Assignment 4

Out: Friday Sep 29 Due: Thursday Oct 5

1. Primitive Recursion over nat (30 Points)

For each of the following three functions give first a **specification** and then an **implementing term**. Follow the example of *double* given in the lecture notes. You may freely reuse the functions from the lecture notes and define your own auxiliary functions.

- $power2 : \mathbf{nat} \to \mathbf{nat}$. For $n \in \mathbf{nat}$ the term $power2 \ n$ should compute 2^n .
- power: $\mathbf{nat} \to \mathbf{nat} \to \mathbf{nat}$. For $n, m \in \mathbf{nat}$ the application power n m should reduce to n^m .
- $fib : \mathbf{nat} \to \mathbf{nat}$. For $n \in \mathbf{nat}$ the term fib n computes the nth Fibonacci number, where fib 0 = 0, fib 1 = 1, fib $2 = 1, \dots 2, 3, 5, 8, 13, etc. In this sequence, every number except the first two is the sum of the two preceding numbers$

Hint: You will need a hack similar to the one in lecture.

2. Primitive Recursion over list (30 Points)

Again, give specifications and implementations for the following functions.

- $filter: (\tau \to \mathbf{bool}) \to \tau \mathbf{list} \to \tau \mathbf{list}$. For $p \in \tau \to \mathbf{bool}$, $l \in \tau \mathbf{list}$ the call $filter\ p\ l$ returns a sublist l' of l which contains only those elements $x \in \tau$ for which $p\ x$ returns \mathbf{true} .
- $exists: (\tau \to \mathbf{bool}) \to \tau \mathbf{list} \to \mathbf{bool}$. For $p \in \tau \to \mathbf{bool}$, $l \in \tau \mathbf{list}$ the result of $exists\ p\ l$ should be **true** if $p\ x$ returns **true** for any list element $x \in \tau$, otherwise **false**.
- $nth : \mathbf{nat} \to \tau \mathbf{list} \to \tau \to \tau$. For $n \in \mathbf{nat}$, $l \in \tau \mathbf{list}$ and $a \in \tau$ the call nth n l a should return the nth element of the list l, where we start counting in the head with 0. The value a should be returned in any exceptional case.

3. Encoding of bool (20 Points)

In the lecture the type constructors \rightarrow , \times , **1** and **0** were introduced, which are isomorphic to implication, conjunction, truth and falsehood. Here we complete the picture giving the *sum type* constructor '+' which is isomorphic to disjunction. The rules are:

- Formation:

$$\frac{\sigma \ type \qquad \tau \ type}{\sigma + \tau \ type} + F$$

- Introduction:

$$\frac{\Gamma \vdash t \in \sigma}{\Gamma \vdash \mathbf{inl} \ t \in \sigma + \tau} + \mathbf{I}_{\mathbf{L}} \qquad \frac{\Gamma \vdash t \in \tau}{\Gamma \vdash \mathbf{inr} \ t \in \sigma + \tau} + \mathbf{I}_{\mathbf{R}}$$

- Elimination:

$$\frac{\Gamma \vdash r \in \sigma + \tau \qquad \Gamma, x \in \sigma \vdash s \in \rho \qquad \Gamma, y \in \tau \vdash t \in \rho}{\Gamma \vdash \mathbf{case} \, r \, \mathbf{of} \, \mathbf{inl} \, x \Rightarrow s \mid \mathbf{inr} \, y \Rightarrow t : \rho} + \mathbf{E}$$

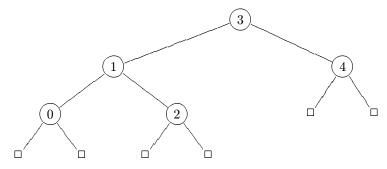
Now we can *define* a type of booleans as a two-element set: Bool = 1 + 1. Convince yourself that the type Bool has exactly 2 normal elements and define:

- The truth values $tt, ff \in Bool$.
- A term $ifThenElse: Bool \to \tau \to \tau \to \tau$. For $b \in Bool$ and $s, t \in \tau$ the call $ifThenElse\ b\ s\ t$ should return s if b = tt and t otherwise.
- A term $xor: Bool \rightarrow Bool \rightarrow Bool$ that implements exclusive-or.

Again, give specifications and implementations.

4. Binary Trees (20 Points)

In the same manner as natural numbers and lists, we want to introduce *labelled* complete binary trees as an inductive datatype. Each interior node carries a label and has exactly two child nodes. Each leaf has neither a label nor a child node. Here is an example of a tree carrying natural numbers:



- Give formation, introduction and elimination rules for the data type τ tree which should have the two constructors leaf and node.
- Give a specification and an implementation for each of the functions $count: \tau \, \mathbf{tree} \to \mathbf{nat}$ and $traverse: \tau \, \mathbf{tree} \to \tau \, \mathbf{list}$. The function count counts the number of labels in the given tree (that is 5 in our example) and traverse sequentializes all labels into a list such that the leftmost is first and the rightmost is last ([0,1,2,3,4] in our example). Reuse functions defined in the lecture.

Good luck!