
Constructive Logic Carnegie Mellon University
Fall 2000 Frank Pfenning

Assignment 8

Out: Thursday Nov 9 Due: Thursday Nov 16

Note: You may reuse any function introduced in lecture or the as-
signments without giving the definition again!

1. Vectors and Matrices (50 Points)

Many numerical applications, e.g., in statics, involve vectors and matrices. Vec-
tor algebra defines arithmetical operations on vectors, but most of them impose
restrictions on their arguments. E.g., the inner product of two vectors is only
defined if they have equal length. It turns out that these kinds of restrictions
can be captured elegantly by dependent types.
First an short introduction into vectors and matrices. Given a semi-ring R
(basically a structure with addition and multiplication, e.g., N, Q or R) we
define vectors v ∈ Rn and matrices a ∈ Rk×m as follows:

v = (vi)0≤i<n =


v0

v1

...
vn−1



a = (ai,j)
0≤i<k
0≤j<m =


a0,0 a0,1 · · · a0,m−1

a1,0 a1,1 · · · a1,m−1

...
...

. . .
...

ak−1,0 ak−1,1 · · · ak−1,m−1


Several operations are defined on vectors and matrices, we present four of them:

1. Inner product. Given two vectors v, w ∈ Rn of the same length we define

〈v, w〉 :=
m−1∑
i=0

viwi ∈ R

2. Application of a matrix to a vector. Given a matrix a ∈ Rn×k and a vector
v ∈ Rk we define

av :=

k−1∑
j=0

ai,jvj


0≤i<n

∈ Rn

1

3. Matrix transposition. Given a matrix a = (ai,j)
0≤i<k
0≤j<m ∈ Rk×m, we define

aT := (aj,i)
0≤j<m
0≤i<k ∈ R

m×k

4. Matrix multiplication. Given two matrics a ∈ Rn×k and b ∈ Rk×m we
define

ab :=

(
k−1∑
l=0

ai,lbl,j

)0≤i<n

0≤j<m

∈ Rn×m

In the following we define the datatypes vec and matr (vectors and matrices
over natural numbers) by introduction rules. We overload nil and :: because
our data structures are closely related to lists.

vec In
Γ ` nil ∈ vec(0)

Γ ` x ∈ nat Γ ` v ∈ vec(n)
vec Ic

Γ ` x :: v ∈ vec(s n)

Γ ` n ∈ nat
matr In

Γ ` nil ∈ matr(0, n)

Γ ` v ∈ vec(n) Γ ` a ∈ matr(m, n)
matr Ic

Γ ` v :: a ∈matr(s m, n)

A vector is basically a list of natural numbers and a matrix a list of rows where
each row is represented by a vector.

1. (20 points) Give the formation and elimination rules for vec and matr.

2. (10 points) Give the equational specification1 of the inner product of two
vectors.

inner ∈ Πn ∈ nat. vec(n)→ vec(n)→ nat

3. (10 points) Give the equational specification of the application of a matrix
to a vector.

app ∈ Πk ∈ nat. Πn ∈ nat. matr(n, k)→ vec(k)→ vec(n)

4. (10 Points) Matrix multiplication cannot be defined in a straightforward
way with our data structures. This is because each element of the resulting
matrix is computed by folding a row of the first matrix with a column of
the second matrix. However, our data structure only gives us easy access
to the rows of a matrix. We now assume we have already implemented a
function

transpose ∈ Πk ∈ nat. Πn ∈ nat. matr(n, k)→matr(k, n)

1That is defining a function by a set of equations, as we did in lecture and assignments
before. You do not have to give an implementation as a primitive recursive function.

2

which takes a matrix a and returns a matrix b whose rows are the columns
of a. Now multiplication is implemented with the help of an auxiliary
function mult ′ as follows:

mult ∈ Πk ∈ nat. Πn ∈ nat. matr(n, k)→ Πm ∈ nat. matr(k,m)

→matr(n,m)

mult = λk. λn. λa. λm. λb. mult ′ k n a m (transpose m k b)

Give the equational specification for mult ′.

mult ′ ∈ Πk ∈ nat. Πn ∈ nat. matr(n, k)→ Πm ∈ nat. matr(m, k)

→matr(n,m)

2. Queues (50 Points)

Consider the following interface for queues:

τ queue type

empty ∈ τ queue
snoc ∈ τ queue → τ → τ queue

head ∈ τ queue → 1 + τ
tail ∈ τ queue → τ queue

A queue is a data structure that stores elements of type τ . Queues can be
constructed by empty , which returns an empty queue, and snoc which adds one
element to the end of the queue.2 Destructors for queues are head , which returns
the first element of the list resp. an indication that the queue is empty, and tail
which returns the queue minus its first element. Alternative names for queue
are First In First Out data structures or pipes. There are plenty applications
for queues, e.g., dispatching processes.
Straightforward implementation by queue = list runs us into efficiency prob-
lems: Either construction or destruction of a queue will be expensive. E.g., we
could choose to implement snoc by

snoc q a = append q (a :: nil)

Then taking the head or the tail could be done by one operation in O(1) time,
but snoc would have complexity of O(|q|), since we have to traverse the whole
list to add a single element. (| · | denotes the length of a list here.)
But we can do better: We can implement a queue by a pair of lists observing
an invariant

τ queue = τ list×τ list
Invariant: |f | ≥ |r| for (f, r) ∈ τ queue

2snoc is cons read backwards and is a silly but common name for this operation. To come
up with clear and expressive names is not a gift of every programmer!

3

The idea is as follows: head takes the first element of the first list f , tail returns
a queue where the head element is removed from f and snoc adds an element
to the front of r. Now all these operations can be done in O(1) time, with
one exception: In some cases we have to rearrange the data in our queue. If an
operation results in a queue which violates the invariant, then we have to reverse
r and append it to f . This happens, e.g., if we take the last element from f and
r is not empty. Then we rearrange the data to make the elements of r available
for head and tail. This operations has complexity O(n) where n is the number
of elements in the queue. Still this is a very effective implementation of queues.

1. (10 points) Refine the datatype queue s.th. it additionally carries the
lengths n,m ∈ nat of the lists f and r. Use dependent types to en-
sure that n =N |f | and m =N |r| always hold. The invariant |f | ≥ |r|
does not have to be captured by dependent types.

2. (40 points) Implement the interface given above by equationally specifying
the four objects empty , snoc, head and tail. Make sure that the invariant
|f | ≥ |r| always holds. You may use the following two functions (and, of
course, all other functions given in lecture).

lt ∈ nat→ nat→ bool
apprev ∈ Πn ∈ nat. τ list(n)→ Πm ∈ nat. τ list(m)

→ τ list(plus n m)

The result is of evaluating lt n m is true if n < m and false otherwise.
The function apprev appends the reverse of its second argument to the
first.

Have fun, even without tutch!

4

