
Constructive Logic Carnegie Mellon University
Fall 2000 Frank Pfenning

Assignment 4

Out: Friday Sep 29 Due: Thursday Oct 5

1. Primitive Recursion over nat (30 Points)

For each of the following three functions give first a specification and then an
implementing term. Follow the example of double given in the lecture notes.
You may freely reuse the functions from the lecture notes and define your own
auxiliary functions.

• power2 : nat→ nat. For n ∈ nat the term power2 n should compute 2n.

• power : nat → nat → nat. For n,m ∈ nat the application power n m
should reduce to nm.

• fib : nat→ nat. For n ∈ nat the term fib n computes the nth Fibonacci
number, where fib 0 = 0, fib 1 = 1, fib 2 = 1, . . . 2, 3, 5, 8, 13, etc. In
this sequence, every number except the first two is the sum of the two
preceding numbers
Hint: You will need a hack similar to the one in lecture.

2. Primitive Recursion over list (30 Points)

Again, give specifications and implementations for the following functions.

• filter : (τ → bool)→ τ list→ τ list. For p ∈ τ → bool, l ∈ τ list the call
filter p l returns a sublist l′ of l which contains only those elements x ∈ τ
for which p x returns true.

• exists : (τ → bool) → τ list → bool. For p ∈ τ → bool, l ∈ τ list the
result of exists p l should be true if p x returns true for any list element
x ∈ τ , otherwise false.

• nth : nat → τ list → τ → τ . For n ∈ nat, l ∈ τ list and a ∈ τ the
call nth n l a should return the nth element of the list l, where we start
counting in the head with 0. The value a should be returned in any
exceptional case.

3. Encoding of bool (20 Points)

In the lecture the type constructors →, ×, 1 and 0 were introduced, which
are isomorphic to implication, conjunction, truth and falsehood. Here we com-
plete the picture giving the sum type constructor ‘+’ which is isomorphic to
disjunction. The rules are:



– Formation:
σ type τ type

+F
σ + τ type

– Introduction:

Γ ` t ∈ σ
+IL

Γ ` inl t ∈ σ + τ

Γ ` t ∈ τ
+IR

Γ ` inr t ∈ σ + τ

– Elimination:

Γ ` r ∈ σ + τ Γ, x ∈ σ ` s ∈ ρ Γ, y ∈ τ ` t ∈ ρ
+E

Γ ` case r of inlx⇒ s | inr y ⇒ t : ρ

Now we can define a type of booleans as a two-element set: Bool = 1 + 1.
Convince yourself that the type Bool has exactly 2 normal elements and define:

• The truth values tt,ff ∈ Bool .

• A term ifThenElse : Bool → τ → τ → τ . For b ∈ Bool and s, t ∈ τ the
call ifThenElse b s t should return s if b = tt and t otherwise.

• A term xor : Bool → Bool → Bool that implements exlusive-or.

Again, give specifications and implementations.

4. Binary Trees (20 Points)

In the same manner as natural numbers and lists, we want to introduce labelled
complete binary trees as an inductive datatype. Each interior node carries a
label and has exactly two child nodes. Each leaf has neither a label nor a child
node. Here is an example of a tree carrying natural numbers:

?>=<89:;3

kkk
kkk

kkk
kkk

kkk
kk

PPP
PPP

PPP
PPP

PP

?>=<89:;1

ww
ww
ww
ww
w

GG
GG

GG
GG

G
?>=<89:;4











44
44

44

?>=<89:;0

��
��
�

77
77

7
?>=<89:;2

��
��
�

77
77

7
2 2

2 2 2 2

• Give formation, introduction and elimination rules for the data type τ tree
which should have the two constructors leaf and node.

• Give a specification and an implementation for each of the functions
count : τ tree→ nat and traverse : τ tree → τ list. The function count
counts the number of labels in the given tree (that is 5 in our example)
and traverse sequentializes all labels into a list such that the leftmost is
first and the rightmost is last ([0,1,2,3,4] in our example). Reuse functions
defined in the lecture.

Good luck!


