116 Linear A-Calculus

6.2 Linear Type Checking

The typing rules for the linear A-calculus are syntaz-directed in that the principal
term constructor determines the typing rule which must be used. Nonetheless,
the typing rules are not immediately suitable for an efficient type-checking al-
gorithm since we would have to guess how the linear hypotheses are to be split
between the hypothesis in a number of rules.

The occurrence constraints introduced in Section ?? would be sufficient to
avoid this choice, but they are rather complex, jeopardizing our goal of designing
a simple procedure which is easy to trust. Fortunately, we have significantly
more information here, since the proof term is given to us. This determines the
amount of work we have to do in each branch of a derivation, and we can resolve
the don’t-care non-determinism directly.

Instead of guessing a split of the linear hypotheses between two premisses of a
rule, we pass all linear variables to the first premiss. Checking the corresponding
subterm will consume some of these variables, and we pass the remaining ones
one to check the second subterms. This idea requires a judgment

F;A[\A()'—M:A

where A represents the available linear hypotheses and Ap C Ay the linear hy-
potheses not used in M. For example, the rules for the simultaneous conjunction
and unit would be

D;A\NA'FM:A IA'\ Ao N:B
F;A[\Aol—M(@N:A@B

®I

I

1
F;A[\A[F*:A

Unfortunately, this idea breaks down when we encounter the additive unit (and
only then!). Since we do not know which of the linear hypotheses might be used
in a different branch of the derivation, it would have to read

Ar2 Ao
TI
F;A[\Aol—<>:—|—

which introduces undesirable non-determinism if we were to guess which subset
of At to return. In order to cirumvent this problem we return all of Ay, but flag
it to indicate that it may not be exact, but that some of these linear hypotheses
may be absorbed if necessary. In other words, in the judgment

F;A[\Aol—lM:A

any of the remaining hypotheses in Ap need not be consumed in the other
branches of the typing derivation. On the other hand, the judgment

F;A[\Aol—QM:A
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6.2 Linear Type Checking 117

indicates the M uses exactly the variables in A; — Ap.

When we think of the judgment I'; Ar \ Ap F; M : A as describing an
algorithm, we think of I'; Ay and M as given, and Ao and the slack indicator
i as part of the result of the computation. The type A may or may not be
given—in one case it is synthesized, in the other case checked. This refines
our view as computation being described as the bottom-up construction of a
derivation to include parts of the judgment in different roles (as input, output,
or bidirectional components). In logic programming, which is based on the
notion of computation-as-proof-search, these roles of the syntactic constituents
of a judgment are called modes. When writing a deductive system to describe an
algorithm, we have to be careful to respect the modes. We discuss this further
when we come to the individual rules.

Hypotheses. The two variable rules leave no slack, since besides the hypoth-
esis itself, no assumptions are consumed.

w u
I (ApwA)\Arkow: A (T,wA); Ar\ Artou: A

Multiplicative Connectives. For linear implication, we must make sure that
the hypothesis introduced by —oI actually was used and is not part of the
residual hypothesis Ap. If there is slack, we can simply erase it.

I (A, w:A)\ Ao b; M : B where i =1 or w not in Agp

—o I

;A7\ (Ao —w:A) H; Aw:A. M:A—B

DA \NA'"F;, M:A—B A\ Aok N: A

— Kk
F; (A[\Ao) |_i\/k M N:B

Here itVk=1ifi=1or k=1, and i V k = 0 otherwise. This means we have
slack in the result, if either of the two premisses permits slack.

DA \NA"F, M- A A"\ Aotk N: B
F;A[\A()'—i\/k M®N:A® B

®I

D;A\NA'"F, M:A®B
I (A, wi:A,we:B)\ Ao b N: C

where k= 1 or w; and ws not in Ap
Ewi w2

;A7\ (Ao —wi:A — we:B) by letw; @ we = MinN : C
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118 Linear A-Calculus

In the QK rule we stack the premisses on top of each other since they are too
long to fit on one line. The unit type permits no slack.

11
F;A[\A[FQ*:]_

DA \A"F; M1 A"\ Aotk N: C
F;A[\AO Five letx=MinN : C

1E

Additive Connectives. The mechanism of passing and consuming resources
was designed to eliminate unwanted non-determinism in the multiplicative con-
nectives. This introduces complications in the additives, since we have to force
premisses to consume exactly the same resources. We write out four version of
the &I rule.

DA \NAp o M:A T;A;\ AL o N: B Ap=Aj

&loo

[;A7\ (Ap NAY) o (M,N) : A&B
A \NAp o M:A T;A;\AL L N: B AbgAg&I
10

[;A7\ (Ap NAY) Fo (M, N) : A&B
DA \NAp i M:A T;A;\ AL N: B AbQAg&I
01

[;A7\ (Ap NAY) Fo (M, N) : A&B
A \NAp i M:A T;A;\AL L N: B .
&ly1

[5A7\ (Ap NAYL) F (M, N) : A&B

Note that in &Igg, Ay NAY = A = AY by the condition in the premiss.
Similarly for the other rules. We chose to present the rules in a uniform way
despite this redundancy to highlight the similarities. Only if both premisses
permit slack do we have slack overall.

;A\ Aok M A&B ;AP\ Ao M : A&B
&Eq, &ERr
F;A[\Aol—ifStM:A F;A[\Aol—isndM:B

Finally, we come to the reason for the slack indicator.

TI
;AT \NArEL () T No T elimination
The introduction rules for disjunction are direct.
F;A[\AoFiM:A F;A[\Aol—iM:B

@Iy, Blr
D;A;\ Aotk inl®: A® B D;A7\ Agkiintd: Ae B
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6.2 Linear Type Checking 119

The elimination rule for disjunction combines resource propagation (as for mul-
tiplicatives) introduction of hypothesis, and resource coordination (as for addi-
tives) and is therefore somewhat tedious. It is left to Exercise 6.6. The OE rule
permits slack, no matter whether the derivation of the premiss permits slack.

F;A[\Aol—iM:O

0E
No 0 introduction T;A;\ Ao by abort” M : C

Exponentials. Here we can enforce the emptiness of the linear context di-
rectly.
(T,wA);Ar\ Ao+ M : B

D)
;AT\ Aok Adw:A.M:ADB

U

;A \AobF; M:ADB I \A*F, N: A
F;A[\Aol—iMN:B

DE

Here A* will always have to be - (since it must be a subset of -) and k is
irrelevant. The same is true in the next rule.
1

I \A*H, M: A
D;A7\Arbo IM: 1A

DA \A"F M 1A (T,uw:A); A"\ Ao b N : C
1B
A\ Ao Fiyjletlu=MinN : C

The desired soundness and completeness theorem for the algorithmic typing
judgment must first be generalized before it can be proved by induction. For this
generalization, the mode (input and output) of the constituents of the judgment
is a useful guide. For example, in the completness direction (3), we can expect
to distinguish cases based on the slack indicator which might be returned when
we ask the question if there are Ao and 4 such that I'; A\ Ap H; M : A for the
given ', A, M and A.

Lemma 6.4 (Properties of Algorithmic Type Checking)
1. IfT; A\ Ao ko M : A then A; D Ap and T; A1 — Ao F M : A.

2. IfT; A1\ Ao b1 M : A then Ar O Ao and for any A such that Ay 2
ADA;—Ap we have I'; A+ M : A.

3. IfT'; A+ M : A then either
(a) T; (A, A)\ A" o M = A for any A/, or
(b)) T; (A", A)\ (A, Ap) 1 M 2 A for all A’ and some Ap C A.
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120 Linear A-Calculus

Proof: By inductions on the structure of the given derivations.! Items (1) and
(2) must be proven simultaneously. 0

From this lemma, the soundness and completeness of algorithmic type check-
ing follow directly.

Theorem 6.5 (Algorithmic Type Checking)
;A M : A if and only if either

1.T;AN\N-FoM: A, or
2. T5AN\ A" M : A for some A.

Proof: Directly from Lemma 6.4 a

6.3 Pure Linear Functional Programming

The linear A-calculus developed in the preceding sections can serve as the basis
for a programming language. The step from A-calculus to programming lan-
guage can be rather complex, depending on how realistic one wants to make
the resulting language. The first step is to decide on observable types and a
language of values and then define an evaluation judgment. This is the subject
of this section. Given the purely logical view we have taken, this language still
lacks datatypes and recursion. In order to remedy this, we introduce recursive
types and recursive terms in the next section.

Our operational semantics follows the intuition that we should not evaluate
expressions whose value may not be needed for the result. Expressions whose
value will definitely be used, can be evaluated eagerly. There is a slight mismatch
in that the linear A-calculus can identifies expressions whose value will be needed
ezxactly once. However, we can derive other potential benefits from the stronger
restriction at the lower levels of an implementation such as improved garbage
collection or update-in-place. These benefits also have their price, and at this
time the trade-offs are not clear. For the strict A-calculus which captures the
idea of definite use of the value of an expression, see Exercise 6.2.

We organize the functional language strictly along the types, discussing ob-
servability, values, and evaluation rules for each. We have two main judgments,
M Value (M is a value), and M — v (M evaluates to v). In general we use v
for terms which are legal values. For both of these we assume that M is closed
and well-typed, that is, ;- = M : A.

Linear Implication. An important difference between a general A-calculus
and a functional language is that the structure of functions in a programming
language is not observable. Instead, functions are compiled to code. Their be-
havior can be observed by applying functions to arguments, but their definition
cannot be seen. Thus, strictly speaking, it is incorrect to say that functions

L[ check]
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6.3 Pure Linear Functional Programming 121

are first-class. This holds equally for so-called lazy functional languages such
as Haskell and eager functional languages such as ML. Thus, any expression of
the form Aw:A. M is a possible value.

—oval

\w:A. M Value

Evaluation of a A-abstraction returns itself immediately.

—oIv

Aw:A. M <  w:A. M
Since a linear parameter to a function is definitely used (in fact, used exactly
once), we can evaluate the argument without doing unnecessary work and sub-

stitute it for the bound variable during the evaluation of an application.

My < dw:dy. M] My < vy [va/w]M{ < v

- —o Ev
Ml M2 — v

Note that after we substitute the value of argument v, for the formal parameter
w in the function, we have to evaluate the body of the function.

Simultaneous Pairs. The multiplicative conjunction A ® B corresponds to
the type of pairs where both elements must be used exactly once. Thus we can
evaluate the components (they will be used!) and the pairs are observable. The
elimination form is evaluated by creating the pair and then deconstructing it.

My Value Ms> Value
M ® My Value

®val

M; — vy My — vg M — vy @ v [v1/w1, v2/w2] N — v
RIv QREv
M @ My — v1 ® va letw; @ wo = MinN — v

Multiplicative Unit. The multiplicative unit 1 is observable and contains
exactly one value *. Its elimination rule explicitly evaluates a term and ignores
its result (which must be *).

1val
* Value

M — % N —wv
1Iv 1Ev
* > K letx =MinN < v
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122 Linear A-Calculus

Alternative Pairs. Alternative pairs of type A&B are such that we can only
use one of the two components. Since we may not be able to predict which
one, we should not evaluate the components. Thus pairs (M7, M) are lazy, not
observable and any pair of this form is a value. When we extract a component,
we then have to evaluate the corresponding term to obtain a value.

— &val
(M7, M3) Value
&lv
(M, My) — (M, M)
M — <M1,M2> M1 — U1 M — <M1,M2> M2 — Vg
&EV1 &EVQ
fst M — v, snd M < vy

Additive Unit. By analogy, the additive unit T is not observable. Since
there is no elimination rule, we can never do anything interesting with a value
of this type, except embed it in larger values.

———— Tval
() Value

— TIv

(=0

This rule does not express the full operational intuition behind T which “garbage
collects” all linear resources. However, we can only fully appreciate this when
we define evaluation under environments (see Section ?7).

Disjoint Sum. The values of a disjoint sum type are guaranteed to be used
(no matter whether it is of the form inl® M or inr M). Thus we can require
values to be built up from injections of values, and the structure of sum values
is observable. There are two rules for evaluation, depending on whether the
subject of a case-expression is a left injection or right injection into the sum

type.

M Value M Value
— @val; ————— Pvaly
inl? M Value inr M Value
M —wv M —wv

— ®Ivy — ®lvy
inl? M < inl® v inr M < inr* v
M < inl® v, [v1/w1] N1 — v
GEvy
case M of inlw; = Ny | inrwg = Ny — v
M < inr? vy [v2/w2]No — v
GEvs

case M of inlw; = Ny | inrwg = Ny — v
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6.3 Pure Linear Functional Programming 123

Void Type. The void type 0 contains no value. In analogy with the disjoint
sum type it is observable, although this is not helpful in practice. There are no
evaluation rules for this type: since there are no introduction rules there are no
constructor rules, and the elimination rule distinguishes between zero possible
cases (in other words, is impossible). We called this abort® M, since it may be
viewed as a global program abort.

Unrestricted Function Type. The unrestricted function type A D B (also
written as A — B in accordance with the usual practice in functional pro-
gramming) may or may not use its argument. Therefore, the argument is not
evaluated, but simply substituted for the bound variable. This is referred to as
a call-by-name semantics. It is usually implemented by lazy evaluation, which
means that first time the argument is evaluated, this value is memoized to avoid
re-evaluation. This is not represented at this level of semantic description. Val-
ues of functional type are not observable, as in the linear case.

——  —~ Ival
Mu:A. M Value

— Iv
MuA M — A M

My — )\U:AQ. Ml/ [MQ/U:]M{ — v
Ml M2 — v

— Ev

Modal Type. A linear variable of type !A must be used, but the embedded
expression of type A may not be used since it is unrestricted. Therefore, terms
IM are values and “!” is like a quotation of its argument M, protecting it from

evaluation.
— lval
M Value
M — \M’ [M'/u]N < v
IIv IEv
\M — M letlu =MinN — v

We abbreviate the value judgment from above in the form of a grammar.

Values v = Mw:A. M A—B  not observable
| v1®uy A; ® A, observable
| * 1 observable
| (M, Ms) A18As  not observable
| () T not observable
| intPvlinr*y A®B  observable
No values 0 observable
| AwA. M A — B not observable
| M 1A not observable
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124 Linear A-Calculus

In the absence of datatypes, we cannot write many interesting programs. As
a first example we consider the representation of the Booleans with two values,
true and false, and a conditional as an elimination construct.

bool = 1¢1

true = inlt%

false = inrlx
if M thenN;else Ny, = case M

of inlt w1 = letx = wyin Ny
| inr! wy = let x = wo in N

The elimination of x in the definition of the conditional is necessary, because
a branch inl* w; = N; would not be well-typed: w; is a linear variable not
used in its scope. Destructuring a value in several stages is a common idiom
and it is helpful for the examples to introduce some syntactic sugar. We allow
patterns which nest the elimination forms which appear in a let or case. Not all
combination of these are legal, but it is not difficult to describe the legal pattern
and match expressions (see Exercise 6.7).

Patterns p = w|p1@pa|*|inlp|inrp|u]|lp
Matches m == p= M| (my | mg)

An extended case expression has the form case M of m.

In the example of Booleans above, we gave a uniform definition for condi-
tionals in terms of case. But can we define a function cond with arguments
M, N; and N> which behaves like if M then N; else No? The first difficulty
is that the type of branches is generic. In order to avoid the complications of
polymorphism, we uniformly define a whole family of functions cond¢ types C.
We go through some candidate types for cond¢ and discuss why they may or
may not be possible.

condg : 1 ®1—oC —oC —o (. This type means that both branches of the con-
ditional (second and third argument) would be evaluated before being
substituted in the definition of conds. Moreover, both must be used dur-
ing the evaluation of the body, while intuitively only one branch should
be used.

conde : 1@ 1 —(IC) —(IC) — C. This avoids evaluation of the branches, since
they now can have the form !Ny and !Ny, which are values. However, Ny

and Ny can now no longer use linear variables.

condg :1®1—-oC — C — C. This is equivalent to the previous type and un-
desirable for the same reason.

condeg : 1@ 1 —(C&C) —o C. This type expresses that the second argument of
type C&C is a pair (N7, N3) such that exactly one component of this pair
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6.3 Pure Linear Functional Programming 125

will be used. This expresses precisely the expected behavior and we define

conde : 1®1—(C&C)—C
= \:l@ 1. \n:CsC.
case b
of inlx = fstn
| inrx = sndn

which is linearly well-typed: b is used as the subject of the case and n is
used in both branches of the case expression (which is additive).

As a first property of evaluation, we show that it is a strategy for S-reductions.
That is, if M < v then M reduces to v in some number of [-reduction
steps (possibly none), but not vice versa. For this we need a new judgment
M —5 M " is the congruent, reflexive, and transitive closure of the M — g M’
relation. In other words, we extend (-reduction so it can be applied to an ar-
bitrary subterm of M and then allow arbitrary sequences of reductions. The
subject reduction property holds for this judgment as well.

Theorem 6.6 (Generalized Subject Reduction) If[AF M : Aand M —
M’ thenT; A M': A.

Proof: See Exercise 6.8 O

Evaluation is related to (-reduction in that an expression reduces to its
value.

Theorem 6.7 If M — v then M — v.

Proof: By induction on the structure of the derivation of M — v. In each case
we directly combine results obtained by appealing to the induction hypothesis
using transitivity and congruence. m]

The opposite is clearly false. For example,
(Aw:L. w) %, %) — (%, %),
but . . R .
((Aw:1. w) *,%) = (Aw:1. w) *,*)

and this is the only evaluation for the pair. However, if we limit the congruence
rules to the components of ®, inl, inr, and all elimination constructs, the corre-
spondence is exact (see Exercise 6.9). Type preservation is a simple consequence
of the previous two theorems. See Exercise 6.10 for a direct proof.

Theorem 6.8 (Type Preservation) If;-- M : A and M < v then ;- Fv:
A.

Proof: By Theorem 6.7, M —7 v. Then the result follows by generalized
subject reduction (Theorem 6.6). O
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126 Linear A-Calculus

The final theorem of this section establishes the uniqueness of values.

Theorem 6.9 (Determinacy) If M — v and M < v then v =v'.

Proof: By straightforward simultaneous induction on the structure of the two
given derivations. For each for of M except case expressions there is exactly
one inference rule which could be applied. For case we use the uniqueness of
the value of the case subject to determine that the same rule must have been
used in both derivations. |

We can also prove that evaluation of any closed, well-typed term M termi-
nates in this fragment. We postpone the proof of this (Theorem ?7?) until we
have seen further, more realistic, examples.

6.4 Recursive Types

The language so far lacks basic data types, such as natural numbers, integers,
lists, trees, etc. Moreover, except for finitary ones such as booleans, they are
not definable with the mechanism at our disposal so far. At this point we can
follow two paths: one is to define each new data type in the same way we defined
the logical connectives, that is, by introduction and elimination rules, carefully
checking their local soundness and completeness. The other is to enrich the
language with a general mechanism for defining such new types. Again, this
can be done in different ways, using either inductive types which allow us to
maintain a clean connection between propositions and types, or recursive types
which are more general, but break the correspondence to logic. Since we are
mostly interested in programming here, we chose the latter path.

Recall that we defined the booleans as 1 & 1. It is easy to show by the
definition of values, that there are exactly two values of this type, to which we
can arbitrarily assign true and false. A finite type with n values can be defined
as the disjoint sum of n observable singleton types, 1@ --- @ 1. The natural
numbers would be 1 &1 @ - - -, except that this type is infinite. We can express
it finitely as a recursive type pa. 1 @ «. Intuitively, the meaning of this type
should be invariant under unrolling of the recursion. That is,

nat pno. 1@ o
[(po. 1@ a)/a]l @«
1P pua.1®a

1 ¢ nat

I

which is the expected recursive definition for the type of natural numbers.

In functional languages such as ML or Haskell, recursive type definitions are
not directly available, but the results of elaborating syntactically more pleaseant
definitions. In addition, recursive type definitions are generative, that is, they
generate new constructors and types every time they are invoked. This is of
great practical value, but the underlying type theory can be seen as simple
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6.4 Recursive Types 127

recursive types combined with a mechanism for generativity. Here, we will only
treat the issue of recursive types.

Even though recursive types do not admit a logical interpretation as propo-
sitions, we can still define a term calculus using introduction and elimination
rules, including local reduction and expansions. In order maintain the property
that a term has a unique type, we annotate the introduction constant fold with
the recursive type itself.

LA M : [pa. AJa]A I AFEM: pa. A
1 7
[; A F fold*® AM : po. A ;AR unfold M : [pa. A/a]A

E

The local reduction and expansions, expressed on the terms.

unfold fold"* * M —5 M
M:po. A —, fold*™ # (unfold M)

It is easy to see that uniquess of types and subject reduction remain valid
properties (see Exercise 6.11). There are also formulation of recursive types
where the term M in the premiss and conclusion is the same, that is, there
are no explicit constructor and destructors for recursive types. This leads to
more concise programs, but significantly more complicated type-checking (see
Exercise 6.12).

We would like recursive types to represent data types. Therefore the values
of recursive type must be of the form fold** A4 for values v—otherwise data
values would not be observable.

M Value
pval
fold"™ 4 M Value
M < Iy M fold™ A JEv
fold“® 4 M < fold** 4 v unfold M — v

In order to write interesting programs simply, it is useful to have a general
recursion operator fixu:A. M at the level of terms. It is not associated with
an type constructor and simply unrolls its definition once when executed. In
the typing rule we have to be careful: since the number on unrollings generally
unpredictable, no linear variables are permitted to occur free in the body of
a recursive definition. Moreover, the recursive function itself may be called
arbitrarily many times—one of the characteristics of recursion. Therefore its
uses are unrestricted.

(T,wA);-FM: A

fix
Iy - FfixuwA M: A

The operator does not introduce any new values, and one new evaluation rules
which unrolls the recursion.

fixwA. M/ulM — v
fixuA. M —v

fixv
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In order to guarantee subject reduction, the type of whole expression, the body
M of the fixpoint expression, and the bound variable v must all have the same
type A. This is enforced in the typing rules.

We now consider a few examples of recursive types and some example pro-
grams.

Natural Numbers.

nat = pa.1da
zero : nat
= fold"* (inlnat *)
succ : nat-—onat

= Azmat. fold™* (inr' z)

With this definition, the addition function for natural numbers is linear in both
argument.

plus : nat—onat—onat
= fixp:nat —onat —onat.
Az:mat. Ay:nat. case unfold z
of inlx =y

| inrz’ = succ (p ' y)

It is easy to ascertain that this definition is well-typed: x occurs as the case
subject, y in both branches, and z’ in the recursive call to p. On the other hand,
the natural definition for multiplication is not linear, since the second argument
is used twice in one branch of the case statement and not at all in the other.

mult : nat-—omnat— nat
= fixm:nat —onat — nat
Az:mat. Ay:nat. case unfold z
of inlx = zero

| inra’ = plusA(mAm’ y)Ay

Interestingly, there is also a linear definition of mult (see Exercise 6.13), but its
operational behavior is quite different. This is because we can explicitly copy
and delete natural numbers, and even make them available in an unrestricted
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way.

copy : nat-—onat® nat
= fixc:nat —onat ® nat
Ax:nat. case unfold x

of inl x = zero ® zero
|inrz’ = letz] ® ab = ¢ z'in (succAm’l) ® (succAm’Q)
delete : nat—o1
= fixdmat—1
Az:mat. case unfold z
ofinlx=1
linra/ = letx=d 2/inl
promote : mnat—o!nat
= fixp:nat —onat
Az:mat. case unfold z
of inl x = !zero

linra’ = let v/ = p 2’ in!(succ u')

Lazy Natural Numbers. Lazy natural numbers are a simple example of lazy
data types which contain unevaluated expressions. Lazy data types are useful
in applications with potentially infinite data such as streams. We encode such
lazy data types by using the !A type constructor.

Inat = pa. (1@ a)
Izero : Inat
= fold™" ! (inI"™" x)
Isucc : Inat — Ilnat

= Ju:lnat. fold™" ! (inr* )

There is also a linear version of successor of type, lnat —olnat, but it is not
as natural since it evaluates its argument just to build another lazy natural
number.

lsucc’ : Inat—olnat
= Az:Inat. let lu = unfold z in fold™" (linr* (fold™* (lu)))

The “infinite” number number w can be defined by using the fixpoint operator.
We can either use lsucc as defined above, or define it directly.

w : Inat
= fixw:lnat. Isuccu
>~ fixw:lnat. fold™" ! (inr' u)

Note that lazy natural numbers are not directly observable (except for the
fold™*), so we have to decompose and examine the structure of a lazy natural
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number successor by successor, or we can convert it to an observable natural
number (which might not terminate).

toNat : Inat-—onat
= fixt:lnat —onat
Az:Inat. case unfold z
of linl™ % = zero
| linr! 2’ = suce (¢ )

Lists. To avoid issues of polymorphism, we define a family of data types list 4
for an arbitrary type A.

listgy = pa.1®d(A®a)
nilg : listy
— foldlistA (inllistA *)
consg : AQ®listy —olisty

= Ap:A®lista. fold™ 4 (inrt p)

We can easily program simple functions such as append and reverse which are
linear in their arguments. We show here reverse; for other examples see Exer-
cise 6.14. we define an auxiliary tail-recursive function rev which moves element
from it first argument to its second.

revy : listy —olisty —olisty

= fixr:listg —olist 4 —olisty

Al:list 4. Mk:list 4.

case unfold!
of inlA®lsta 4 —
inlt (z 1) = rAl’A(consA (x ®Fk))
reverse4 : listy —olisty
= j\ltlistA. revAlAnilA
To make definitions like this a bit easier, we can also define a case for lists, in

analogy with the conditional for booleans. It is a family indexed by the type of
list elements A and the type of the result of the conditional C.

listCaseqa,c : listy —-(C&(AQlista —C))—-C
= M:lista. j\n:C&(A ® listg — C).
case unfold/

of inlA®lsta o — fet

| inrlp = (sndn) p

Lazy Lists. There are various forms of lazy lists, depending of which evalua-

tion is postponed.

llistY, = pa. (1 ® (A ® «)). This is perhaps the canonical lazy lists, in which
we can observe neither head nor tail.
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llisty = po. 1 ® (A ® o). Here we can observe directly if the list is empty or
not, but not the head or tail which remains unevaluated.

llist}, = po. 1 ® (A ® o). Here we can observe directly if the list is empty or
not, and the head of the list is non-empty. However, we cannot see the
tail.

llist}y = pa. 1@ ('A® o). Here the list is always eager, but the elements are
lazy. This is the same as list4.

llisty, = pa. 1 @ (A&a). Here we can see if the list is empty or not, but we can
access only either the head or tail of list, but not both.

infStream4 = po. (A ® a). This is the type of infinite streams, that is, lazy
lists with no nil constructor.

Functions such as append, map, etc. can also be written for lazy lists (see
Exercise 6.15).

Other types, such as trees of various kinds, are also easily represented using
similar ideas. However, the recursive types (even without the presence of the
fixpoint operator on terms) introduce terms which have no normal form. In the
pure, untyped A-calculus, the classical examples of a term with no normal form
is (Az. zz) (Az. zx) which [-reduces to itself in one step. In the our typed
A-calculus (linear or intuitionistic) this cannot be assigned a type, because x is
used as an argument to itself. However, with recursive types (and the fold and
unfold constructors) we can give a type to a version of this term which S-reduces
to itself in two steps.

Q = po.a—a
w : 220
= Az:Q. (unfoldz) z
Then
w (fold®* w)

— 5 (unfold (fold® w)) (fold” w)
— 5 w (fold? w).
At teach step we applied the only possible -reduction and therefore the term

can have no normal form. An attempt to evaluate this term will also fail,
resulting in an infinite regression (see Exercise 6.16).

6.5 Exercises

Exercise 6.1 Prove that if ;A M : Aand T'; AR M : A’ then A= A'.
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Exercise 6.2 A function in a functional programming language is called strict
if it is guaranteed to use its argument. Strictness is an important concept in the
implementation of lazy functional languages, since a strict function can evaluate
its argument eagerly, avoiding the overhead of postponing its evaluation and
later memoizing its result.

In this exercise we design a A-calculus suitable as the core of a functional
language which makes strictness explicit at the level of types. Your calculus
should contain an unrestricted function type A — B, a strict function type
A — B, a vacuous function type A --» B, a full complement of operators
refining product and disjoint sum types as for the linear A-calculus, and a modal
operator to internalize the notion of closed term as in the linear A-calculus. Your
calculus should not contain quantifiers.

1. Show the introduction and elimination rules for all types, including their
proof terms.

2. Given the reduction and expansions on the proof terms.
3. State (without proof) the valid substitution principles.

4. If possible, give a translation from types and terms in the strict A-calculus
to types and terms in the linear A-calculus such that a strict term is well-
typed if and only if its linear translation is well-typed (in an appropriately
translated context).

5. Either sketch the correctness proof for your translation in each direction
by giving the generalization (if necessary) and a few representative cases,
or give an informal argument why such a translation is not possible.

Exercise 6.3 Give an example which shows that the substitution [M/w]N
must be capture-avoiding in order to be meaningful. Variable capture is a sit-
uation where a bound variable w’ in N occurs free in M, and w occurs in the
scope of w’. A similar definition applies to unrestricted variables.

Exercise 6.4 Give a counterexample to the conjecture that if M — 3 M’ and
AR M : Athen T;A R M : A. Also, either prove or find a counterexample
to the claim that if M —, M’ andT; A+ M’ : Athen ;A M : A

Exercise 6.5 The proof term assignment for sequent calculus identifies many
distinct derivations, mapping them to the same natural deduction proof terms.
Design an alternative system of proof terms from which the sequent derivation
can be reconstructed uniquely (up to weakening of unrestricted hypotheses and
absorption of linear hypotheses in the TR rule).

1. Write out the term assignment rules for all propositional connectives.

2. Give a calculus of reductions which corresponds to the initial and principal
reductions in the proof of admissibility of cut.

3. Show the reduction rule for the dereliction cut.
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4. Show the reduction rules for the left and right commutative cuts.

5. Sketch the proof of the subject reduction properties for your reduction
rules, giving a few critical cases.

6. Write a translation judgment S = M from faithful sequent calculus
terms to natural deduction terms.

7. Sketch the proof of type preservation for your translation, showing a few
critical cases.

Exercise 6.6 Supply the missing rules for GE in the definition of the judg-
ment I'; Ay \ Ap F; M : A and show the corresponding cases in the proof of
Lemma 6.4.

Exercise 6.7 In this exercise we explore the syntactic expansion of ezxtended
case expressions of the form case M of m.

1. Define a judgment which checks if an extended case expression is valid.
This is likely to require some auxiliary judgments. You must verify that
the cases are exhaustive, circumscribe the legal patterns, and check that
the overall expression is linearly well-typed.

2. Define a judgment which relates an extended case expression to its expan-
sion in terms of the primitive let, case, and abort constructs in the linear
A-calculus.

3. Prove that an extended case expression which is valid according to your
criteria can be expanded to a well-typed linear A-term.

4. Define an operational semantics directly on extended case expressions.

5. Prove that your direct operational semantics is correct on valid patterns
with respect to the translational semantics from questions 2.

Exercise 6.8 Define the judgment M —j M " via inference rules. The rules
should directly express that it is the congruent, reflexive and transitive closure
of the S-reduction judgment M — 3 M’. Then prove the generalized subject
reduction theorem 6.6 for your judgment. You do not need to show all cases,
but you should carefully state your induction hypothesis in sufficient generality
and give a few critical parts of the proof.

Exercise 6.9 Define weak (3-reduction as allows simple (-reduction under ®,
inl, and inr constructs and in all components of the elimination form. Show that
if M weakly reduces to a value v then M — v.

Exercise 6.10 Prove type preservation (Theorem 6.8) directly by induction on

the structure of the evaluation derivation, using the substitution lemma 6.2 as
necessary, but without appeal to subject reduction.
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Exercise 6.11 Prove the subject reduction and expansion properties for recur-
sive type computation rules.

Exercise 6.12 [ An exercise exploring the use of type conversion
rules without explicit term constructors. |

Exercise 6.13 Define a linear multiplication function mult : nat —o nat —o nat
using the functions copy and delete.

Exercise 6.14 Defined the following functions on lists. Always explicitly state
the type, which should be the most natural type of the function.

1. append to append two lists.
2. concat to append all the lists in a list of lists.

3. map to map a function f over the elements of a list. The result of map-
ping f over the list 1, zo, . . ., x, should be the list f(x1), f(z2),... f(xn),
where you should decide if the application of f to its argument should be
linear or not.

4. foldr to reduce a list by a function f. The result of folding f over a
list 21, x2, ...z, should be the list f(x1, f(za, ..., f(xn, init))), where init
is an initial value given as argument to foldr. You should decide if the
application of f to its argument should be linear or not.

5. copy, delete, and promote.

Exercise 6.15 For one of the form of lazy lists on Page 130, define the functions
from Exercise 6.14 plus a function toList which converts the lazy to an eager list
(and may therefore not terminate if the given lazy lists is infinite). Make sure
that your functions exhibit the correct amount of laziness. For example, a map
function applied to a lazy list should not carry out any non-trivial computation
until the result is examined.

Further for your choice of lazy list, define the infinite lazy list of eager natural
numbers 0,1,2, . ...

Exercise 6.16 Prove that there is no term v such that w (fold” w) < v.

Exercise 6.17 [ An exercise about the definability of fixpoint oper-
ators at various type. ]

Exercise 6.18 Prove Lemma 77 which states that all values evaluate to them-
selves.
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