networks of
digital libraries [13]. Viewing peer-to-peer networks as a
particular type of distributed information retrieval environment,
content-based resource selection is extended to the case of
multiple directory services in peer-to-peer environments where
digital libraries cooperatively provide resource descriptions to
connecting directory services. Experimental results demonstrate
that content-based resource selection and document retrieval can
provide more accurate and more efficient solutions to federated
search in peer-to-peer networks of text-based digital libraries
compared with the flooding and keyword-based approaches.
The problem of result merging in hierarchical P2P networks of
uncooperative and barely-cooperative text-based digital libraries
has also been studied in [15]. The Semi-Supervised Learning
(SSL) result-merging algorithm is modified and an algorithm
Score Estimation with Sample Statistics (SESS) which extends
Kirsch’s approach to result merging is proposed. Experimental
results show that modified SSL has satisfactory precision for top-
ranked merged documents, and SESS is able to provide near
optimal performance with a small amount of cooperation from
digital libraries.

3. TEXT-BASED FEDERATED SEARCH IN
HIERARCHICAL P2P NETWORKS
The research described in this paper adopts a hierarchical P2P
architecture because it provides a more flexible framework to
incorporate various solutions to resource selection and result
merging in both cooperative and uncooperative environments.
Following the terminology of prior research, we refer to text-
based digital libraries as “leaf” nodes, and directory services as
“hub” nodes. Each leaf node is a text database that provides
functionality to process full text queries by running a document

retrieval algorithm over its index of local document collection and
generate responses. Each hub acquires and maintains necessary
information about its neighboring hub and leaf nodes and uses it
to provide resource selection and result merging services to peer-
to-peer networks. In addition to leaf nodes and hubs, there are
also nodes representing users with information requests in peer-
to-peer networks. They are referred to as “client” nodes. In a
hierarchical P2P network, leaf nodes and client nodes can only
connect to hubs and hubs connect with each other.
Search in peer-to-peer networks relies on message-passing
between nodes. A request message (“query”) is generated by a
client node and routed from a client node to a hub, from one hub
to another, or from a hub to a leaf node. A response message
(“queryhit”) is generated by a leaf node and routed back along the
query path in reverse direction. Each message in the network has
a time-to-live (TTL) field that determines the maximum number
of times it can be relayed in the network. The TTL is decreased
by 1 each time the message is routed to a node. When the TTL
reaches 0, the message is no longer routed.
When a client node has an information request, it sends a query
message to each of its connecting hubs. A hub that receives the
query message uses its resource selection algorithm to rank and
select one or more neighboring leaf nodes as well as hubs and
routes the query to them if the message’s TTL hasn’t reached 0.
A leaf node that receives the query message uses its document
retrieval algorithm to generate a relevance ranking of its
documents and responds with a queryhit message to include a list
of top-ranked documents. Each top-level hub (the hub that
connects directly to the client node that issues the request)
collects the queryhit messages and uses its result merging
algorithm to merge the documents retrieved from multiple leaf
nodes into a single, integrated ranked list and returns it to the
client node. If the client node issues the request to more than one
hub, then it also needs to merge results returned by multiple top-
level hubs.
Figure 3.1 illustrates federated search of text-based digital
libraries in hierarchical P2P networks. The C (white) node is the
client node that issues the information request, the H (black)
nodes are hubs, and the D (gray) nodes are leaf nodes (digital
libraries). The edges between nodes represent connections. The
arrows with solid lines indicate the directions to send query
messages and the arrows with dashed lines indicate the directions
to send queryhit messages.
In the following subsections, we present in more details the
solutions to the problems of resource representation, resource
ranking and selection, and result merging in both cooperative and
uncooperative peer-to-peer environments.

3.1 Resource Representation
The description of a resource is a very compact summary of its
content. Compared with a copy of the complete index of a
collection of documents, resource description requires much less
communication and storage costs but still provides useful
information for resource selection algorithms to determine which
resources are more likely to contain documents relevant to the
query. As mentioned in Section 2.1.2, the resource description
used by most resource selection algorithms include a list of terms
with corresponding term frequencies (collection language model),
and corpus statistics such as the total number of terms and
documents provided or covered by the resource. The resource
here could be a single leaf node, a hub that covers multiple
neighboring leaf nodes, or a “neighborhood” that includes all the
nodes reachable from a hub. Although resource descriptions for
different types of resources have the same format, different
methods are required to acquire them, which we introduce below.

3.1.1 Resource Descriptions of Leaf Nodes
Resource descriptions of leaf nodes are used by hubs for query
routing (“resource selection”) among connecting leaf nodes. In
cooperative environments, each leaf node provides accurate
resource description to its connecting hubs upon request. In
uncooperative environments, each hub conducts query-based
sampling independently to obtain sampled documents from its
connecting leaf nodes. Sampled documents from a leaf node are
used to generate its collection language model. They are also
used by the Sample-Resample method to estimate the total
number of documents in this leaf node’s collection.

3.1.2 Resource Descriptions of Hubs
The resource description of a hub is the aggregation of the
resource descriptions of its connecting leaf nodes. Since hubs
work collaboratively in hierarchical P2P networks, neighboring
hubs can exchange with each other their aggregate resource
descriptions. However, because the aggregate resource
descriptions of hubs only have information for nodes within 1
hop, if they are directly used by a hub to decide which
neighboring hubs to route query messages to, the routing would
not be effective when the nodes with relevant documents sit
beyond this “horizon”. Thus for effective hub selection, a hub
must have information about what contents can be reached if the
query message it routes to a neighboring hub may further travel
multiple hops. This kind of information is referred to as the
resource description of a neighborhood and is introduced in the
following subsection.

3.1.3 Resource Descriptions of Neighborhoods
A neighborhood of a hub Hi in the direction of its neighboring
hub Hj is a set of hubs that can be reached by following the path
from Hi to Hj. Figure 3.2 illustrates the concept of neighborhood.
Hub H1 has three neighboring hubs H2, H3 and H4. Thus it has
three neighborhoods marked by N1,2, N1,3 and N1,4. The resource
description of a neighborhood provides information about the
contents covered by all the hubs in this neighborhood. A hub uses
resource descriptions of neighborhoods to select and route queries
to its neighboring hubs.
Resource descriptions of neighborhoods provide similar
functionality as routing indices [4]. An entry in a routing index
records the number of documents that may be found along a path
for a set of topics. The key difference between resource

Figure 3.1 Federated search in hierarchical P2P
networks.

C

H1
H5

H3

D1

D9

D8

D3
D4 D5

H2

D2

H4

D6

D7

descriptions of neighborhoods and routing indices is that resource
descriptions of neighborhoods represent contents with unigram
language models (terms with their frequencies). Thus by using
resource descriptions of neighborhoods, there is no need for hubs
and leaf nodes to cluster their documents into a set of topics and it
is not necessary to restrict queries to topic keywords.
Similar as exponentially aggregated routing indices [4], a hub
calculates the resource description of a neighborhood by
aggregating the resource descriptions of all the hubs in the
neighborhood decayed exponentially according to the number of
hops. For example, in the resource description of a neighborhood
Ni,j (the neighborhood of Hi in the direction of Hj), a term t’s
exponentially aggregated term frequency is calculated as:
 }/),({]1),([

,

−

∈
∑ ki

jik

HHnumhops

NH
k FHttf (1)

where tf(t, Hk) is t’s term frequency in the resource description of
hub Hk, and F is the average number of hub neighbors each hub
has in the network.
The exponentially aggregated total number of documents in a
neighborhood is calculated as:
 }/)({]1),([

,

−

∈
∑ ki

jik

HHnumhops

NH
k FHnumdocs (2)

The creation of resource descriptions of neighborhoods requires
several iterations at each hub and different hubs can run the
creation process asynchronously. A hub Hi in each iteration
calculates and sends to its hub neighbor Hj the resource
description of neighborhood Nj,i denoted by NDj,i by aggregating
its hub description HDi and the most recent resource descriptions
of neighborhoods it receives from all of its neighboring hubs
excluding Hj. NDj,i is calculated as:

 ∑ ∈
+=

jik HHhborsdirectneigH kiiij FNDHDND
\)(,, }/{ (3)

The stopping condition could be either the number of iterations
reaching a predefined limit, or the difference in resource
descriptions between adjacent iterations being small enough.
The process of maintaining and updating resource descriptions of
neighborhoods is identical to the process used for creating them.
The resource descriptions of neighborhoods could be updated
when the difference between the old and the new value is
significant, or periodically, or when a node disconnects from the
network.
For networks that have cycles, frequencies of some terms and the
number of documents may be overcounted, which will affect the
accuracies of resource descriptions. How to deal with cycles in
peer-to-peer networks using routing indices is discussed in detail

in [4]. We could use the same solutions described in [4] for cycle
avoidance or cycle detection and recovery. For simplicity, in this
paper, we take the “no-op” solution, which completely ignores
cycles. Experimental results show that resource selection using
resource descriptions of neighborhoods generated in networks
with cycles is still quite efficient and accurate.

3.2 Resource Ranking and Selection
The goal of query routing is to direct the information request to
those nodes that are most likely to contain relevant documents
with minimum number of query messages. The flooding
technique guarantees to reach nodes with relevant information
contents but requires exponential number of query messages.
Random forwarding the request to a small subset of neighbors can
significantly reduce the number of query messages but the
reached nodes may not be relevant at all. To achieve both
efficiency and accuracy, each hub needs to rank its neighboring
leaf nodes by their likelihood to satisfy the information request
and neighboring hubs by their likelihood to reach nodes with
relevant information contents and only forwards the request to
top-ranked neighbors. Because the resource descriptions of leaf
nodes and those of neighborhoods are not in the same magnitude,
a hub handles separately the ranking and selection of its
neighboring leaf nodes and hubs.

3.2.1 Leaf Node Ranking
Adapting language modeling approaches for ad-hoc information
retrieval, we use the Kullback-Leibler (K-L) divergence-based
method [24] for leaf node ranking. In the language modeling
framework, the K-L divergence resource selection algorithm
calculates P(Li | Q), the conditional probability of predicting the
collection of leaf node Li given the query Q and uses it to rank
different leaf nodes. P(Li | Q) is calculated as follows:

)|(
)(

)()|(
)|(i

ii
i LQP

QP
LPLQP

QLP ∝
×

= (4)

with uniform prior probability for leaf nodes;

 ∏
∈ +

×+
=

Qq i

i
i Lnumterms

GqPLqtf
LQP

µ
µ

)(
)|(),(

)|((5)

where tf(q | Li) is the term frequency of query term q in leaf node
Li’s resource description (collection language model), P(q | G) is
the background language model used for smoothing and µ is the
smoothing parameter in Dirichlet smoothing.

3.2.2 Leaf Node Selection with Unsupervised
Threshold Learning
After leaf nodes are ranked based on their P(Li | Q) values, the
usual approach is to select the top-ranked leaf nodes up to a
predetermined number. In hierarchical P2P networks, the number
of leaf nodes served by individual hubs may be quite different,
and different hubs may cover different content areas. In this case,
it is not appropriate to use a static, query-independent and hub-
independent number as threshold for a hub to decide how many
leaf nodes to select for a given query. It is desirable that hubs
have the ability to learn hub-specific and query type-specific
thresholds automatically.
The problem of learning threshold to convert relevance ranking
scores into a binary decision has mostly been studied in
information filtering [25, 26, 27]. However, the user relevance

Figure 3.2 Neighborhoods in hierarchical P2P networks.

H1

H2
H3

H10

H5

H8
H7

H4 H9

N1,2

H6

N1,3

N1,4

feedback required as training data is not as easily available for
federated search in peer-to-peer networks as for the task of
information filtering. Our goal is to develop a technique for each
hub to learn the selection threshold without supervision based on
the information and functionality it already has. Because each
hub has the ability to merge the retrieval results from multiple leaf
nodes into a single, integrated ranked list, as long as the result
merging has reasonably good performance, we could assume that
the top-ranked merged documents are relevant. If so, the
distribution of the top-ranked merged documents over the leaf
nodes should provide useful hints on the number of relevant
documents each leaf node is likely to retrieve. This is analogous
to query expansion with pseudo-relevance feedback which treats
the top-ranked documents retrieved initially as relevant
documents and uses them to improve the quality of the query.
The key differences are i) our approach uses the information
about which top-ranked merged documents are from which leaf
nodes and ignores the actual contents of these documents, and ii)
the direct goal here is not to improve immediately the retrieval
quality for current query, but to learn resource selection
thresholds that are specific to hubs and types of queries and
improve the overall retrieval performance for a set of queries.
For leaf node selection, if a hub selects more leaf nodes than
necessary, although the retrieval results will include a lot of
irrelevant documents, as long as there are enough relevant
documents, a reasonably good result merging algorithm can rank
most relevant documents above irrelevant documents, yielding
good precisions at top-ranked documents. In this case, it seems
that a loose threshold will almost always give good performance.
However, a loose threshold leads to low efficiency and high
communication costs. Because for search in peer-to-peer
networks, accuracy and efficiency are equally important, the
resource selection threshold must be not too loose in order to
guarantee efficiency, and not too tight as well so that enough
relevant documents are returned (high recall). With the above
criteria in mind, a hub uses the following procedure to decide the
threshold of leaf node selection for a query:
1. Given a query, the hub uses K-L divergence resource

selection algorithm to calculate leaf node scores and sorts
them in descending order;

2. The hub selects up to 100 top-ranked leaf nodes and
normalizes their scores using the formula:

minmax

min'
SS

SSS
−

−
= (6)

where Smax is the maximum score and Smin is the minimum
score among these selected leaf nodes;

3. The hub forwards the query to selected leaf nodes and
merges the retrieval results returned by these leaf nodes;

4. The hub calculates for each selected leaf node the number of
documents that are ranked among top 50 in the merged
result;

5. The hub goes down the list of leaf nodes sorted by their
scores and stops at the leaf node which has the largest
number of documents ranked among top 50 in the merged
results (highest recall using pseudo-relevance feedback);

6. The hub regards the normalized score of this leaf node as the
threshold of its leaf node selection for the given query.

Learning thresholds for individual queries is not useful unless the
same queries appear again. Thus queries need to be classified
into different types and thresholds for individual queries are used
to compute thresholds for different query types. Queries can be
classified based on their contents or statistical properties. When
the number of queries for training is small (which is desired due
to its low communication cost), classifying queries by contents
often leads to sparse and skewed training data for various query
types. Hence in our experiments we focused on classifying
queries by their statistical properties and found the average
probability of the query terms in a hub’s resource description to
be a good feature for query classification. Given a set of training
queries that have average probabilities of query terms in different
ranges, probability values ranging from 0 to the maximum term
probability in a hub’s resource description are divided into 10
non-overlapping bins so that all bins have roughly the same
number of queries for training. A query type is associated with
each bin, so there are 10 query types in total. A query is
classified into one of these 10 types based on the average
probability of its terms in the hub’s resource description.
During the learning phase, each hub in the network learns the
thresholds for a set of training queries and the learned thresholds
for queries of the same type are averaged to get the threshold for
this query type at the hub. Given a new query, a hub determines
the type of the query, ranks up to 100 leaf nodes, normalizes their
scores, and uses the query type-specific threshold to select the
leaf nodes that have normalized scores no less than the threshold.

3.2.3 Hub Ranking and Selection
The K-L divergence resource selection algorithm used for leaf
ranking is also used for hub ranking. The resource descriptions of
neighborhoods are used to calculate the collection language
models needed by the resource selection algorithm. For hub
selection, because selecting a neighboring hub is essentially
selecting a neighborhood, using a prior distribution that favors
larger neighborhood could lead to better search performance,
which was indeed the case in our experiments. Thus the prior
probability of a neighborhood is set to be proportional to the
exponentially aggregated total number of documents in the
neighborhood. Given the query Q, the probability of predicting
the neighborhood Ni that a neighboring hub node Hi represents is
calculated as follows and used to rank neighboring hubs:

)()|(
)(

)()|(
)|(ii

ii
i NnumdocsNQP

QP
NPNQP

QNP ×∝
×

= (7)

∏
∈ +

×+
=

Qq i

i
i Nnumterms

GqPNqtf
NQP

µ
µ

)(
)|(),(

)|((8)

where tf(q | Ni) is the term frequency of query term q in the
resource description of neighborhood Ni (collection language
model), P(q | G) is the background language model used for
smoothing and µ is the smoothing parameter in Dirichlet
smoothing.
A fixed number of top-ranked neighboring hubs are selected. It
remains to be future work to apply unsupervised threshold
learning to hub selection.

3.3 Result Merging
As described earlier, result merging takes place at each top-level
hub. In cooperative environments, Kirsch’s algorithm [10] is

extended for result merging in peer-to-peer networks. In addition
to a list of retrieved documents, each resource is required to
provide summary statistics for each of the retrieved documents,
for example, document length and how often each query term
matched. The corpus statistics comes from the aggregation of the
hub’s resource description and the resource descriptions of
neighborhoods for all its neighboring hubs.
The modified Semi-Supervised Learning algorithm (modified
SSL) [15] is used for result merging in uncooperative
environments. Each hub along the query path contributes to result
merging by providing document statistics for “overlap”
documents, which are documents that appear both in the sampled
documents maintained at the hub for its leaf node neighbors and
in the retrieval results sent to the hub by these neighbors. Top-
level hubs use these document statistics provided by collaborative
hubs to recalculate document scores for “overlap” documents and
pair them with their original scores returned in the retrieval results
to use as training data for learning score normalizing functions.
The main difference between result merging in cooperative
environments and that in uncooperative environments is that in
cooperative environments leaf nodes provide document statistics
for all the retrieved documents to top-level hubs, while in
uncooperative environments, hubs provide document statistics for
a subset of retrieved documents (“overlap” documents) to top-
level hubs.
If the client node issues the request to more than one hub, then it
also needs to merge results returned by multiple top-level hubs.
Because client nodes don’t maintain information about the
contents of other nodes and corpus statistics as hubs do in
hierarchical P2P networks, they cannot use advanced result-
merging algorithms. Thus only simple, but probably less
effective, merging methods can be applied at client nodes. For
example, results can be merged based on the document scores
returned by top-level hubs (“raw score merge”) or in a round
robin fashion.

4. TEST DATA
We used the P2P testbed [14] developed based on the TREC
WT10g web test collection [8] to evaluate the performance of
federated search in hierarchical P2P networks of text-based digital
libraries. The P2P testbed consists of 2,500 collections obtained
by dividing WT10g data into 11,485 collections based on
document URLs and randomly selecting 2,500 of them. The total
number of documents in these 2,500 collections is 1,421,088.
Each collection defines a leaf node (digital library) in a
hierarchical P2P network.
There are 25 hubs in total in the P2P testbed, each of which
covers a specific type of content. The connections between leaf
nodes and hubs were determined by clustering leaf nodes into 25
clusters using a similarity-based soft clustering algorithm,
associating each cluster with a hub, and connecting all the leaf
nodes within a cluster to the associated hub.
The connections between hubs were generated randomly. Each
hub has no less than 1 and no more than 7 hub neighbors. A hub
has on average 4 hub neighbors.
Table 4.1 summarizes some statistics for the testbed.
Experiments were run on two sets of queries. The first set of
queries came from the title fields of TREC topics 451-550 used
for TREC-8 and TREC-9 Web Tracks. The standard TREC

relevance assessments supplied by the U. S. National Institute for
Standards and Technology were used.
The second set of queries was a set of 1,000 queries selected from
the queries defined in the P2P testbed. Queries in the P2P testbed
were automatically generated from WT10g data by extracting key
terms from the documents in the collection. Table 4.2 shows the
distribution of query lengths among the selected 1,000 queries.
Table 4.3 shows the distribution of term frequencies in WT10g
for all the query terms in these 1,000 queries. Because it is
expensive to obtain relevance judgments for these automatically
generated queries, we used the ranked retrieval results from a
single large collection as the baseline (“single collection”
baseline), and measured how well federated search in the
hierarchical P2P network could reproduce this baseline. The
single large collection was the subset of the WT10g used to define
the contents of the 2,500 leaf nodes in the peer-to-peer network,
and the 50 top-ranked documents retrieved using this single large
collection (WT10g-subset) were treated as the relevant documents
for each query.
For each query, a leaf node was randomly chosen to act as a client
node temporarily to issue the query to the network and collect the
merged retrieval results for evaluation.

5. EVALUATION METHODOLOGY
A simulator was used to evaluate the performance of text-based
federated search in hierarchical P2P networks. Both retrieval
accuracy and query routing efficiency are used as performance
measures.

5.1 Measuring Retrieval Accuracy
Retrieval accuracy was measured by both set-based and rank-
based Recall and Precision. Set-based Recall and Precision are
defined as follows:

||/||Recall Ar= (9)

||/||Precision Rr= (10)

where R is the set of the documents returned by retrieval in the
P2P network, A is the set of relevant documents for a query
among the 100 TREC queries, or the set of (up to 50) top-ranked
documents returned by retrieval using the single WT10g-subset
collection for a query among the 1,000 WT10g queries, and r is
the intersection of R and A. |•| denotes the size of the set.
The quality of document rankings was measured using precisions

Table 4.1 Summary statistics for the testbed.
 min avg max

Number of documents for a leaf node 8 568 26,505
Number of leaf nodes for a hub 10 376 1,008
Number of hubs a leaf node connects to 1 4 12

Table 4.2 Distribution of query length for 1,000 queries.
Length 1 2 3 4 5 6

Distribution 33% 33% 19% 7% 4% 4%

Table 4.3 Distribution of term frequency for 1,000 queries.
Frequency

Scale 100 101 102 103 104 105 106

Distribution 1.7
%

5.5
%

10.6
%

25.5
%

31.8
%

22.5
%

2.4
%

at document ranks 5, 10, 15, 20, 30, and 100.
Set-based Recall and Precision focus attention on how well text-
based federated search in hierarchical P2P networks returns the
“right” documents for a query, while rank-based metrics measure
directly the performance of document ranking and result merging.

5.2 Measuring Query Routing Efficiency
The efficiency of query routing was measured by the average
number of query messages routed for each query in the network.
The average number of query messages routed from hubs to leaf
nodes (“Hub-Leaf Messages”) for each query was also used to
measure the efficiency of leaf node selection in some
experiments.

6. EXPERIMENTS AND RESULTS
A series of experiments was conducted to study resource selection
and result merging in both cooperative (“COOP”) and
uncooperative (“UNCOOP”) P2P environments. The choices of
the algorithms used for resource representation, resource ranking
and selection, document retrieval and result merging are shown in
Table 6.1. Table 6.2 shows the values of some parameters used in
our experiments.
Unsupervised threshold learning required a set of queries for
training. For each experiment that used leaf node selection with
unsupervised threshold learning to run the 100 TREC queries, two
runs were conducted. The first run used the first half of the 100
TREC queries for training and the second half for testing. The
second run worked the other way around. The results from two
runs were averaged to get the final results. For the experiments
that used leaf node selection with unsupervised threshold learning
to run the 1,000 WT10g queries, the 100 TREC queries were used
as training data. Unsupervised threshold learning only used
queries and retrieved documents for training. The relevance
judgments provided by NIST for the 100 TREC queries were not
used to learn thresholds for leaf node selection.
Tables 6.3a and 6.3b show respectively the results of running the
100 TREC queries and the 1,000 WT10g queries for text-based
federated search in a hierarchical P2P network using different
methods. Both cooperative and uncooperative environments were
studied. The “single collection” baseline which returned 50 top-
ranked documents for each query by retrieval using the single

WT10g-subset collection is also shown in Table 6.3a for the 100
TREC queries.
The following subsections present the analysis of the results from
different perspectives.

6.1 Set-Based Recall/Precision vs. Precisions
at Top Document Ranks
The set-based Precision figures (column 4) are much lower than
one might expect because the number of relevant documents was
very small (50 on average for the 100 TREC queries using
relevance judgments and 50 maximum for the 1,000 WT10g
queries using the “single collection” baseline), but the total
number of retrieved documents was at least ten times larger for
most queries in the hierarchical P2P network. This demonstrates
a limitation of set-based Recall and Precision metrics for this task
since generally users only care about the retrieval accuracy of
top-ranked documents, but we include them as another way of
comparing resource ranking and selection methods.
Compared with set-based Precision, the differences between
precisions at top document ranks for federated search in the
hierarchical P2P network and for search using a centralized index
are smaller. This implies that both result merging algorithms for
cooperative and uncooperative environments performed quite well
by ranking most irrelevant documents lower than relevant
documents in spite of low set-based Precision.

6.2 TREC Queries vs. WT10g Queries
In contrast to real queries and manual relevance judgments, the

Table 6.1 Choices of algorithms in the experiments.
 Algorithm

Leaf descriptions Provided by leaf nodes in cooperative environments, OR
 Generated by hubs using documents sampled from leaf nodes by query-based sampling in uncooperative environments

Hub descriptions Generated by hubs by aggregating leaf descriptions

Neighborhood descriptions Generated by hubs by aggregating hub descriptions and
exponentially decayed neighborhood descriptions over several iterations

Leaf node ranking K-L divergence resource selection algorithm using leaf descriptions

Leaf node selection 1% of top-ranked leaf nodes, OR Fixed number of top-ranked leaf nodes, OR
Top-ranked leaf nodes with normalized scores no less than the learned threshold (Section 3.2.2)

Hub ranking K-L divergence resource selection algorithm using neighborhood descriptions
Hub selection All neighboring hubs (flooding), OR 1 randomly selected neighboring hubs, OR Top-ranked neighboring hub

Document retrieval K-L divergence document retrieval algorithm

Result merging at top-level hubs Extended Kirsch’s algorithm in cooperative environments, OR
 Modified Semi-Supervised Learning in uncooperative environments (Section 3.3)

Result merging at client node Raw score merge (Section 3.3)

Table 6.2 Parameter values used in the experiments.
Parameters Values

Initial TTL for messages 6
Number of documents sampled from each leaf node Up to 300

Number of resample queries used for Sample-Resample to
estimate total number of documents 5

Number of iterations to create neighborhood descriptions 6
F (Average number of hub neighbors each hub has) 4

µ (Dirichlet smoothing parameter
in K-L divergence resource selection) 1000

Number of documents retrieved from each leaf node Up to 50

1,000 WT10g queries were generated automatically by extracting
key terms from documents and the top-ranked documents
retrieved using a single centralized index were used for relevance
judgments. When this set of queries was used to evaluate the
performance of text-based federated search in hierarchical P2P
networks, it directly measured the ability of federated search in
hierarchical P2P networks to match the results from search in a
centralized environment. The strong performance indicated by
high precisions at top document ranks in Table 6.3b demonstrates
that federated search in the hierarchical P2P network mostly
agreed with the centralized approach on which documents were
most relevant. Additional evaluations on the 100 TREC queries
by treating the documents in the “single collection” baseline as
relevant documents (the same evaluation methodology as we used
for the 1,000 WT10g queries) gave very similar results (not
shown in this paper due to space reason) as those in Table 6.3b.
This is an encouraging sign for federated search in peer-to-peer
networks because although distributed retrieval systems are not
yet better than the “single collection” baseline, our results show
that their performance can be pretty close at top-ranked
documents.

However, we note that Table 6.3b gives slightly overly optimistic
view of federated search quality, because in cases where federated
search in the hierarchical P2P network disagreed with search
using a centralized index, federated search was more likely to
give high rank to an irrelevant document which was ranked lowly
by centralized search. Therefore, the performance difference
between federated search in the hierarchical P2P network and
search using a centralized index is expected to be slightly larger if
we evaluate them using real relevance judgments, as shown in
Table 6.3a.
In order to claim that a peer-to-peer system being able to
reproduce the “single collection” baseline quite well is an
effective system for federated search, we need to rely on the
assumption that search using a centralized index is effective in
satisfying user’s information needs, which is not necessarily the
case. Due to this reason, we were concerned with whether
automatically generated queries would behave similarly as real
queries and whether the conclusions drawn using the “single
collection” baseline for evaluation would still be valid with real
relevance judgments. If we compare the figures in Table 6.3a
with those in Table 6.3b, we can see that although the absolute
values were quite different, the relative performance difference of

Table 6.3a Search performance evaluated on the 100 TREC queries using relevance judgments provided by NIST.

Environment Hub Selects
Hub

Hub Selects
Leaf

Set-based
Recall/Precision

Query
Messages

Precision
@ 5

Precision
@ 10

Precision
@ 15

Precision
@ 20

Precision
@ 30

Precision
@ 100

Centralized N/A N/A 26.58 / 17.54 N/A 0.324 0.287 0.255 0.241 0.208 0.175
COOP Flooding Top 1% 29.74 / 1.41 177 0.263 0.205 0.179 0.168 0.147 0.084
COOP Random 1 Top 1% 21.76 / 1.41 63 0.240 0.191 0.170 0.154 0.130 0.066
COOP Top 1 Top 1% 25.51 / 1.69 59 0.259 0.196 0.176 0.163 0.139 0.080
COOP Flooding Threshold 37.39 / 1.22 212 0.295 0.236 0.202 0.187 0.164 0.099
COOP Random 1 Threshold 23.67 / 1.23 77 0.263 0.212 0.180 0.159 0.137 0.070
COOP Top 1 Threshold 26.59 / 1.74 58 0.263 0.214 0.187 0.169 0.148 0.082

UNCOOP Flooding Top 1% 29.17 / 1.32 178 0.257 0.209 0.182 0.172 0.148 0.077
UNCOOP Random 1 Top 1% 20.23 / 1.27 65 0.223 0.174 0.159 0.140 0.112 0.057
UNCOOP Top 1 Top 1% 24.87 / 1.60 59 0.246 0.196 0.168 0.157 0.131 0.066
UNCOOP Flooding Threshold 39.56 / 1.11 224 0.275 0.230 0.199 0.185 0.164 0.094
UNCOOP Random 1 Threshold 24.81 / 1.12 84 0.235 0.198 0.171 0.152 0.126 0.069
UNCOOP Top 1 Threshold 30.94 / 1.50 70 0.261 0.218 0.188 0.168 0.146 0.081

Table 6.3b Search performance evaluated on the 1,000 WT10g queries using the “single collection” baseline.

Environment Hub Selects
Hub

Hub Selects
Leaf

Set-based
Recall/Precision

Query
Messages

Precision
@ 5

Precision
@ 10

Precision
@ 15

Precision
@ 20

Precision
@ 30

Precision
@ 100

COOP Flooding Top 1% 69.92 / 12.88 174 0.970 0.942 0.915 0.875 0.792 0.281
COOP Random 1 Top 1% 50.55 / 12.50 60 0.874 0.809 0.753 0.698 0.595 0.198
COOP Top 1 Top 1% 60.63 / 14.10 54 0.949 0.904 0.857 0.804 0.701 0.237
COOP Flooding Threshold 72.82 / 12.47 177 0.989 0.967 0.945 0.915 0.840 0.296
COOP Random 1 Threshold 51.11 / 13.12 58 0.890 0.830 0.768 0.716 0.615 0.199
COOP Top 1 Threshold 60.43 / 15.42 47 0.967 0.918 0.868 0.818 0.717 0.235

UNCOOP Flooding Top 1% 66.82 / 12.31 173 0.924 0.877 0.835 0.786 0.694 0.265
UNCOOP Random 1 Top 1% 47.61 / 11.83 59 0.812 0.738 0.671 0.612 0.516 0.181
UNCOOP Top 1 Top 1% 52.44 / 12.74 50 0.850 0.775 0.711 0.654 0.556 0.200
UNCOOP Flooding Threshold 69.61 / 11.85 186 0.942 0.900 0.857 0.811 0.724 0.277
UNCOOP Random 1 Threshold 48.36 / 12.46 61 0.834 0.758 0.694 0.632 0.530 0.184
UNCOOP Top 1 Threshold 52.49 / 13.81 47 0.862 0.789 0.723 0.662 0.565 0.203

different algorithms for the 1,000 WT10g queries was similar to
that for the 100 TREC queries. Therefore the same conclusions
drawn from the results of the 100 TREC queries could be drawn
from the results of the 1,000 WT10g queries regarding the relative
effectiveness of various algorithms, which indicates that the
automatically generated queries and the “single collection”
baseline are useful resources in studying federated search in peer-
to-peer networks.

6.3 Cooperative vs. Uncooperative
The results in Tables 6.3a and 6.3b show that the search
performance in uncooperative environments was comparable to
that in cooperative environments, despite that in uncooperative
environments hubs only obtained partial information about the
content of each resource and used the score normalizing approach
to result merging which was less accurate than score
recalculation. This indicates that query-based sampling and
Semi-Supervised Learning for result merging are effective
techniques for federated search of text-based digital libraries in
uncooperative peer-to-peer networks.

6.4 Hub Selection
The results in Tables 6.3a and 6.3b demonstrate that compared
with using the flooding technique for hub selection, hub selection
based on resource descriptions of neighborhoods required around
one third of the number of query messages with only minor drop
in search performance, irrespective of whether leaf nodes were
cooperative and how hubs ranked and selected leaf nodes. Hub
selection based on resource descriptions of neighborhoods and
random hub selection gave similar query routing efficiency but
the retrieval accuracy of the former was consistently higher than
the latter.
If we focus on the set-based Recall and Precision for three
methods of hub selection, it is clear that random hub selection led
to great loss in Recall with almost no change in Precision
compared with the flooding technique, while hub selection based
on resource descriptions of neighborhoods had consistent
improvement in Precision over the flooding technique. This
indicates that hub selection based on resource descriptions of
neighborhoods was very effective at selecting hubs that could
reach the nodes most likely to satisfy the user’s information need
and hence there were less irrelevant documents returned.

6.5 Leaf Node Selection
The power of the peer-to-peer system using learned thresholds for
leaf node selection lies in its ability to adapt the thresholds
automatically to different hubs and types of queries in order to
obtain better performance. There is no need to decide and tune
manually the threshold values each time the system is put into a
new environment. As shown in Tables 6.3a and 6.3b, with the
same hub selection method under the same environment, using
leaf node selection with learned thresholds in general gave better
performance for text-based federated search in the hierarchical
P2P network than selecting a fixed percentage (1%) of top-ranked
leaf nodes for each hub.
Leaf node selection with learned thresholds produced better
retrieval accuracy, but it also required more query messages. It is
unclear from this set of experiments whether the higher accuracy
is due to a better method of selecting leaf nodes (i.e., learned
thresholds), or more thorough search (i.e., more messages). We

ran additional experiments to further compare the performance of
leaf node selection using learned thresholds with leaf node
selection using fixed number. The results are shown in Tables
6.4a and 6.4b. To make the comparison more clear, the number
of query messages sent from hubs to leaf nodes were extracted
from the total number of query messages and averaged over
queries to get “Hub-Leaf Messages”. In Tables 6.4a and 6.4b, for
each combination of environment type and hub selection method,
the fixed number (n in “Top n”) for leaf node selection was
chosen to yield the smallest number of “Hub-Leaf Messages” that
was larger than or equal to the number of “Hub-Leaf Messages”
given by leaf node selection with learned thresholds (i.e., “Top n”
yielded larger or equal number of “Hub-Leaf Messages” but “Top
n-1” yielded smaller number of “Hub-Leaf Messages” than
“Threshold” in the corresponding entries of the tables). Leaf node
selection with learned thresholds worked consistently better for
precisions at top-ranked documents with higher or equal
efficiency for routing queries from hubs to leaf nodes. Therefore,
with similar or smaller number of query messages, leaf node
selection with learned thresholds still outperformed the simple
solution of selecting a fixed number of top-ranked leaf nodes.

7. CONCLUSIONS AND FUTURE WORK
This paper studies federated search of text-based digital libraries
in hierarchical peer-to-peer networks. Although some existing
approaches to resource representation, resource ranking and
selection, and result merging for text-based federated search can
be adapted to peer-to-peer environments in a straightforward
manner, new development is still in demand to suit the solutions
to the unique characteristics of hierarchical peer-to-peer networks.
For example, in hierarchical peer-to-peer networks, hub ranking
and selection should be based on not only the hub’s likelihood to
provide relevant documents with its own leaf nodes, but also its
potential to reach other hubs that are likely to satisfy the
information request. Thus new method is needed to represent the
contents or content areas covered by the available resources in the
networks. In this paper, we define the concept of neighborhood
and describe the method to create and use resource descriptions of
neighborhoods for hub ranking and selection. Experimental
results demonstrate that hub ranking and selection based on
resource descriptions of neighborhoods is both more accurate and
more efficient than the alternative flooding and random selection.
Another unique character of hierarchical peer-to-peer networks is
that there are multiple hubs and each hub must make local
decisions on selecting from the set of the leaf nodes it covers to
satisfy the information request. Because hubs are different in the
number of leaf nodes and the content areas they cover, which
could also change dynamically as nodes come and leave or
change connections, the ability for hubs to learn automatically
hub-specific and query type-specific thresholds in the networks is
much desired. This motivated us to develop a new approach for
each hub to learn its own thresholds for various types of queries
in an unsupervised manner based on the retrieval results of a set
of training queries. In our experiments the proposed approach
was consistently more accurate and more efficient than the typical
method of selecting a fixed number of top-ranked leaf nodes.
However, there is still much to be explored on how to effectively
make use of the information obtained from resource selection and
result merging by running a set of training queries and we believe
that the search performance can be further improved.

The results shown in this paper also provide additional support for
using automatically generated queries and “single collection”
baseline to evaluate the search performance in peer-to-peer
networks. The same conclusions on the relative effectiveness of
various algorithms for federated search in peer-to-peer networks
can be drawn from the results of the 1,000 WT10g queries and
from the results of the 100 TREC queries. This is encouraging
because the large number of queries automatically generated from
WT10g (in the magnitude of 106) gives us the opportunity to
study in the future how the network can learn from past queries
and evolve in order to improve the search performance over time.
Federated search in distributed environments is complicated, the
main components of which include resource representation,
resource selection, document retrieval and result merging. The
overall search performance is affected by the performance of each
individual component as well as the interaction between different
components. Peer-to-peer networks add further complexity to the
problem due to factors such as dynamic topology, uncertainty in
locating relevant information, and concern in efficiency. How the
data are distributed over the networks and how different nodes
interact and communicate with each other also affect the use of

different algorithms because all algorithms are developed based
on either explicit or implicit assumptions of the environments.
Our next step is to further understand the unique characteristics of
peer-to-peer networks and to develop practical algorithms that are
more appropriate for search in dynamic and heterogeneous peer-
to-peer networks.

ACKNOWLEDGMENTS
This material is based on work supported by NSF grant IIS-
0118767 and IIS-0240334. Any opinions, findings, conclusions
or recommendations expressed in this material are the authors',
and do not necessarily reflect those of the sponsor.

REFERENCES
[1] J. Callan. Distributed information retrieval. W. B. Croft,

editor, Advances in information retrieval, chapter 5, pages
127-150. Kluwer Academic Publishers, 2000.

[2] A. Le Calv and J. Savoy. Database merging strategy based
on logistic regression. Information Processing and
Management, 36(3), pages 341-359.

Table 6.4a Comparison of leaf node selection methods tested on the 100 TREC queries. The best results in ranked-based
retrieval accuracy for cooperative and uncooperative environments are shown in bold.

Environment Hub Selects
Hub

Hub Selects
Leaf

Set-based
Recall/Precision

Hub-Leaf
Messages

Precision
@ 5

Precision
@ 10

Precision
@ 15

Precision
@ 20

Precision
@ 30

Precision
@ 100

COOP Flooding Top 6 36.91 / 1.20 141 0.278 0.220 0.190 0.174 0.158 0.095
COOP Flooding Threshold 37.39 / 1.22 137 0.295 0.236 0.202 0.187 0.164 0.099
COOP Random 1 Top7 26.01 / 1.22 70 0.255 0.194 0.166 0.153 0.134 0.074
COOP Random 1 Threshold 23.67 / 1.23 63 0.263 0.212 0.180 0.159 0.137 0.070
COOP Top 1 Top6 28.21 / 1.64 46 0.278 0.209 0.180 0.169 0.149 0.083
COOP Top 1 Threshold 26.59 / 1.74 46 0.263 0.214 0.187 0.169 0.148 0.082

UNCOOP Flooding Top 7 37.53 / 1.09 163 0.282 0.225 0.191 0.177 0.159 0.091
UNCOOP Flooding Threshold 39.56 / 1.11 148 0.275 0.230 0.199 0.185 0.164 0.094
UNCOOP Random 1 Top 7 25.62 / 1.09 70 0.221 0.185 0.164 0.147 0.127 0.066
UNCOOP Random 1 Threshold 24.81 / 1.12 69 0.235 0.198 0.171 0.152 0.126 0.069
UNCOOP Top 1 Top 8 30.41 / 1.42 61 0.253 0.198 0.180 0.163 0.139 0.077
UNCOOP Top 1 Threshold 30.99 / 1.50 58 0.263 0.216 0.187 0.168 0.147 0.081

Table 6.4b Comparison of leaf node selection methods tested on the 1,000 WT10g queries. The best results in rank-based
retrieval accuracy for cooperative and uncooperative environments are shown in bold.

Environment Hub Selects
Hub

Hub Selects
Leaf

Set-based
Recall/Precision

Hub-Leaf
Messages

Precision
@ 5

Precision
@ 10

Precision
@ 15

Precision
@ 20

Precision
@ 30

Precision
@ 100

COOP Flooding Top 5 74.21 / 11.83 111 0.973 0.949 0.930 0.899 0.828 0.302
COOP Flooding Threshold 72.82 / 12.47 102 0.989 0.967 0.945 0.915 0.840 0.296
COOP Random 1 Top5 51.87 / 11.76 46 0.875 0.809 0.752 0.700 0.606 0.204
COOP Random 1 Threshold 51.11 / 13.12 45 0.890 0.830 0.768 0.716 0.615 0.199
COOP Top 1 Top5 61.17 / 14.15 36 0.949 0.903 0.859 0.803 0.703 0.240
COOP Top 1 Threshold 60.43 / 15.42 36 0.967 0.918 0.868 0.818 0.717 0.235

UNCOOP Flooding Top 6 71.14 / 11.03 131 0.928 0.887 0.851 0.809 0.727 0.285
UNCOOP Flooding Threshold 69.61 / 11.85 110 0.942 0.900 0.857 0.811 0.724 0.277
UNCOOP Random 1 Top 6 49.20 / 10.99 54 0.822 0.752 0.689 0.630 0.531 0.193
UNCOOP Random 1 Threshold 48.36 / 12.46 47 0.834 0.758 0.694 0.632 0.530 0.184
UNCOOP Top 1 Top 6 53.40 / 12.20 39 0.852 0.776 0.712 0.656 0.561 0.207
UNCOOP Top 1 Threshold 52.49 / 13.81 37 0.862 0.789 0.723 0.662 0.565 0.203

[3] N. Craswell, D. Hawking and P. Thistlewaite. Merging
results from isolated search engines. In Proc. of the 10th
Australasian Database Conference. 1999.

[4] A. Crespo and H. Garcia-Molina. Routing indices for peer-
to-peer systems. In Proc. of the International Conference on
Distributed Computing Systems (ICDCS), July 2002.

[5] F. Cuenca-Acuna and T. Nguyen. Text-based content search
and retrieval in ad hoc p2p communities. Technical Report
DCS-TR-483, Rutgers University, 2002.

[6] L. Gravano, C. Chang, H. Garcia-Molina and A. Paepcke.
STARTS: Stanford proposal for internet meta-searching. In
Proc. of the ACM-SIGMOD International Conference on
Management of Data, 1997.

[7] L. Gravano and H. Garcia-Molina. Generalizing GlOSS to
vector-space databases and broker hierarchies. In Proc. of
21th International Conference on Very Large Data Bases
(VLDB’95), pages 78-89, 1995.

[8] D. Hawking. Overview of the TREC-9 web track. In Proc.
of the 9th Text Retrieval Conference (TREC-9), 2000.

[9] KaZaA. http://www.kazaa.com.

[10] S. T. Kirsch. Document retrieval over networks wherein
ranking and relevance scores are computed at the client for
multiple database documents. U.S. Patent 5,659,732.

[11] Limewire. http://www.limewire.com.

[12] K. Liu, C. Yu, W. Meng, A. Santos and C. Zhang.
Discovering the representative of a search engine. In Proc.
of the 10th International Conference on Information
Knowledge Management (CIKM 2001), 2001.

[13] J. Lu and J. Callan. Content-based retrieval in hybrid peer-
to-peer networks. In Proc. of the 12nd International
Conference on Information Knowledge Management (CIKM
2003), 2003.

[14] J. Lu and J. Callan. Peer-to-peer testbed definitions:
trecwt10g-2500-bysource-v1 and trecwt10g-query-bydoc-v1.
http://www.cs.cmu.edu/callan/Data, 2003.

[15] J. Lu and J. Callan. Merging retrieval results in hierarchical
peer-to-peer networks (poster description). In Proc. of the
27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2004.

[16] H. Nottelmann and N. Fuhr. Evaluation different methods of
estimating retrieval quality for resource selection. In Proc.
of the 26th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2003.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A scalable content-addressable network. In Proc.
of the ACM SIGCOMM’01 Conference, August 2001.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on
Distributed Systems Platforms, pages 329-350, November
2001.

[19] L. Si and J. Callan. A semi-supervised learning method to
merge search engine results. ACM Transactions on
Information Systems, 24(4), pages 457-491. ACM.

[20] L. Si and J. Callan. Relevant document distribution
estimation method for resource selection. In Proc. of the 26th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2003.

[21] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proc. of the ACM
SIGCOMM’01 Conference, August 2001.

[22] C. Tang, Z. Xu and S. Dwarkadas. Peer-to-peer information
retrieval using self-organizing semantic overlay networks.
In Proc.. of the ACM SIGCOMM’03 Conference, August
2003.

[23] S. Waterhouse. JXTA Search: Distributed search for
distributed networks. Technical report, Sun Microsystems
Inc., 2001.

[24] J. Xu and W. B. Croft. Cluster-based language models for
distributed retrieval. In Proc. of the 22nd Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, 1999.

[25] C. Zhai, P. Jansen, E. Stoica, N. Grot and D. Evans.
Threshold Calibration in CLARIT adaptive filtering. In
Proc. of the 7th Text Retrieval Conference (TREC-7), 1998.

[26] C. Zhai, P. Jansen and D. Evans. Exploration of a heuristic
approach to threshold learning in adaptive filtering. In Proc.
of 23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2000.

[27] Y. Zhang and J. Callan. Maximum likelihood estimation for
filtering thresholds. In Proc. of 24th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 2001.

[28] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCS/CSD-01-1141, Computer
Science Division, University of California, Berkeley. 2001.

