Empirically Evaluating Multiagent Learning Algorithms

Erik Zawadzki, Asher Lipson and Kevin Leyton-Brown
Department of Computer Science, University of British @Gddia, Vancouver, Canada
{epz, alipson, kevinll@cs.ubc.ca

Abstract. There exist many algorithms for learning how to play repeaienatrix games. Most of these algorithms are
justified in terms of some sort of theoretical guarantee.H@rother hand, little is known about the empirical perforogan

of these algorithms. Most such claims in the literature aenbbased on small experiments, which has hampered
understanding as well as the development of new multiagemhing (MAL) algorithms. We have developed a new
suite of tools for running multiagent experiments: the NAgdent Learning Testbed (MALT). These tools are designed
to facilitate larger and more comprehensive experimentsinpving the need to build one-off experimental code. MALT
also provides baseline implementations of many MAL aldwnis, hopefully eliminating or reducing differences betwee
algorithm implementations and increasing the reprodiigibdf results. Using this test suite, we ran an experiment
unprecedented in size. We analyzed the results accordmgddety of performance metrics including reward, maxmin
distance, regret, and several notions of equilibrium cayemce. We confirmed several pieces of conventional wisdom,
but also discovered some surprising results. For exammefound that single-ager@-learning outperformed many
more complicated and more modern MAL algorithms.

Keywords: Game theory, multiagent systems, reinforcement learmnmirical algorithmics

1. Introduction

Urban road networks, hospital systems and commodity maket all examples of complicated
multiagent systems that are essential to everyday lifeedddany social interaction can be seen as
a multiagent problem. As a result of the prominence of mgéiie systems, a lot of attention has
been paid to designing and analyzing learning algorithmsidtiagent environments. A multitude
of different algorithms exist for a variety of different 8agys. Some prominent examples include
algorithms by Littman (1994), Singh et al. (2000), Hu and dah (2003), Greenwald and Hall
(2003), Bowling (2004a), Powers and Shoham (2005), Bamame Peng (2006), and Conitzer and
Sandholm (2007).

We take the position that the best multiagent learning (MAlgprithm is the one that achieves
the highest possible average rewardnder this view, the problem faced by the designer of a
MAL algorithm is qualitatively the same as the problem fabtgdthe designer of a single-agent
reinforcement learning algorithm. However, there is a Amdntal difference between the two
settings. In the stationary environment faced by classaiaforcement learners, the concept of an
optimal policy is well defined, and hence learning algorishean attempt to identify this policy. In
a multiagent environment, the best policy to follow depeonthe actions taken by the opponent,
and thus on the ways in which the opponent’s future behavitrbe affected by the learner’s
present actions. The best policy depends on the opponémfsgy, and so there can be no global
“optimum.”

! For alternatives, see Shoham et al. (2007)—who called tipeoaph that we espouse the “prescriptive, non-
cooperative agenda”—or Sandholm (2007).

p;:‘ (© 2008Kluwer Academic Publishers. Printed in the Netherlands.

journal.tex; 15/11/2008; 22:19; p.1

It is this added conceptual complexity that makes MAL proidanteresting; however, it has
also made them harder to analyze. Theoretical claims abalita&lgorithms generally do not speak
directly about average reward. Instead, they tend to deseliernative aspects of the algorithm’s
performance that are intended to ‘stand in’ for reward. Sewek has insisted that algorithms
should converge to stage-game Nash equilibria, or shoukbdu least in the case of “self play.”
Others have insisted on other sorts of convergence prepeation regret bounds. Still others have
offered different guarantees for performance againsewifit classes of opponents.

Because many MAL algorithms are incomparable on the basikedf theoretical properties,
and further because it is unclear the extent to which theseugproperties correlate with an
algorithm’s ability to achieve high average reward in psagtit is generally argued that MAL
algorithms should be compared empirically. Many such @rpantal comparisons have been per-
formed in the literature (see, e.g., (Nudelman et al., 28@#ers and Shoham, 2005)). However,
for the most part these experiments have been designeddoatevfor a newly-designed algorithm
rather than to survey the whole landscape. As a consequest of these experiments have been
small in terms of the number of game instances and opposjugitdms considered. Furthermore,
different experiments have in many cases measured penfioen@a different ways, making it
difficult to compare their results and draw an overall cosidn. There is therefore considerable
opportunity to expand our understanding of how existing MAthniques compare in practice.

Part of the reason for the relative paucity of large-scal@igoal work is that neither a cen-
tralized algorithm repository nor a standardized testpseixists. This is unfortunate, not only
because considerable work has to be invested in designagfbtestbeds and reimplementing al-
gorithms, but also because centralized and public rep@stmcrease reproducibility and decrease
the danger that different experiments will achieve diffenesults because of differences in imple-
mentations. Publicly available and scrutinized impleragahs offer the promise of experiments
that are easier to run, reproduce, and compare.

In this article we make two main contributions. First, wead®e the design and implementation
of a platform for running MAL experiments;8). This platform offers several advantages over
one-off setups. We hope that it will facilitate new and largeale empirical work.

Our second main contribution is the analysis of such an ecapistudy. This experiment is,
to our knowledge, unprecedented in terms of scale. We majgestions about how empirical
MAL performance data should be analyzeéd)(and offer a detailed discussion of different al-
gorithms’ average reward in practicgbj. Furthermore, we draw connections between different
performance metrics that have been explored in theoretiogd (§6), and show that some of the
least sophisticated algorithms achieve extremely cortiygeferformance.

2. Algorithms and Past Experimental Work

MAL algorithms have been studied for over half a centurysTith investigation has produced not
only a profusion of competing algorithms but also varioustidct problem formulations. Does an
algorithm know the game’s reward functions before the gatakss or do reward functions need
to be learned? How many opponents can an algorithm face? ¥uhvals about the opponent’s
actions can an algorithm observe? Can an algorithm rely onglable to determine stage-game

journal.tex; 15/11/2008; 22:19; p.2

3

Nash equilibria or other computationally-expensive gammperties? Each of these assumptions
changes the learning problem.

In this section we describe the algorithms we study in thiepaand also survey past experimen-
tal evaluations of MAL algorithms. The creators of the aitjons that we describe answered the
above questions in different ways, reflecting the commimitsoader disagreement about precisely
what problem MAL algorithms should aim to solve. In order &rpit the study of a broad range
of algorithms, we have answered the above questions pévelissve allow algorithms access to
the reward functions, to signals about the opponent’s mgtiand to computationally-costly game
properties. Thus, we are able to compare algorithms thainesthis information to others that are
capable of learning it. (Where possible, we have implentesteh learning-capable algorithms in
such a way that they make useafriori available information directly instead of learning it, to
ensure that these algorithms are not disadvantaged.)

The other important experimental choice we faced was thes dhgames upon which to eval-
uate algorithms. We chose to restrict ourselves to 2-plegjeeated games. (Note, however, that
we do not restrict the number of actions in the repeated gavie.chose this setting instead of
n-player repeated games or eitleror n-player stochastic games for two reasons. First, the case
of two-player repeated games has received the most pagt @¢hadigh see e.g., (Vu et al., 2005)).
Second, considerably more work has been done to identifgrexpntally-interesting test data for
this case. We restricted our attention to algorithms thatgtay two-player games of any size and
with any payoff structure. We thus did not make use of work ithsists (e.g.) on two-action games
(Singh et al., 2000) or constant-sum games (Littman, 198é)also mention as an aside that MAL
experiments have been conducted in settings that are ngeheralizations nor restrictions of our
setting, such as the population-based work by Axelrod (188d Airiau et al. (2007).

2.1. HcTITIOUS PLAY

Fictitious play (Brown, 1951) is probably the earliest example of a learrmilggprithm for
two-player games repeated games. Essentiddiytious play assumes that the opponent
is playing an unknown and potentially mixed stationarytstyg, and tries to estimate this strategy
from the opponent’s empirical distribution of actions—theguency counts for each of its actions
normalized to be probabilities. Clearly, in order to cdildte frequency countfictitious

play mustbe able to observe the opponent’s actions. The algottibn, at each iteration, best re-
sponds to this estimated strategy. Becdigstious play needs to calculate a best response,
it also assumes complete knowledge of its own payoffs.

Fictitious play is guaranteed to converge to a Nash equilibrin self play for a restricted set
of games. These games are said to havdittidous play property(see, for instance Monderer and
Shapley (1996); for an example of a simple 2 game without this property see Monderer and Sela
(1996)). Fictitious play will also eventually best respond to any stationary stratétis
algorithm’s general structure has been extended in a nuofheays, includingsmooth fictitious
play (Fudenberg and Kreps, 1993), and we will see later fibtitious play provides the
foundation for several more modern algorithms.

Fictitious play is known to be subject to miscoordination problems, paldity in self
play, and particularly in games that reward asymmetricaioation (e.g., dispersion games). There

journal.tex; 15/11/2008; 22:19; p.3

4

are some clever measures that can be taken to avoid somesefkimels of problems (e.g., best
response tie-breaking rules and randomization), but rmrsiboation remains a general problem for
thefictitious play approach.

2.2. DETERMINED

Determined or ‘bully’ (see, for example, Powers and Shoham (2005)) ialgarithm that solves
the multiagent learning problem by ignoring it. MAL algdmins typically change their behavior by
adapting to signals about the game. Howedetermined , as its name suggests, simply relies
on other algorithms to adapt their strategies to it.

Determined enumerates the stage-game Nash equilibria and selecta¢hhat maximizes
its personal reward in equilibrium; then, it plays its cepending action forevérCertainly,det-
ermined can lead to some obvious problems. For instance, in selftplagetermined agents
can stubbornly play actions from different equilibria,dé®y to sub-equilibrium average reward.
Additionally, enumerating all the Nash equilibria not omgquires complete knowledge of every
agents’ reward functions, but is also computationally lgpbmiting the use of this strategy to rel-
atively small stage games. All the sardetermined serves as a useful baseline for comparison.
Also, slight variations of this algorithm are, likestitious play , at the heart of some more
modern algorithms.

2.3. TARGETED ALGORITHMS

We next focus on two so-callergetedalgorithms, which focus on playing against particular
classes of opponents. Both these algorithms are baseddamemtifying what the opponent is
doing (with particular attention paid to stationarity andgl equilibrium), and then updating their
behavior based on this assessment.

Meta (Powers and Shoham, 2005) switches between threeesistptegies: a strategy similar
to fictitious play , adetermined -style algorithm that stubbornly plays a Nash equilib-
rium, and the maxmin strategy. Strategy selection dependsamrded histories of average reward
and empirical distributions of the opponents’ actions ssrdifferent periods of plapMeta was
shown both theoretically and empirically to be nearly optiragainst itself, close to the best re-
sponse against stationary agents, and to approach (orddxbeesecurity level of the game in all
cases.

AWESOM&so tracks the opponent’s behavior in different periodglay and tries to maintain
hypotheses about its play. For example, it attempts tométerwhether the other algorithm is play-
ing a particular stage-game Nash equilibrium. If itASVESOMiesponds with its own component
of that special equilibrium. This special equilibrium isdam in advance by all implementations
of AWESOMiG avoid equilibrium selection issues in self play. There @ther situations where it

2 The determined algorithm need not play an action from a Nash equilibriumt &le, it could instead
choose the action whose best response yields the algotimghest payoff. Note that this differs from a stage-game
Nash equilibrium because tlietermined algorithm need not itself play a best response. Such an m#@mounts
to an equilibrium of the Stackelberg version of the stagegahhat is, we can change the game so that instead of the
two players moving simultaneously, tdetermined agent moves first.

journal.tex; 15/11/2008; 22:19; p.4

5

acts in a similar fashion tbctitious play , and there are still other discrete modes of play
that it engages in depending on its beliefs.

Because both of these algorithms switch between simplategiies depending on the situation,
they can be viewed as portfolio algorithms. Note that bothage similar portfolios that include a
determined -style algorithm and #ictitious play algorithm.

2.4. Q-LEARNING ALGORITHMS

A broad family of MAL algorithms are based @vlearning (Watkins and Dayan, 1992), which
is a algorithm for finding the optimal policy in Markov Deasi Processes (MDPs). This family of
MAL algorithms does not explicitly model the opponent’sastigy choices. They instead settle for
learning the expected discounted reward for taking an@etiwl then following a stationary policy
encoded in th&)-function. In order to learn thé)-function, algorithms typically take random
exploratory steps with a small (possibly decaying) prolitstbi

Each algorithm in this family has a different way of selegtiits strategy based on thig-
function. For instance, one could try a straight forwardma@on of single-ager®-learning to
the multiagent setting by ignoring the impact that the ogmi’s action makes on the protagonist’s
payoffs. The algorithm simply updates its reward functidmewever a new reward observation is
made, where the new estimate is a convex combination of thesbimate and the new information:

Qa;) = (1 —ay)Q(a;) + v [7“ + 7y max Q(a)} . (D)

This algorithm essentially considers the opponent’s bienaw be an unremarkable part of a noisy
and non-stationary environment. The non-stationarityhefénvironment makes learning difficult
but this idea is not entirely without meri@Q-learning has been shown to work in other non-
stationary environments (see, for instance, Sutton antbB2899)).

Minimax-Q (Littman, 1994) is one of the first explicitly multiagent digptions of theQ-
learning idea. Th&)-function that it learns is based on the action profile andumitthe protago-
nist’s action: it learng)(a;, a—;). Minimax-Q uses the mixed maxmin strategy calculated froen t
Q-function as its strategy:

Qlag,a—i) = (1 — o)Q(ai, a—;) + oy

T+ ’yaienll_ﬁ(Ai) ngglli ; oi(a;)Q(ai, a_z)H . (@
Such a strategy is sensible to the extent that the protagbelves that the opponent aims to
minimize his payoff, or that the protagonist cares aboutstvoase guarantees. It should be noted
that since its maxmin strategies are calculated from lebgh®alues, they may not be the game’s
actual maxmin strategies and thus fail to reflect the sgcudtue. LikeQ-learning , mini-
max-Q also takes the occasional exploration step.

There are further modifications to this general schedash-Q (Hu and Wellman, 2003) learns
different@-functions for itself and its opponents and plays a stageegdash equilibrium strategy
for the game induced by thegg-values.Correlated-Q (Greenwald and Hall, 2003) does
something similar except that it chooses from the set ofetated equilibria using a variety of
different selection methods. Both of these algorithms mssthat they are able to observe not only

journal.tex; 15/11/2008; 22:19; p.5

6

the opponents’ actions but also their rewards, and addilpthat they have the computational
wherewithal to compute the necessary solution concept.

2.5. GRADIENT ALGORITHMS

Gradient ascent algorithms, such @§GA-WoLF (Bowling, 2004a) andRV, ;) (Banerjee and
Peng, 2006), maintain a mixed strategy that is updated irditextion of the payoff gradient.
The specific details of this updating process depend on thediual algorithms, but the common
feature is that they increase the probability of actionswigh reward and decrease the probability
of unpromising actions. This family of algorithms is simita Q-learning because they do not
explicitly model their opponent’s strategies and insteaettthem as part of a non-stationarity
environment.

GIGA-WoLFis the latest algorithm in a line of gradient learners thattetl withiIGA (Singh
et al., 2000) GIGA-WoLFuses an adaptive step length that makes it more or less aggredout
changing its strategy. It compares its strategy to a basslimtegy and makes the update larger if
it is performing worse than the baseli@lGA-WoLF guarantees non-positive regret in the limit
(regret is discussed in greater detaiké11) and strategic convergence to a Nash equilibrium when
playing againsGIGA (Zinkevich, 2003) in two-player two-action games.

There are two versions @1GA-WoLF. The first version assumes prior knowledge of personal
reward and the ability to observe the opponent’s actions-ththe version used in the proofs for
GIGA-WoLFs no-regret and convergence guarantees. There is alsmadsgersion—on which
all the experiments were based—that makes limited assangptbout payoff knowledge and
computational power. Instead, lik@-learning , it merely assumes that it is able to observe
its own reward.

RV, (Banerjee and Peng, 2006) belongs to a second line of gtaalgorithms that started
with ReDValLeR(Banerjee and Peng, 2004). This algorithm also uses anieglabep size when
following the payoff gradient, like5IGA-WoLF, but does so on an action-by-action basis. This
means that, unlik&IGA-WoLF, RV, ;) can be aggressive in updating some actions while being
cautious about updating others. These updates are peddsyneomparing current reward to the
reward at a Nash equilibrium. TherefoRY,, requires complete information about the game and
sufficient computational power to discover at least oneesggggne Nash equilibriunRV, ;) also
guarantees no-regret in the limit and additionally progideme convergence results for self play
in a restricted class of games.

GIGA-WoLFandRV,; differ in the way that they ensure that their updated stiategemain
valid probability distributionsGIGA-WoLFretracts it maps an unconstrained vector to the vector
on the probability simplex that is closestdndistance. This approach has a tenancy to map vectors
to extreme points of the simplex, reducing some action fhitibas to zero.RV,) normalizes
which is less prone to removing actions from its support.

2.6. PRREVIOUS EXPERIMENTAL RESULTS

As discussed in the introduction, surprisingly little pasirk has aimed primarily to use large-scale
experiments to compare the performance of MAL algorithmeéytheless, a considerable number

journal.tex; 15/11/2008; 22:19; p.6

Table 1. This table shows a summary of the experimental sétupa selection of pa-
pers. The summary includes the number of algorithms, thebeurof game distributions,
the number of game instances drawn from these distribytithres number of runs or tri-
als for each instance, and the number of iterations that thmulations were run for.
In some cases, the setup was unclear, indicated with a ‘“?’mémy cases, fewer than
[Algorithms x Distributions X Instances X Runs| runs were simulated, due to some
sparsity in the experimental structures.

Paper Algorithms Distributions Instances Runs Iterations
Littman (1994) 6 1 1 ? ?

Claus and Boutilier (1997) 2 3 1-100 2 50-2500
Greenwald and Hall (2003) 7 5 1 2500 - 33331 x 10°
Bowling (2004b) 2 6 1 ? 1 x10°
Nudelman et al. (2004) 3 13 100 10 1% 10°
Powers and Shoham (2005) 11 21 ? ? 2 x 10°
Banerjee and Peng (2006) 2 1 1 1 16000
Conitzer and Sandholm (2007) 3 2 1 1 2500

of papers from the literature describe experimental corspas, often in the context of arguing for
a particular MAL algorithm or approach. We briefly surveytthigrature here.

Setting up a general-sum repeated two-player game expdriraguires a number of design
choices. What set of algorithms should be considered? On s@taf games should these algo-
rithms be run? If one is dealing with randomized algorithmki¢h includes any algorithm that is
able to submit a mixed strategy), how many different runsukhbe simulated? For a particular
game, for how many iterations should a simulation be run?akshe seen in Table |, experiments
from the literature varied in all of these dimensions. Arbdially, some papers do not describe all
experimental parameters, making it difficult to compareilites

Overall, most of the tests performed in these papers camsidew algorithms. In most cases,
a newly proposed algorithm was evaluated by playing agaimstor two opponents. Some papers
superficially appear to have used many algorithms, but indaosidered algorithms that varied
only in small details. For example, in Littman (1994) twosiens ofminimax-Q and two ver-
sions ofQ-learning were tested, with each version differing only in its tragiregime. In
Greenwald and Hall (2003), four versions@bérrelated-Q were tested again§-learning
andFriend-Q andFoe-Q (Littman, 2001).Foe-Q is the same aminimax-Q .

To our knowledge, the experiment that considered the ggeaeiety of algorithms was Powers
and Shoham (2005). While four of the eleven algorithms teistéhis study were simple stationary-
strategy baselines, the remaining seven were MAL algostimtiudingHyper-Q (Tesauro, 2004),
WoLF-PHC(Bowling and Veloso, 2002), and a joint action learner (Gland Boutilier, 1997).

Previous experiments have tended to investigate only smatibers of game instances, and
these instances have tended to come from an even smallerenwhigame distributions. For
example, Banerjee and Peng (2006) used only a sihgle3 action “simple coordination game”
and Littman (1994) probed algorithm behavior with a singie-gvorld version of soccer. Initially,

journal.tex; 15/11/2008; 22:19; p.7

8

this limitation was partly due to the difficulty of creatindeage number of diverse game instances.
However with the creation of GAMUT (Nudelman et al., 2004}5wte of game generators, gen-
erating large game sets is now easy. Indeed, Nudelman €0fl4) also performed one of the
largest previous MAL experiments, using three MAL algarith (minimax-Q , WoLF(Bowling
and Veloso, 2001), an@-learning) on 100 game instances from each of thirteen distributions.
Some recent papers have also leveraged GAMUT, such as PamgeBhoham (2005).

Finally, previous experiments have differed substantialthe number of iterations considered,
ranging from 50 (Claus and Boutilier, 1997) to< 10% (Bowling, 2004b). Iterations in a repeated
game are typically divided into “settling in” (also calledrn-in” period) and “recording” phases,
allowing the algorithms time to converge to stable behabvafore results are recorded. Powers and
Shoham (2005) recorded the firtdl 000 of 200 000 iterations and Nudelman et al. (2004) used
the final10 000 of 100 000 iterations.

3. Platform

The empirical experiments just described were generalhdacted using one-off code tailored
to the investigation of a particular feature of a given alfpon. This experimental design has a
number of negative consequences. First, it decreases phedceibility of experiments by, for
instance, obscuring the details of algorithm implemeatatiEven when source code for the original
experiment is available, its special-purpose nature carertalifficult to repurpose for follow-on
studies or new experiments. Finally, rewriting similar e@ain and again wastes time that could
be spent running more comprehensive experiments.

In this section, we describe our solution to this problemopan and reusable platform called
MALT (MultiAgent Learning Testbed) 2.0. It is available féree download atttp://www.
cs.ubc.ca/ ~kevinlb/malt . This platform is designed for running two-player, genaain,
repeated-game MAL experiments. Basic visualization aradlyais features are also included, as is
support for running experiments using a computer clustnsign 1.0 of MALT was introduced by
Lipson (2005); the version described here is a completepleimentation of that work in a faster
programming language (Java vs. Matlab), offering a widéetaiof new features, bug fixes, and
efficiency gains. Overall, we hope that other researchdiseg MALT not as a finished product,
but as a growing repository of tools, algorithms and expenital settings, and that they will use it
as a base upon which to build (e.g., for the studyeplayer repeated games or stochastic games).
We have worked hard to make MALT easily extensible. For eXangulding a new algorithm to the
MALT GUI is as simple as providing a text file with a list of panaters, and adding an algorithm
to the engine requires very little coding beyond the impletaton of the algorithm itself.

3.1. DEFINITIONS

We now define some terms. An ordered pair of two algorithmspaieng. This pair is ordered
because many two-player games are asymmetric: the pasaffuate for the row player is different
than the payoff structure for the column player. The caseavhgr algorithm is paired with a copy
of itself (but with different internal states and indepemdendom seeds) is calleg|f play

journal.tex; 15/11/2008; 22:19; p.8

{1. Set Up Experiment} [2. Generate Jobs }
@b Agents @—v Jobs |i
J_ NE B i
Games 3
Maxmin
Settings

[3. Run Jobs H 4. Calculate Metrics H 5. Interpret Results }

Figure 1: The five steps for running an analyzing an experimsimg MALT.

We concentrate on drawing games from distributions cajbede generatorsA particular sam-
ple from a game generator isg@ame instancePrisoner’s Dilemmas a game generator and an
example game instance is a particular set of payoffs that tiePrisoner's Dilemmapreference
ordering. Other game generators are more heterogeneausxdmple, one that we will discuss
later samples from the space of all strategically disthgt2 games.

A pairing and a game instance, taken together, are call@dtah A match with one of the
algorithms in the pairing left unspecified ispartially specified matctiPSM). If two algorithms
play the same PSM, we conclude that any differences betwmngerformances are due to the
algorithms themselves (including any internal randonmzétbecause all else is held constant.

A particular simulation of a match is calledwn or trial . For pairs of deterministic algorithms, a
single run is sufficient to characterize a match; for ranadethialgorithms (including any algorithm
that plays a mixed strategy) multiple runs may each yielted#ht behavior. In such cases, the
match must be characterized by a solution quality distidbu¢(SQD)—the empirical distribution
of a performance metri€ Each run consists of a numberitérations In each iteration, the algo-
rithms select strategies and then receive some feedbacktreir reward; the action choice of their
opponent. Algorithms are allowed to select mixed strategrethis case, a single action is sampled
from the mixing distribution by the game. The iterations separated intsettling-in iterations
andrecorded iterations

3.2. R.ATFORM STRUCTURE

In this section we give an overview of the structure of thdfptan. The five steps for running an
experiment with the platform are summarized in Figure 1.rélae three major components to

3 We use the term SQD because it is standard in the empiriahf sfualgorithms. We note nevertheless that in MAL
there is no clear notion of a game having a ‘solution’, and these distributions might be more meaningfully called
‘metric distributions’.

journal.tex; 15/11/2008; 22:19; p.9

10

this platform: the configuration GUI, the experiment endfite piece that simulates the repeated
games) and the visualization GUI. We describe each in turn.

The first step is to set up the experiment. First, a group afrifgns must be picked and algo-
rithm parameters set. Second, a set of GAMUT game distdbsitinust be selected and parameters
for these games chosen. Third, general experimental péesmaust be established, such as the
number of iterations for each simulation. These decisioegacoded in human-readable text files,
and can either be generated using a provided GUI or usindp satipts.

The second step is to generate a job file for each desired ntaach job file references the
agent, game, equilibrium, and maxmin-strategy files. THiégseare referenced, making altering
the job files simple even after they have been generated.

The third step is to run the jobs. This primarily involves ming the MALT “engine”; however,
MALT calls GAMBIT's (McKelvey et al., 2004) implementatioaf Lemke-Howson (Lemke and
Howson, 1964) when an algorithm needs to find the set of Nasititetp for a game instance, and
CPLEX when an algorithm needs a maxmin strategy. Jobs mayrbim rseveral ways. The most
basic is to run them in a batch job on a single machine. Howéwefarge experiments this can
be prohibitively expensive. Because each job is indepdndés straightforward to use a compute
cluster. To facilitate such parallelization, each job tesan individual data file upon completion
that records the history of play. For each recorded itemasiod for each agent in the pair, the
strategy, sampled action, reward received, and beliefstahe opponents are recorded.

Step four is to compute performance metrics based on theéadilds. A plain-text file specifies
the metrics to be calculated, based on an extensible lilmfaayailable metrics. As above, metrics
can be computed in a batch or can be distributed across arclust

Finally, step five is to analyze and visualize these resilismake this task easier, MALT
includes some basic analysis tools and a visualization GUI.

3.3. ALGORITHM IMPLEMENTATIONS

To carry out this study, we selected and implemented elevAh Blgorithms, most of which we
discussed previously i#2.6. In cases where reference code was available, we pafoextensive
validation experiments to ensure that our implementatias gorrect.

3.3.1. Fictitious play

Parameters fofri cti ti ous pl ay are given in Table Il. We note that the initial action frequen
cies were set to one for each action, which is a uniform anilyeagerwhelmed prior. Actions
were selected from non-singleton best-response sets byirigvan action that was played in the
previous iteration if present, and selecting uniformlyaatdom otherwise.

3.3.2. Det ermi ned

Our implementation oflet er ni ned (see Table Ill) repeatedly plays the Nash equilibrium that
obtains the highest personal reward, but if there are nelgguilibria with the same protagonist
reward, then the equilibrium with the highest opponent revigselected. If there are any equilibria
that are still tied we use the one found first by GAMBIT’s implentation of Lemke-Howson.

journal.tex; 15/11/2008; 22:19; p.10

11

Table Il. Design decisions fdictitious play Table Ill. Design decisions fatetermined
Design Decision Setting Design Decision Setting
BR Tie-Breaking Previous action if still BR NE Tie-Breaking Highest opponent utility
Uniform otherwise
Initial Beliefs Unit virtual action count
Table IV. Design decisions fokWESOME Table V. Design decisions faneta
Design Decision Setting Design Decision Setting
Special Equilibriumg,) First found Security thresholde() 0.01
Bully threshold €;) 0.01
. A
Epoch period () %ﬂ “Generous” BR parametet) 0.005
(17 22) (<2) Stationarity thresholdeg) 0.025
Equilibrium threshold (. ()) 15 Coordination/exploration period) 90 000
Stationarity thresholde((t)) =+ Initial period (1) 10 000
Secondary periodrt) 80 000
Security check periodr§) 1 000
Switching probability £) 0.00005
Window (H) 1 000
I £

3.3.3. AWVESOVE

AVESOME is implemented according to the pseduo-code in ConitzerSamtiholm (2007), and
uses parameter settings given there; see Table IV. For pgeeia’ equilibrium we use the first
equilibrium found by GAMBIT’s implementation of Lemke-H®on. It would be interesting to
compare our implementation &AWESOM#® one that used the more computationally-expensive
approach of picking, say, a socially optimal equilibriim.

4 In our validation experiments we observed a small but $iedidy significant difference between the behavior of
our implementation oAAWESOM&nd the original implementation from Conitzer and Sandh(2607). (The original
implementation was in C and MALT 2.0 is written in Java, so ¢higinal implementation could not be used directly.)
Specifically, a test involving ten different game instanaad 100 runs against the random agent showed a significant
difference between solution quality distributions on thiestances. We used a two-sample Kolmogorov-Smirnov inde-
pendence test (s&d.2) witha = 0.05 to check for significance. For these three game instancesmmlementation
probabilistically dominated (se®t.5) the original implementation in terms of reward (i.eery reward quantile was
higher for our implementation). We were not able to track ddhe source of this behavior difference; however, we
spent a considerable amount of time verifying our impleragon against the pseudocode in the paper and were unable
to find any difference, suggesting that the bug may be in tiggnai C implementation.

journal.tex; 15/11/2008; 22:19; p.11

12

Table VI. Design decisions faBIGA-WOLF. Table VII. Design decisions faBSA
Design Decision Setting Design Decision Setting
H 1 H 1
Learning rated(t)) ety Learning rated(t)) ey
. 1 H 1
Step size(t)) W Step size(t)) WerreeTs
. . 1
Noise Weight 4(¢)) WerareTs
3.34. Met a

Met a is implemented according to the pseduo-code in Powers aaoladh (2005). The Powers
and Shoham (2005) implementation meta used a distance measure based on the Hoeffding
Inequality, even though the pseudo-code called for using amorm. We follow the pseudo-code
and use thé; norm. We do not adjust the default threshold leveg) for distance, leaving it at the
original value. All parameters foneta are summarized in Table V.

3.3.5. Gradient Algorithms

Our implementation o3 GA- WLF follows the original pseudo-code and uses the learning rate
and step size schedules from the original experiments b\liBg\{2004a) as defaults; see Table VI.
We note, however, that these step sizes were set for drawiogth trajectories and may not
necessarily yield strong performance, and furthermoreth®eoriginal experiments fad&6IGA--
WoLFinvolved more iterations than we simulatedd{ as compared ta0°). For GIGA-WoLF's
retraction map operation (the function that maps an arfgitractor inR™ to the closest probability
vector in terms of, distance) we used an algorithm based on the method desanilig&olvindan
and Wilson (2003)GIGA-WoLF has two variants: in one it assumes that it can counterftictua
determine the reward for playing an arbitrary action in thevus iteration, and in the other it
only knows the reward for the the action that it played andtbagpproximate the rewards for the
other actions. We implemented the latter approach, as &IGA-WoLFs experimental results
are produced by this version. The formula for the approxiona given by

Va e A; #7) = (1= a)rDL,__q) + a(@)). ©)

In this equation,® is the reward that the algorithm experienced while playiogoa a® in
iterationt. The vector(® is an|A4,|-dimensional vector that reflects the algorithm’s belidfout
rewards.

We also tested the Global Stochastic Approximation algorjitGSA, of Spall (2003); see Ta-
ble VII. To our knowledge we were the first to suggest its usa MAL setting (Lipson, 2005).
This algorithm is a stochastic optimization method thaénglslesGIGA, but takes a noisy, rather
than deterministic, step. TH@SAstrategy is updated as

2D Z p(a®) 0 4 \Oc0)y)

journal.tex; 15/11/2008; 22:19; p.12

13

Table VIII. Design decisions faR\,,). Table IX. Design decisions fdp-learning
Design Decision Setting Design Decision Setting
. t
o-schedule €(t)) ﬁ Learning rate(t)) 1 — 5500)

(
Step size (1)) Exploration rateq(t)) 1 (1- 5%)"
0.9

Future discount factory)

1
4/1000t+105

wherez; is the previous mixed strategy, is the reward vectot, is a vector where each component
is sampled from the standard normal distribution (with amce controlled by the parametgf)),
andP(-) is the same retraction function used @®IGA-WoLF.

RV, () is a implementation of the algorithm given in Banerjee andgP@006). Some initial
experiments showed that the settings of the algorithm us#tkipaper performed very poorly, and
so we used some hand-picked parameter settings that weeeag@ressive and seemed to perform
better. These are given in Table VIII.

3.3.6. Q Learning

Our implementation o€ | ear ni ng is very basic.; see Table IX. Since in a repeated game there
is only one ‘state’Q-learning essentially keeps track @j-values for each of its actions. We
use ane-greedy exploration policy (perform a random action witblgability €) with a decaying:.

400 exploration steps are expected for thischedule, and drops below a probability 0.05 at
approximately iteratioi2800. It is negligible at the end of the settling-in period (lelsart3£—9).

The learning rate«() decays ta).01 at the end of the settling in period. The discount factor of
v = 0.9 was set rather arbitrarily. There is no need to trade offenudrreward with future reward:

all actions take the algorithm back to the same state.

3.3.7. M ni max- QandM ni max- Q| DR
For m ni max- Q we solved a linear program to find the mixed maxmin strategget on the
(Q-values. This program was

Maximize U,

subject to Z]eAl ul(al,az) > Uy Vk € Ay
201 =1
ol >0 Vi€ A

(see, for example, Shoham and Leyton-Brown (2008)). We edssidered a variant ahini-
max-Q in which iterative domination removal (IDR) is used as a poepssing step. To our
knowledge, we were the first to propose this algorithm in aip$2005); we dubbed inini-
max-Q-IDR . In each step of the iterative IDR algorithm mixed-stratelgynination is checked
using a linear program (see, for example, Shoham and Ldstown (2008)). Both LPs are solved
with CPLEX 10.1.1. For botminimax-Q andminimax-Q-IDR ,the learning rate, exploration
rate, and future discount factor were set aQ#earning ; see Table IX.

journal.tex; 15/11/2008; 22:19; p.13

14

3.3.8. Random
The final algorithmy andom is an simple baseline that uniformly mixes over the avéglalstions.

Specifically, it submits a mixed strategywhereVa € A, o(a) = ﬁ

4. Experimental Setup and Statistical Methods

As described in the preamble, this paper makes two mainibations. The first is the MALT
platform, which we have now explained. The second is a detraiim of what MALT can do.
Specifically, we conducted an large-scale experiment wighgoal of investigating the empirical
relationship between average reward and other perforntartecs (e.g., equilibrium convergence;
regret) that have been considered in the literature. Indétion we describe the setup of this
experiment and some of the statistical tools we used in calysis.

We studied all eleven of the algorithms describe@3rB8, and set their parameters as described
there. We note in passing that this choice was importantime flgorithms are very sensitive to
parameter settings. Nevertheless, we considered theasgasameter optimization to be beyond
the scope of our study, and took parameter settings fromtérature as given.

We selected thirteen game generators from the GAMUT ganiectioin; these are summa-
rized in Table X. Details of each generator are available AMBT'’s online documentation; see
gamut.stanford.edu .We normalized the rewards of all game instances td0thie interval in
order to make the results more interpretable and compardl@generated a total 600 different
game instances. Specifically, we generated games of fiereliff sizes2 x 2, 4 x4, 6 x 6, 8 x 8 and
10 x 10. For each size, we generated 100 game instances, drawiiogrlyi from the first twelve
generators. We drew an additional 100 instances from thalistsibution, D13, which spans all
strategically distinc® x 2 games (Rapoport et al., 1976). We call the distribution dediby mixing
over all 13 GAMUT generators thgrand distribution

With eleven algorithms an600 game instances there welré x 11 x 600 = 72 600 matches.
We ran each match ontéor 100 000 iterations, recording the la$b 000 iterations. This generated
143 G B of data and took about a third of a CPU-year to run. In ordenterpret the results we
relied upon a variety of different empirical methods. Wesflyi describe some of them below.

4.1. BOOTSTRAPPING

If we conduct an experiment where two algorithms are run onraber of PSMs then a natural
way to compare their performance is to compare the samplensnelasome measure of their
performance (average reward, for example). However, if aeetihe conclusion that ‘the sample

5 We note that each match could have been run multiple timésadf just once, and indeed that doing so would
have been essential if we wanted to understand the behdwiandomized algorithms in individual matches. However,
holding CPU time constant, conducting more runs per matalidvioave meant either experimenting with fewer games
or with fewer algorithms. Indeed, we show in Appendix A that stratifying (holding one experimental variable fixed
while varying another; as opposed to varying both) on gamsiairces reduces variance for sample estimates of summary
statistics like mean and median. Thus, we ran each matchamlg, and therefore use the terms ‘run’ and ‘PSM’
interchangeably in what follows.

journal.tex; 15/11/2008; 22:19; p.14

15

Table X. The number and name of each game generator.

D1 A Game With Normal Covariant Random Payoffs
D2 Bertrand Oligopoly

D3 Cournot Duopoly

D4 Dispersion Game

D5 Grab the Dollar

D6 Guess Two Thirds of the Average

D7 Majority Voting

D8 Minimum Effort Game

D9 Random Symmetric Action Graph Game
D10 Travelers Dilemma

D11 Two Player Arms Race Game

D12 War of Attrition

D13 Two By Two Games

mean of algorithmA is higher than the sample mean of algoritlith how robust is this claim? If
we ran this experiment again are we confident that it woulghsrighe same conclusion?

A good way to check the results of an experiment is to run ittiplel times. For example,
imagine that we ran an experimehi0 times and found th&5 of the experiments had a sample
mean for algorithmA of between[a, @], and that95 of the experiments had a sample mean for
algorithm B of betweenb, b]. If a > b (the lower bound ofd’s interval was greater than the upper
bound ofB’s) then we can be confident thatis significantly better in terms of mean. (Specifically,
these intervals are tH#% percent confidence intervals of the sample mean distributiad the
fact that they do not overlap serves as sufficient evidenaktkiere is a significant relationship
between the means.)

While such repeated experimentation can be used to enatrestults are significant, it is also
expensive. To verify the summary statistics from one expenit, we had to run many more. This is
not always possible (e.g., our experiments t@alays on a large computer cluster, so to rerun them
a hundred more times would have taken the better part of tasyeBootstrapping is a technique
that allows us to use the data fromiagleexperiment to construct confidence intervals of summary
statistics. Given an experiment with data points, we can ‘virtually’ rerun the the experiment by
subsampling from the empirical distribution defined by thespoints. For example, if we have a
sample with1 00 data points, we could subsampledata points (with replacement) from thels®
and look at the statistic for this subsample. We can cheaggat this procedure as many times
as we like, creating a distribution for each estimated stiatiFrom these bootstrapped estimator
distributions we can form bootstrapped confidence interaad check for overlap.

There are two parameters that control the bootstrappetbdibn: we form the distribution by
subsampling points from the originain, and we repeat this procekgimes. For our analysis we
chosel to be|m/2] andk to be aroun@® 500. These particular parameters were chosen to ensure

journal.tex; 15/11/2008; 22:19; p.15

16

that there would be diversity among the subsamples (thiemsgothe moderate size 6fand that
the empirical distributions would be relatively smoothgtexplains the largé).

4.2. KOLMOGOROWSMIRNOV TEST

While bootstrapping is useful for seeing if summary statssare significantly different, we will
also want to check if two distributions are themselves $iggmtly different. A beta distribution
and a Gaussian distribution might coincidentally have #Hmesmean, but are nevertheless different
distributions. We use the KolmogorovSmirnov (KS) test fetedmining whether two distributions
are different. This test is nonparametric, meaning thab@sdnot assume that the underlying data
is drawn from a known (e.g., normal) probability distrilmri The KS test works by examining
the maximum vertical distance between two CDFs. Two distidims are considered significantly
different if this maximum vertical distance exceeds a gisgmificance levely. In our analysis we
use the standard = 0.05 unless otherwise noted.

4.3. SPEARMAN’'S RANK CORRELATION TEST

Spearman’s rank correlation test is a way to establish venetimot there is a significant monotonic
relationship between two paired variables. For examplemnigit want to show that there is some
significant monotonic relationship between the size of agaraction set size and an agent’s
average reward. Like the KS test, the Spearman’s rank etioBl test is non-parametric. The
relationship between the two variables can be positiven(lajues of one variable are correlated
with high values of the other variable) or negative (highueal of one variable are correlated with
low values of the other).

4.4, ASSESSINGCONVERGENCE

We are interested in studying the convergence behavior df llgorithms. One issue in doing so
based on empirical data is dealing with runs that appeardoié” to have converged because of
random fluctuations in the empirical action frequency. Auratsolution to this problem is to per-
form a statistical test to determine whether one part of tineexhibits the same action distribution
as a later part. For example, we might check whether a latpirmal action distribution was drawn
from the same distribution as an earlier sample (estahlisthiat empirical mixed strategies were
stationary) or that an empirical action distribution pmfitas drawn from a given mixed-strategy
profile (establishing convergence to a Nash equilibrium).

Two obvious candidates for such a test are the Fisher exsic(RET) and Pearson'g?-test,
which can be used for checking whether two multinomial samplre drawn from a distribution.
However, each test was unfortunately inappropriate forpsablem. They? test does not handle
situations where some of the actions are rare or not pre$éet.FET is very computationally
expensive, and the implementation of it that we used (R @gveent Core Team, 2006) failed on
some of the larger and more balanced action vectors (typicathe 10 x 10 case).

Instead, we used the incomplete set of FET results to c#ditaahreshold based on vector
distance, where we considered any two vectors that wererdloan the threshol@ito be the same.
We calibratedd using a receiver operating characteristic (ROC) curve. ¥éthe incomplete

journal.tex; 15/11/2008; 22:19; p.16

17

FET results as ground truth, and plotted the change in trsdiy® rate and false positive rate
as we varied). We picked the threshold that led to an equal number of fabsgtipes and false
negatives. Based on this ROC analysis, we pickéaf0.02.

4.5. PROBABILISTIC DOMINATION

The concept of probabilistic domination can be used to atiyjatone distribution should be pre-
ferred to another in terms of a given performance metriccEipally, a solution quality distribution
(SQD) A dominates another SQB if Vq € [0, 1], theg-quantile ofA is higher than the-quantile
of B. If there are two algorithms4 and B, that are trying to maximize reward, antdls SQD
probabilistically dominates3 then regardless of the reward valughere are more runs of than
of B that attain a reward of at least Probabilistic domination is stronger than a claim aboaet th
mean of the distributions: domination implies higher means

Checking for probabilistic domination between two sampuias be performed visually. If one
of the CDF curves is below the other curve everywhere, thenfdbmer dominates the latter.
Intuitively, this is because the better SQD has less prdibabiass on low solution qualities, and
more mass on higher solution qualities; better distrimsgiare right-shifted.

5. Empirical Evaluation of MAL Algorithms: Average Reward

As we discussed at the beginning of this paper, we considerage reward to be the most funda-
mental metric for assessing the performance of a MAL algoritWe take the average with respect
to the sampled actions rather than the submitted mixedegtralFormally, where the iterationso

T refer to thel0 000 iterations we recorded, we define the average reward anithlgoi obtains

in a single match ag'”) = Ly-7 @,

In this section, we investigate the average reward metdeiail. We begin ir35.1 by comparing
algorithms according to their “raw” average reward, avergqalso across both generators and
opponents. Next, we investigate each of these dimensiqraraely. In55.2 we explore algo-
rithm performance across different generators, and alamie the effect of game size. §5.3
we explore algorithm performance across different opptseand also analyze the equilibria of
the “algorithm game”, in which available actions are diffietr choices of MAL algorithmsg5.4
investigates probabilistic domination relationshipsamsn different algorithms arib.5 considers
each algorithm’s performance in self play. Finalf.6 explores similarities between different
algorithms.

5.1. “Raw” AVERAGE REWARD

First we consider each algorithm’s “raw” performance, aged across both games and opponents.

OBSERVATION 1. Q Lear ni ng and RV, attained the highest rewards on the grand distri-
bution.

journal.tex; 15/11/2008; 22:19; p.17

18

Mean Reward
1.2

&
11 09F d :
1
i 08| :
1
oor 07t :
081 061 :
E 1
g 0 S !
é IUS :
06 04f :
1
05 03l :
1
041 0.2 :
03F 01f J :
02 oy ‘ 0 N S 3 ‘ ‘ ‘
q s gsa det giga awe fict meta mini min rand 0.69 0.695 0.7 0.705 0.71 0.715 0.72 0.725 0.73 0.735
Algorithm Reward
Figure 2: A plot that shows the mean reward (bar) for Figure 3: The distribution of mean reward estimates
each algorithm and one standard deviation in either for Q-learning andRV,), constructed by boot-
direction (the size of the lens). strapping. Thé&5% confidence intervals are indicated

by the dark circles and dashed-lines.

Q-learning had the highest mean reward(a714, althoughRV, ;) was close with an av-
erage of0.710 (see Figure 2). We noticed considerable variation with riward data, and all
of the other algorithms’ sample means still were within otadard deviation of-learning
includingrandom (which obtained a sample mean®30).

These rankings were not all significant. The slight diffeeim means betwedR-learning
andRV,;) does not in fact indicate th@-learning was a better algorithm (in terms of means)
on the grand distribution of games and opponents. These ligaoitams attained significantly
higher reward than any other algorithm, however. We detethihis by examining the5% per-
centile intervals on bootstrapped mean estimator digtdbs (se€4.1) and seeing which intervals
overlapped (see Figure 3). We obtained the distributionsuldsampling 500 times, where each
subsample consisted 6600 runs (half as many as tH& 200 runs that each algorithm participated
in).

The distribution of reward was not symmetric, and specifidainded to exhibit negative skew-
ness, indicating that the proportion of runs that attaingtl heward was larger than the proportion
of runs that attained low rewardahdom was the only exceptionQ-learning s distribution
had the highest skewness().720.

5.2. FER-GENERATORAVERAGE REWARD AND THE EFFECT OFGAME SIZE

Now we go beyond performance on the grand distribution.t ks consider each algorithm’s
performance across individual game distributions. As carsden in Figure 4, every algorithm’s
performance varies considerably across the different ggmerators. However, this figure makes it
difficult to determine the best algorithm for generatorg #ibalgorithms found challenging. Thus,
we also present a normalized version of these per-genet@rd results, obtained by dividing
the results for each algorithm on a particular generatorhlbymaximum reward attained by any

journal.tex; 15/11/2008; 22:19; p.18

19

Agent Mean Average Reward Agent Mean Average Reward, Normalized

fictp

0.9
detp detr 1 0.9
0.8
meta metaf q
awe ke awer 1 0.8
B af 06 B A
5‘ s 05 5‘ rvsr 07
1=} 1=}
o gsar 0.4 o gsar
0.6
gigar 0.3 gigar

miniF

minp

rand

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
Generator Generator
Figure 4: A heatmap showing the reward for the pro- Figure 5: A heatmap showing the mean reward for the
tagonist algorithm playing PSMs from a particular protagonist algorithm, playing against the opposing
generator, averaged over both iterations and PSMs. algorithm. These cells have been normalized. Each

column has been divided by the maximum average
reward attained by any algorithm on that particular
generator.

algorithm (Figure 5). We can see thatinimax-Q , minimax-Q-IDR andrandom were all
worse than the other algorithms across a broad range ofgengrandQ-learning andRV,;
tended to do well.

OBSERVATION 2. Q Lear ni ng was the best or one of the best algorithms to use for most
generators.

We define the set of best algorithms for a generator as thd akjarithms whose bootstrapped
mean estimatod5% percentile intervals overlapped with the algorithm witk test sample mean.
Q-Learning was the unique best algorithm or was one of the best algositton10 of our
13 generators (see Table Xl). It was the only algorithm that thasunique best choice for any
generator, taking this role for generators D1, D4, and D%thHeumore,Q-learning also be-
longed to the set of best algorithms for generators D2, D3,0, D11, D12 and D13. While
Q-learning most frequently was a member of a generator’s best algosipfictitious
play anddetermined were also frequently in these sefsand7 generators respectively).

The gradient algorithms were especially strong on D7; idd#ds was the only generator for
which all three gradient algorithms were in the best alaniset. D5, D6, and D8 were interesting
distributions forAWESOMandmeta. In D5, neitherAWESOMiEor meta managed to be one of

the best algorithms despite the fact that bfittitious play anddetermined —two of
the algorithms that they manage—were. In BBYESOMBinedfictitious play anddet-
ermined but meta did not, and in D8 the reverse happenatkta, fictitious play and

determined were the three best algorithms. These three generatostrédita situations where
portfolio algorithms failed to capitalize on one of their maged algorithms. It would be interesting
to run further experiments to determine why this occurrediiit could be remedied.

journal.tex; 15/11/2008; 22:19; p.19

20

Table XI. The set of best algorithms for each generator.
Gen Set of Best Algorithms

Correlation Between Size and Reward

D1 Q-learning

D2 Q-learning ,RV,

D3 AWESOME determined , fictitious
play ,GSAmeta, Q-learning , RV,

D4 Q-learning

D5 determined |, fictitious play

D6 AWESOMHetermined |, fictitious play

D7 GSAQ-learning , RV,

Algorithm

D8 determined |, fictitious play , meta

Dg Q-learning D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D10 fictitious play , Q-learning Generator

D11 determined , fictitious play , meta, Figure 6: A heatmap summarizing the correlations be-
Q-learning tween size and reward for different agents on different

D12 determined , Q-learning generators. A white cell indicates positive correlation,

D13 AWESOMHetermined , GSA Q-learning a black cell indicates negative correlation, and a gray
RV, () cell with an ‘x’ indicated an insignificant result.

For all but one of our generators (D13:x 2 games) we generated games of varying sizes.
Now we consider how the size of a game’s action set affecteinpeance. Our hypothesis was
that larger action spaces raise the possibility of more doated game dynamics, and that such
complex dynamics can slow learning. Thus, we expected t@semge reward decreasing as the
size of the game grew.

OBSERVATION 3. There was no general relationship between game size anddefoa some
generators algorithms achieved higher rewards on largemga, and for other generators algo-
rithms achieved higher rewards on smaller games.

Our experiment showed that this intuition did not alwaysdhdlirst, for many algorithms on
many generators we could not reject the null hypothesiseStearman rank correlation test—that
there was no significant correlation between size and pegoce—at a significance level af=
0.05. For instance, in D7 onlSAandGIGA-WoLFhad significant trends (both exhibited negative
correlation; reward was lower in larger games). Secondy &vgen a significant correlation did
exist, it was not always negative. We did observe that fortistributions, significant correlations
were either entirely negative or entirely positive. For ¥, D8, D9, and D11 the correlation
was negative; for D3, D4, D5, D10, and D12 it was positive. Dil &6 exhibited both kinds of
correlation for different algorithms.

Overall, the relationship between game size and rewardeappedepend strongly on the choice
of generator. It could be the case that when the action spacesase in size, important game
features tied with high reward become more common, or itctdnd that larger actions spaces

journal.tex; 15/11/2008; 22:19; p.20

Protagonist Mean Average Reward Algorithm Game

fict 1 fict

meta 1 meta

awe 1 awe

o

Protagonist
2
1
o
< S
Protagonist
2
1

gsa 0.4 gsa 0.4
gigaf] 03 giga 0.3
mini 0.2 mini 0.2
min min
0.1 0.1
rand rand
fict det meta awe g rvs gsa giga mini min rand 0 fict det meta awe g rvs gsa giga mini min rand 0
Opponent Opponent
Figure 7: A heatmap showing the mean reward for Figure 8: Interpreting the mean reward results as
each protagonist algorithm (ordinate) playing against a one-shot game. The cells that are cross-hatched
each opposing algorithm (abscissa). are dominated and thex’s indicate pure-strategy

Nash equilibria. Because theetermined vs.
Q-learning equilibrium is asymmetric, it appears
twice. To indicate this, we make one of the corre-
sponding stars hollow.

make it easier for MAL algorithms to miscoordinate, whicldesirable for some games. Indeed,
D4—Dispersion Games-are show positive correlation between the number of astéom reward,
and this is a game where agents need to miscoordinate to ¢lo wel

As Figure 6 shows, D2 and D12 were the only two distributionsmhich we could reject the
null hypothesis for all algorithms, and they supported @ieaconclusions. On instances from D2,
correlation was completely and strongly negative: thedatbe game, the worse every algorithm
performed. The least correlated algorithm wasdom with a Spearman’s coefficient of corre-
lation p = —0.329. Correlation was entirely positive for D11, but some of tleflicients were
smaller.Fictitious play was the least sensitive to size € 0.07), but it was anomalous.
The algorithm with the next smallest coefficient Wak5A-WoLF, with p = 0.267.

5.3. FER-OPPONENTAVERAGE REWARD AND THE ALGORITHM GAME

We now consider each algorithm’s average reward on a pesray basis.
OBSERVATION 4. Algorithm performance depended substantially on whiclooppt was played.

Figure 7 shows the mean reward achieved by each algorithinsagavery possible opponent.
One striking feature of this figure is thatinimax-Q , minimax-Q-IDR andrandom were all
relatively weak against a broad range of opponents. We diserge thafictitious play
anddetermined tended to get lower reward in self play and against each dttzar against
other opponentdMleta —an algorithm that manages a profile of algorithms includingt-
ious play anddetermined —also appear to have inherited these performances isshés, w
AWESOMEthe other portfolio algorithm—substantially avoidedrhe

journal.tex; 15/11/2008; 22:19; p.21

22

Table XII. The different algorithms and their best-respoasts Table XIIl. The proportion of subsampled algo-
rithm games in which each algorithm was strictly

Opponent Best-Response Set X .
dominated (SD) or weakly dominated (WD).

AWESOME GIGA-WolLESA RV (4 Algorithm sSD WD
Determined AWESOME GIGA-WoLF, GSA

Q-learning RV, ;) AWESQME 10.8% 11.7%
Fictitious GSAQ-learning RV, Determined 0.0% 0.0%
play Fictitious play 35.9% 36.4%
GIGA-WoLF determined , Q-learning RV () GIGA-WolLF 54.1% 55.1%
GSA determined , Q-learning RV () GSA 0.4% 0.4%
Meta determined , GIGA-WOLF, GSA Meta 28.8% 28.2%

RV, (1) Minimax-Q 100.0% 100.0%
Minimax-Q Q-learning Minimax-Q-IDR 100.0% 100.0%
Minimax-Q-IDR Q-learning Q-Learning 0.0% 0.0%
Q-Learning determined ,Q-learning RV ;) Random 100.0% 100.0%
Random determined , Q-learning RV ;) RV 4 0.0% 0.0%

RV,) determined

If we know what algorithm the opponent is using, which altori should we use? We con-
structed “best-response sets” for each possible opporsémg bootstrapped percentile intervals.
We call the algorithm with the highest mean against a pdéicypponent a best response, but also
assign any algorithm with a overlapping bootstrapp&d percentile interval to the set—we cannot
claim that these algorithms do significantly worse than tbheagent best algorithm. These best
response sets are summarized in Table ®Hearning andRV, ;) were most frequently best
responses, whiléctitious play , meta, minimax-Q , minimax-Q andrandom were
never best responses.

One interesting way to interpret these best response sestiitconsider the one-shot “algorithm
game”: a single-shot normal-form game in which the actiamsespond to our 11 algorithms and
the payoff for using algorithnd against algorithnB is the mean reward that algorithsattained
againstB. There were three algorithms that were strictly dominatetthis grand distribution algo-
rithm gameminimax-Q , minimax-Q-IDR andrandom . Strict domination of algorithmi’ by
A means that regardless of what algorithm the opponent seleds always a better choice than
A’. As with best responses, we required domination to be sigmifi we wanted to be confident
that if the experiment were repeated, we would get a simglsult. We used bootstrapping to check
this, subsampling 600 PSMs10 000 times and from these formint) 000 ‘subsampled’ games.
We checked for strict domination in each game, and congidanealgorithm dominated if it was
dominated in at least5% of the subsampled games. The proportion of subsampleditalgor
games in which each algorithm was dominated is shown in Téblewe also distinguish strict
domination from weak domination.

OBSERVATION 5. Det er mi ned andQ@- | ear ni ng were the only algorithms to participate in
pure-strategy Nash equilibria of the algorithm game.

journal.tex; 15/11/2008; 22:19; p.22

23

Algorithm Game for D4 . Reward Probabilistic Dominance, Block on Opponent
fict ok ok K K%K Mo
0.9
det Yo % % % % % 120
meta w 08
awel * w w 07 -% 100
o
B Ak Kk Kk * % % K 06 2
5 = 80 — -

L Il Dominates
§‘ vsp ok ok * 0.5 g [Neither
o gsaf k Kk * K 0.4 L 60 | |E_JDominated

gigar % %k * 0.3 %
o
mini % % * 0.2 o 40
minf % %
0.1 20
rand
fict det meta awe g rvs gsa giga mini min rand 0
Opponent q awe det gsagiga rvs fict metamini minrand
Figure 9: Interpreting the mean reward results for D4 Figure 10: For each algorithm, the number of oppo-
(Dispersion Gamgas a one-shot game. No cells were nents and candidate algorithms the algorithm domi-

dominated; thex's indicate pure-strategy Nash equi- nated, was dominated by, or neither.
libria. Asymmetric equilibria appear twice; to indicate
this we make one of the corresponding stars hollow.

Only two pure-strategy Nash equilibria ever occurred irsifessampled games for the grand dis-
tribution: Q-learning in self play, andQ-learning againstdetermined .TheQ-learn-
ing —Q-learning equilibrium is particularly convincing because it is symreeand so does
not require that the players coordinate to playing differgrategies, and furthermore because it
occurred ir0.2% of the subsampled games. The other equilibrium occurrdteingmaining.8%
of games. (Because both equilibria involv@dlearning , we did not observe them together in
the same subsampled games.)

We looked more deeply into the algorithm games by restgctttention to individual gen-
erators. The generators varied substantially in their-strategy Nash equilibria. Overaet-
ermined in self play constituted the most common symmetric puratstyy Nash equilibrium.

It was a significant Nash equilibrium for seven of the germgat(That isdetermined in self
play was a pure-strategy Nash equilibrium in more tha# of the subsampled games for these
each of these generator®)Learning in self play was the second most common symmetric
pure-strategy Nash equilibrium, arising in the algorithamgs for four generators.

Generators also differed substantially in theirmberof pure-strategy Nash equilibria. For
instance D1 A Game with Normal Covariant Payoffead no significant pure-strategy Nash equi-
librium. D4 (Dispersion Gamg at the other extreme, hai® pure-strategy Nash equilibria (see
Figure 9). Part of the reason for the large number of eqialilor D4 was that a majority of runs for
many of the algorithms yielded a rewardlofe.g.,84.6% of AWESOMruns yielded a reward of
1). This meant that in many of the subsampled games, the ma@rpayoffs were exactly and
so there were many weak Nash equilibria. For example, Bath,) andQ-learning attained

a reward ofl againstfictitious play , andfictitious play itself attained a reward
of 1 againstRV, ;) andfictitious play . Therefore bottRV,,fictitious play and
Q-learning ictitious play were pure Nash equilibria.

journal.tex; 15/11/2008; 22:19; p.23

24
5.4. PROBABILISTIC DOMINATION OF ONE ALGORITHM BY ANOTHER

Now we consider the following question: given a fixed oppdnima given algorithm probabilisti-
cally dominated by any alternative algorithm in terms ofrage reward?

OBSERVATION 6. @ Lear ni ng was the only algorithm that was never probabilistically dom
nated by any other algorithm when playing any opponent.

Q-Learning had the best performance in terms of probabilistic dommaetermined
andRV, ;) were the next-least-dominated algorithndgtermined was only probabilistically
dominated byAWESOM&gainst dictitious play opponent, which was in turn dominated
by Q-learning ; RV, ;) was dominated byQ-learning when playing against theini-
max-Q variants, and also bgetermined when playing againsRV, ;. On the whole, dom-
ination by another algorithm in self play was a common tremdy AWESOMEetermined
andQ-learning avoided being dominated by another algorithm when playlegniselves. It is
interesting thatletermined was not dominated: we see this as a property of the specifie gam
distributions that we studied.

Overall, while we observed some strong domination relatigrs, these were the exceptions
while ambiguity was the rule. For most algorithm pairs agamost opponents, no probabilistic
domination relationship existed (see Figure 10). Furtloeenthere was no opponent for which one
algorithm probabilistically dominated all others.

5.5. SLF PLAY

We have already seen evidence that self-play was challgrigmmany algorithms (e.g., see the
tendency towards ‘cool’ cells on the main diagonal of FigryeA closer analysis shows that for
most algorithms there was indeed a significant relationsbtveen self play and low reward.

OBSERVATION 7. Most algorithms attained lower average reward in self play.

The distribution of reward in self-play runs fAWESOMHBetermined | fictitious play
andmeta were probabilistically dominated by the distribution ofvead in non-self-play runs.
While the same was not true for the gradient algorithms (thayieved fewer low-reward runs
in self play), their self-play means were neverthelessifigmtly lower than their non-self-play
means. We verified this by looking at t6% bootstrapped percentile intervals. There was no
significant relationship fominimax-Q and minimax-Q-IDR , and this self-play trend was
reversed foiQ-learning : its self-play runs probabilistically dominated its naglfsplay runs.
FurthermoreQ-learning achieved a higher mean reward in self play than any otheritdigo
(see Figure 11).

Interestingly, AWESOMW&as one of the algorithms with poorer self-play runs, desjé ma-
chinery for converging to a special equilibrium in self pl&ye wonder whether this occurred
becaus@@WESOMdid not converge due to an overly-conservative threshaldiétecting whether
its opponent was playing part of an equilibrium, or beca¥¢ESOME#d converge to the spe-
cial equilibrium but that equilibrium did not offer high remd. (Note that our implementation

journal.tex; 15/11/2008; 22:19; p.24

25

Self-Play Mean Reward

1ir Average Reward KS Tests
W fict 72 [0
0.9 120
08
100
0.7
'_g g 80
é 06 .g’ Vs
osl- < gsa 60
04F giga
40
03l mini
min 20
0.2
o1 1‘4 r\‘/s g;a gi‘ga av‘ve d‘el m;la ﬁ‘cl m:ni m‘m ra‘nd fict det meta awe g rvs gsa giga mini min rand 0
Algorithm Algorithm
Figure 11: A plot that shows the mean reward (bar) for Figure 12: A heatmap that summarizes the number of
each algorithm in self play and one standard deviation opponent/generator pairs two algorithms are similar
in either direction (the size of the lens). on in terms of reward distribution. This relationship

is symmetric, so only the lower half of the plot is pre-
sented. The hotter the cell, the more situations the two
algorithms are similar in.

of AWESOMEoordinates to the first Nash equilibrium found by GAMBITraplementation of
Lemke-Howson.) At the risk of keeping the reader in suspewsedefer the answer 6.3, in
which we examine equilibrium convergence results.

5.6. ALGORITHM SIMILARITY

Finally, we investigate similarities between algorithnagilities to achieve high reward. We can
assign some of our algorithms to one of three major blockst AWESOM&nhdmeta are simi-

lar because they both manage portfolios incorpordfictifious play anddetermined ;
likewise, we expect them to be similar to thetitious play anddetermined algorithms
themselves. SeconGIGA-WoLF, GSAand RV(,(t) are similar because they all follow a reward
gradient. Finallyminimax-Q andminimax-Q-IDR are similar because the latter is the same
as the former except for the addition of an IDR preprocessieg. We call these the portfolio,
gradient, and minimax blocks. We also might suspect @x¢arning , an algorithm that does
not explicitly model the opponent, might be similar to thadjent algorithms. Nevertheless, we
do not assig-learning to a block; likewise, we leaveandom unassigned.

We tested all pairs of algorithms for similarity by comparitmneir average reward distributions
for all generator—opponent pairs. Thus, we tested eachitdgopair 13 x 10 = 130 times—
every algorithm is of course similar to itself and so we did clweck these cases. Failing to reject
the null hypothesis of the KS test (that both samples wereifaom the same population) is
some evidence for the samples being similar. This roughraady approach does not establish
significant similarity and is merely suggestive of simitarifailing to reject a null hypothesis is not

journal.tex; 15/11/2008; 22:19; p.25

26

the same as having shown that the null hypothesis is true eMenvwith this caveat in mind, we
observed some interesting trends.

OBSERVATION 8. Similar algorithms tended to exhibit similar performance.

All three predicted blocks emerge, as can be seen in Figureids?, meta , AWESOMEct-
itious play anddetermined were all similar to each other on a large number of opponent—
generator pairs. Botimeta and AWESOMtxere similar in more cases wetermined than
to fictitious play . For instance AWESOM#as similar todetermined in 101 out of
130 cases while similar tdictitious play in only 81 casesMeta and AWESOM#&ere
also quite similar to each othegq cases)Q-learning was similar to the algorithms in this
block, especiallydetermined andAWESOM#&hich we had not expecteAWESOMEas more
similar to Q-learning than to any other algorithm: they were similarlié3 cases, while even
determined andAWESOMEere only similar inl01 cases.

The block of algorithms consisting &V, ;), GIGA-WoLFandGSAwere all similar in a large
number of cases, with a particularly tight relationshipdevit betweerGIGA-WoLF and GSA
(similar in111 cases)Q-Learning also bore similarities to the gradient-algorithm blocke$a
algorithms also showed somewhat weaker similaritge¢termined andAWESOME

The connection betweaninimax-Q andminimax-Q-IDR was particularly strong (similar
in 118 cases). These were also the algorithms most similaandom —indeed, similar almost
twice as often as the next-most-similar algorithAWESOME was similar torandom in 11
cases, as comparedrinimax-Q ’'s 21 cases).

6. Empirical Evaluation of MAL Algorithms: Other Metrics

Sofar, all of our experimental discussion has concerneev@rage reward metric. However, a wide
variety of other metrics have also been proposed and studlidee literature. Here we consider
many of the most prominent. This allows us to understand gpermental results in different
ways, and furthermore sheds light on the extent to which ea&tnic correlates with high reward
in practice. In§6.1 we investigate regret, specifically considering megneite probabilistic dom-
ination of one algorithm by another, and the relationshipeteard. In§6.2 we assess algorithms’
tendencies to converge to stationary stratedj6s3 considers convergence to Nash equilibrium
of the stage game, and relates this metric to rewardbl4 we consider algorithms’ abilities to
achieve at least their maxmin payoffs, and consider botfopponent maxmin performance and
the relationship to reward. Finally, 6.5, we measure algorithms’ tendency to converge to payoff
profiles consistent with Nash equilibria of the infinitegpeated stage game.

6.1. REGRET

Regret is the difference between the reward that an algorithuld have received by playing the
best static pure strategy and the reward that it did receive:

T

2 2y (t)) (@
Regret(d;,d_;) = gézz}f; [r(a, a_;)—E {r(ai ,a_i)” . (5)

journal.tex; 15/11/2008; 22:19; p.26

27

Mean Regret
05

Sign of Regret
oal ——

120001

10000

8000

Reward

Runs

6000

LossarniL I]

2000

-0.2

.
q s gsa giga® awe det meta fct mini min rand q awe det fict meta mini

! min giga s gsa rand
Algorithm Algorithms

Figure 14: The number of runs in which each algo-

Figure 13: A plot that shows the mean regret (bar) for rithm achieved negative, zero, or positive regret.
each algorithm and one standard deviation in either

direction (the size of the lens). Algorithms with an

asymptotic no-regret guarantee are indicatéd *

The best static pure strategy is determined after the rusedan the assumption that the oppo-
nent’s actions choices in each round would not change. Wehesexpected reward formulation
of regret—as opposed to one that uses the actual actionshéhatlgorithm played—following
Bowling (2004a). Rather than looking at the total sum of eegrer all10 000 recorded iterations,
we will discuss the mean regret over these iterations. Silegeer payoffs are restricted to thie 1]
interval, mean regret can give a better sense of the magnatidegret with respect to possible
reward.

Regret has been suggested as a measure of how exploitaboéthen is. If an agent accrues
significant regret one possible explanation is that it delwhlong thing. However, in some games
(e.g., the Traveler’s dilemma) ignoring regret can leadr&ater long-term reward.

Some algorithms, includinIGA-WoLF andRV,;), areno-regretlearners: they come with
the guarantee that they will always approach zero regreh@sumber of iterations approaches
infinity. However, to our knowledge it has not been shown expentally how the regret achieved
by these algorithms compares to the regret achieved by alfperithms that lack such a guarantee;
nor has it been demonstrated whether these algorithmsvadhétter than zero regret in practice.

OBSERVATION 9. Q Lear ni ng best minimized regred GA- WLF most frequently achieved
negative-regret runs.

In our experiment, all algorithms achieved positive meamet(Figure 13), though they differed
substantially in the fraction of their matches in which tlaepieved positive regret (Figure 14). All
the means were significantly different, based on overlagherd5% percentile intervals (there
was none). Of thes&-learning had the lowest regret, &008. The gradient algorithms—
GIGA-WoLF, GSAand RV, ;)—had the next lowest mean regret af@+learning . Among

journal.tex; 15/11/2008; 22:19; p.27

Distribution of Regret for Q and GIGA-WoLF

Mean Average Regret

meta

a

Protagonist
2
&

gsa

Q
Q
3 o
o
-

2
El

2
5

S
=1
o

= GIGA-WoLF|
---Q
‘

04 06 08 1 12 fict det meta awe q rvs gsa giga mini min rand
Expected Utility Opponent

L
-0.2 0 0.2

Figure 15: The distribution of regret f@-learn- Figure 16: Mean average regret, blocked by opponent.
ing andGIGA-WoLF.

the gradient algorithmsi3SAachieved the lowest mean regret, followed RY,) and then by
GIGA-WoLF. These empirical results are concordant vitGA-WoLF andRV,;)’s theoretical
no-regret guarantees—not only are these algorithms gies@irzero regret in the limit, but they
also achieved low regret in practice. At the same time, iteresting that the algorithm with the
best resultsQ-learning , comes with no such guarantee.

Considering only mean regret masks an interesting difterdretweerQ-learning and the
gradient algorithms: they achieve low mean regret in dffieérways (see Figures 14 and 15).
Q-Learning achieved low mean regret by attaining zero regret in mg&6¢) of its runs. It
had the fewest positive-regret run$) 4 %; the next lowest waAWESOM& 18.2%), and also had
the second-fewest negative-regret ruad %; only fictitious play had (slightly) fewer).
On the other hand, the gradient algorithms rarely achiewed megret (the algorithms with the
fewest zero runs werg\,), GSArandom andGIGA-WoLF) but often achieved negative regret
(the three algorithms with the most negative regret run®@@GA-WoLF (5.8%), RV, (3.2%)
andGSA(3.0%)).

Overall, no algorithm achieved less than very slightly tiegaregret: the very smallest was
an average regret of2 x 1075, The converse was not true for positive regretiif different
runs some algorithm attained average regret, sheaning that it took precisely the wrong action
in every round48.6% of these runs involvefictitious play or one of the algorithms that
wrap aroundfictitious play (awesome ometa) in self play, and were on generator D4
(Dispersion Gamgswhich reward miscoordination. We can conclude that irs¢heasesict-
itious play became stuck in pathological cycling between the symmetricomes (where
both agents play the same action), which yield zero rewardh 8ycling is a well-known problem
with fictitious play ; based on claims in the literature, a judicious applicatbmoise to
the algorithm would have broken the cycle and improfietitious play 's performance.

Considering regret on a per-generator ba@idearning achieved the lowest mean regret
on every generator except for D13 (strategically distihet 2 games), on whiclRV, ;) was the

journal.tex; 15/11/2008; 22:19; p.28

29

Regret Domination Regret Domination, Blocked by Generator
11
10 12
9
10
8
7 8
6
5 6
gsa
4
4
3
. 2 2
1
fict det meta awe g rvs gsa giga mini min rand 0 fict det meta awe g rvs gsa giga mini min rand 0
Figure 17: The number of opponents for which the al- Figure 18: The number of generators for which the
gorithm on the ordinate probabilistically strictly dom- algorithm on the ordinate probabilistically strictly
inates the algorithm on the abscissa. For example, dominates the algorithm on the abscissa.

Q-learning probabilistically dominatefctit-
ious play on PSMs involving ten out of eleven
possible opponents.

best.Q-learning was also the best algorithm to use against almost every epmpomhere
were only two exceptionsRV, ;) was better againg-learning and AWESOM#twas better
against itself. Another interesting pairing was wiiglearning played againstictitious

play : Q-learning attained zero regret in every single game. This indicatasQHearning
(uniguely among our algorithms) converged to a pure-giyalbest response in every game against
fictitious play

6.1.1. Probabilistic Domination of One Algorithm by Another
When we consider regret distributions on a per-opponenisbsgme strong probabilistic domi-
nance trends emerge.

OBSERVATION 10. On a per-opponent basig} | ear ni ng, G GA- WLF, GSA and RV,
were rarely probabilistically dominated in terms of regret

First, say that algorithm4 dominatesB k times if there arek opponentsC such thatA’s
regret distribution for matches against probabilistically dominates3’s regret distribution for
matches against’. Under this notion of domination, we found that the gradigigorithms were
never dominated by any other algorithm (Figure I@learning was only dominated once,
by AWESOMIB the case of aWESOM@pponent. We were not surprised by this, SiAGYE-
SOMHEhas special machinery for converging to a stage-game Naslibeigm in self play. (In a
Nash equilibrium, of course, both agents play best respotaseach other and hence both accrue

zero regret.) On the other harfititious play was frequently dominated, especially by
AWESOMHBetermined ,Q-learning and to a lesser degreeeta . Bothdetermined and
Q-learning dominatedfictitious play against10 opponents Q-learning was the

journal.tex; 15/11/2008; 22:19; p.29

30

Correlation Between Reward and Regret i Reward and Regret for GIGA-WolF

—— Non-positive Regret
09F | == Positive Regret

Algorithm

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Generator ’ Reward ’
Figure 19: The sign of correlation between reward and Figure 20: A CDF plot showingsIGA-WoLFs av-
regret for each algorithm and each game generator. A erage reward obtained on runs in which it obtained
white cell indicates positive correlation, a black cell either positive or non-positive reward. Notice that
indicates negative correlation, and a grey cell with an positive-regret runs were less likely to yield zero
‘X" indicates insignificant correlation. reward.

exception fordetermined and vice versa), andWESOMHominatedfictitious play
on 9 opponents GIGA-WoLF andmeta were the only opponents for whichWWESOM@&id not
dominatefictitious play).

We can also define probabilistic domination in another wayijrg that algorithmA domi-
natesB k times if there are: generatorsGG such thatA’s regret distribution on games frod
probabilistically dominate®3’s regret distribution on games fro. Considering domination in
this sense, we can draw similar conclusions (Figure @B).earning dominated other algo-
rithms frequently—particularlyictitious play (on9 generators)meta (8 generators), and
AWESOM@n 8 generators)—while avoiding domination by any other akhoni. Fictitious
play was dominated frequently: l-learning (9 generators)determined (6), AWESOME
(6) andmeta (4).

6.1.2. Links Between Regret and Reward
What is the connection between regret and reward? We exptetehigh reward should be corre-
lated with low regret, and vice versa. This intuition wagj&y supported by our experimental data.
Regret and reward were negatively correlated for all allgors (Spearman’s rank correlation test;
«a = 0.05): high reward was linked with low regret. On a per-generaasis, we observed that D10
(Traveler's Dilemma inducedpositive correlation between regret and reward for all algorithms
exceptdetermined (Figure 19). This makes sense: in this game, algorithms tterbghen they
do not play best responses, and indeed the unique Nashbeguiliis one of the worst outcomes
of the game.

We compared the average reward each algorithm obtained sitiveeregret runs and non-
positive-regret runs. For most of the algorithms, the iistron of average reward obtained in
non-positive-regret runs probabilistically dominatee tfistribution of average reward obtained

journal.tex; 15/11/2008; 22:19; p.30

31

in positive regret runs. There were some exceptions. Fompka Q-learning exhibited a
relatively minor crossover. The same phenomenon occuriigd ®IGA-WoLF, but in a more
pronounced fashion: runs that attained positive regrstdfien attained zero reward (Figure 20).
Even more dramatically, the positive-regret run distiiimg probabilistically dominated the non-
positive run distributions fo6SAandRY, ;). These two (gradient) algorithms exhibited behavior
different from the other nine: runs with positive regret hedter reward characteristics than runs
with zero or negative regret. This phenomenon did not seearige in the context of a single
generator or opponent. However, we did note that the pribtididomination seemed the weakest
when PSMs involvingraveler’s Dilemmavere omitted.

6.2. STRATEGIC STATIONARITY

All of the metrics we have discussed so far have been basesh@ma. \WWe now consider several that
are based on empirical frequency of action, and that askheh#iese frequencies converge. The
first—and weakest—notion of convergence that we considasores whether or not an algorithm
converges to a stationary strategy profile. This is intargsh its own right, and is also a necessary
condition for stronger forms of convergence.

We consider a run to have been stable if the joint distrilbutibactions was the same in the first
and second halves of the recorded iterations, tested angaalthe threshold criterion described
in §4.4 and usindg.-distance. Stability is a property of a run rather than alsiadgorithm’s play
in a run, so even algorithms that always play stationantegias can still participate in unstable
runs.

To check how successful our threshold criterion was at tlatestationarity, we began by
examining the results for our two algorithms that always/@tationary strategies. Our criterion
founddetermined to be stable i99.5% of self-play matches andndom to be stable i92.0%
of self-play matches. When playing each other, they weredda be stabl®4.8% of the time. The
differences between these cases are likely becaesemined tends to adopt mixed strategies
with smaller supports tharandom does, and such a mixed strategy is more likely to yield an
empirical action distribution that closely resemble it.

We foundGIGA-WoLF and GSAto be the least likely to be stable—particularly in self play
against each other, or againsieta (see Figure 21). Their striking instability wittmneta was
potentially because they trippedeta’s internal stability test and changed its behavior. Howeve
AWESOME&so has a similar internal check, but the stabilityGitGA-WoLF and GSAwere not
noticeably different between matches wKWVESOMa&nd withQ-learning (which has no such
check).RV,), the other gradient algorithm, was more stable tGdGA-WoLF and GSA This
might be becausRV, ;) had a more aggressive step length: the parameters used exgeriment
for GIGA-WoLFandGSAwere taken from (Bowling, 2004a), who indicated that themameters
were intended to produce smooth trajectories rather treircmvergence.

Meta ,determined ,fictitious play andAWESOMEere, for the most part, quite good
at achieving stationarityMeta andfictitious play were particularly strong against each
other, and always reached a stationary strategy profile.ofiheexception to the rule of stability

® We note that a false positive rate of betwees% and8% is larger than might be hoped, but nevertheless defer
consideration of improved criteria for measuring empiraznvergence to future work.

journal.tex; 15/11/2008; 22:19; p.31

32

Proportion of Stationary Runs Proportion of Non-stationary, Blocked on Generator

fict

fict|
detf
0.95
metaf

awer

a

0.85

Protagonist
2
&
Protagonist

Q
@
2
Q
@
4

Q
Q@
o

giga
mini -

X 0.75
minp

rand - rand

fict det meta awe q rvs gsa giga mini min rand) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

Opponent Generator
Figure 21: Proportion of stationary runs, blocked Figure 22: Proportion of non-stationary runs, blocked
on opponent. This intensity map is symmetric; we on generator and protagonist

removed redundant entries for clarity.

in this group waAWESOMES. meta ; this pairing was unstable it0.3% of runs. We are not sure
why this occurred, but conjecture that it arose becauseeaflistrete behavioral changes that both
algorithms undergo when their internal states are updated.

There were a number of problem generators for the differgarighms (see Figure 22). For
example: generators D1, D2, and D10 created instances ta&t particularly difficult for the
gradient algorithm in terms of strategic stabili@-Learning was weak on both D5 and D7;
andmeta tended to be unstable on D5, D7 and D10. However these uestaethnces were rare
regardless of the algorithm paring. The vast majority ofsrimund a stationary strategy profile.
EvenGIGA-WoLF, which was the algorithm least likely to stabilize, foundt&inarity in87.0%
of its runs (see Figure 23).

6.3. CONVERGENCE TOSTAGE-GAME NASH EQUILIBRIUM

Stable runs are those that converged to any strategy; we ansider which of these selected a
(possibly mixed-strategy) stage-game Nash equilibriuor. g6me algorithms, Nash equilibrium
convergence was reasonably commAlRVESOMEonverged in54.3% of its runs, anddeter-
mined converged in53.1% of its runs.Determined was better aRWESOMEt converging
to a Pareto-optimal Nash equilibrium (a Nash equilibriurattivas not Pareto-dominated by any
other Nash equilibrium)AWESOMgost frequently converged to a Pareto-dominated equikitori
This was likely influenced by the way that our implementattrAWESOMficked its ‘special’
equilibrium? the first equilibrium found by the Lemke-Howson algorithmitheut attention to
whether it was, e.g., Pareto-dominatesVESOMEIso tended to attain lower reward when it
converged to a Pareto-dominated Nash equilibrium than vitheiadl not converge or converged
to a non-dominated Nash equilibrium.

” The original paper, Conitzer and Sandholm (2007), left te¢hmd of picking the ‘special’ equilibrium unspecified.

journal.tex; 15/11/2008; 22:19; p.32

33

Run Convergence Run Convergence in Self-Play
1 1

0.9 0.9

0.8 0.8

0.7 0.7
;::’ 0.6 1 | Il Unique NE ;::’ 0.6 1 | Il Unique NE
5 I Pareto NE 5 Il Pareto NE
505 1 | I Non-Pareto NE 505 1 | I Non-Pareto NE
£ [IsStable £ [IsStable
504 1 [unstable 504 1 |CJunstable
& &

0.3 0.3

0.2 0.2

0.1 0.1

awedet g metafict rvs minimin gsagigaand 0 detawe g fictmetarvs gsagigaminiminrand
Agent Agent

Figure 23: The proportion of runs that were stationary, Figure 24: The proportion of self-play runs that were
converged to a non-Pareto-optimal Nash equilibrium, stationary, converged to a non-Pareto-optimal Nash
or converged to a Pareto-optimal Nash equilibrium. equilibrium, or converged to a Pareto-optimal NE.

Figure 24 shows the extent to which each algorithm conveigadtage-game Nash equilibrium
in self play. Notice how often determined converged: thididgates that the games we studied
often possessed one Nash equilibrium that was the best fordgents. Indeed, we can see that a
surprisingly high number of games hadriquestage-game Nash equilibriuri& 5%). We expect
that convergence results would look qualitatively differevith generators that were much less
likely to produce games with unique equilibria.

Observe thaAWESOMEearly always converged. Recall that we previously fourad AWE-
SOMEreceived lower average reward in self-play than non-dely-puns ¢ 5.5). Now we can
conclude that this failure to achieve high rewards was net tua failure to reach equilibrium.
An interesting modification of thAWESOM&gorithm would be to use its self-play machinery to
converge to stable strategies that are not stage-game Nasibra, such as the socially-optimal
outcome or the Stackelberg game equilibrium. The aim ofatljsstment would be to improve self-
play reward results while maintainil§/WESOMEresistance to exploitation by other algorithms.

6.3.1. Links Between Nash Equilibrium Convergence and Reward

Much work in the literature has aimed at MAL algorithms thahwerge to a stage-game Nash
equilibrium. However, if the goal is high average rewardslish convergence desireable? More
generally, is proximity to stage-game Nash equilibriunrelated with obtaining high reward?

OBSERVATION 11. Strategic proximity to stage-game Nash equilibrium waseatated with
average reward for all algorithms and most algorithm—gexter pairs.

For all algorithms, reward was negatively correlated withrdistance to the closest Nash equi-
librium (Spearman’s rank correlation test;= 0.05). Furthermore, most algorithms were nega-
tively correlated even on a per-generator basis (FigureT2% most notable exceptions were D6,
D12, and (especially) D10, where we spositivecorrelations between distance and reward.

journal.tex; 15/11/2008; 22:19; p.33

34

Correlation Between Reward and NE Proximity
Sign of Maxmin Distance

Algorithm

[worse than Maxmin

Proportion of Runs

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 q vs det gsa awe giga meta fict mini min rand
Generator Algorithms
Figure 25: The sign of correlation between reward Figure 26: The sign of the maxmin distance of each
and /. -distance to the closest Nash equilibrium for run, by algorithm.

each algorithm and each game generator. A white
cell indicates positive correlation, a black cell indi-
cates negative correlation, and a grey cell with an ‘x’
indicates insignificant correlation.

6.4. MAXMIN DISTANCE

An agent’'s maxmin value is the largest amount that it cananiae itself regardless of its oppo-
nent’s behavior. Thus, achieving average reward of at thssamount is widely seen as a necessary
condition for sensible MAL behavior. Furthermore, the fammd-olk Theorem of game theory
demonstrates that enforceable payoffs (those with noativegmaxmin distances) are precisely
those payoffs that can be achieved in equilibrium of an itdipirepeated game. We build on
our results here to investigate this notion of convergendgis. In this section we consider the
difference between average reward and the maxmin valuesafrterlying game instance:
Zthl Tz(t)

MaxminDistance(T;) = T — max Hliil u(a;,a_;). (6)
a;€EA;a_;€A_;

We call this differencanaxmin distancenoting that it can be negative.

OBSERVATION 12. Q Lear ni ng attained an enforceable payoff more frequently than any
other algorithm.

Q-Learning most frequently attained an enforceable payoff, with a tiegjanaxmin dis-
tance in only1.8% of its runs (Figure 26). The runs on whi€learning failed to attain an
enforceable payoff mostly came from either Cigpersion Gamge37.6% of Q-learning s
unenforceable runs) or D13Wo by Two Game33.3%). They also occurred predominantly against
random (29% of the unenforceable runshinimax-Q (17.3%) andminimax-Q-IDR (16.0%).
The next-best algorithmAWESOMHEttained enforceable payoffs considerably less ofteth @i
negative maxmin distance 4% of its runs.

journal.tex; 15/11/2008; 22:19; p.34

35

Distribution of Maxmin Distances Proportion of Enforceable Runs

fict

0.9 - - - AWESOME
= = Minimax-Q-IDR|
08t —]

det

meta

0.7
awe 1 0.8

06

o

Z 05

Protagonist
2
1

04f

«Q
@
4]

03 gigar

0.2

0.1r

. d)
-1 -0.8 -0.6 -0.4 02 0 0.2 0.4 06 0.8 1 fict det meta awe g rvs gsa giga mini min rand
Maxmin Distance Opponent

Figure 27: The distribution of maxmin distances for Figure 28: The proportion of enforceable runs,
AWESOMEinimax-Q andQ-learning . blocked by opponent.

After random, Minimax-Q andminimax-Q-IDR were theleastlikely to attain enforce-
able payoffs, failing to do so i88.9% and27.7% of their runs respectively. This is interesting
because these algorithms explicitly attempt to do wellregjadversarial opponents. One possible
explanation is that they may have trouble learning accyrayeffs , leading them to have difficulty
obtaining their maxmin values.

Minimax-Q andminimax-Q-IDR were especially poor in self play, where conservative play
can impair payoff learning. There is also a greater proportif enforceable runs dhx 2 games
(75.2%) than on10 x 10 games ¢8.5%)—larger games have more payoffs to learn. Working on
a more sophisticated exploration scheme looks like an edjyepromising place to improve our
implementation ominimax-Q and its variant.

While Q-learning was successful against a broad range of opponents, somelgbethms
were less consistent. For exampiegta was quite good against all opponents excepffiftir
itious play , determined , AWESOMand itself.Meta was especially bad againfstt-
itious play ; in this pairing only68.0% of meta’s runs were enforceable. Compare this to
meta’s excellent performance again@:-learning , where it attained enforceable payoffs in
97.7% of it runs. Fictitious play also had trouble playing againsteta, determined
and itself. On the other hand, neith®WESOM#or determined shared this problem.

RV, had problems attaining enforceable runs too, and althdugieived payoffs well above
the maxmin value frequently (it had the second highest ptapoof runs with strictly positive
distances a68.8%) there were also a large number of instances wRg,)'s maxmin distance
was close to but below zero. This contrasts WttGA-WoLF, which had fewer non-enforceable
runs with greater negative minimax distance (see Figure\®@8)conjecture that this phenomenon
occurred becausRV ;) maintains a small amount of probability mass on all of itscast, causing
it to ‘tremble’. More specificallyRV,), like all gradient algorithms, updates its mixed strategy
by moving along the reward gradient. When the updated vetdes not sum to one, it must be
mapped back to the probability simpldRV ;) does this by normalizing the updated vector, while

journal.tex; 15/11/2008; 22:19; p.35

36

Distribution of Maxmin Distances Enforceability

09 GIGA-WoLF

- - Rva(t)

0.7F

o
>

I Enforceable Profile

Proportion of Runs

05 < | I Enforceable Payoff
) [INeither
-l 04F
L
0.3r
0.2
0.1
78.08 70.237 fo.g)s —0‘05 —0‘04 70.‘03 fu.‘uz 70‘01 é q det awe gsa meta fict giga rvs mini min rand
Maxmin Distance Algorithm
Figure 29: The distribution of negative maxmin dis- Figure 30: Proportion of PSMs with enforceable pay-
tances foIGIGA-WoLFandR\). offs and payoffs profiles achieved, by algorithm.

GSAandGIGA-WoLFuse a retraction operator that tends to drop actions frormtked strategy’s
support (seg 2.5). We conjecture that modifyingV, ;) to useGIGA-WoLFs retraction operator
would improveRV,'s ability to achieve enforceable payoffs.

6.4.1. Links Between Maxmin Distance and Reward

Is there a connection between enforceable runs and higaga/eewards? It would being strange
if some such relationship did not exist, since enforceighitnplies reward higher than the maxmin
value. Indeed, we did observe that for all algorithms, maxdistance was positively correlated
with average reward. (Spearman’s rank correlation t&68f; o = 0.05 significance level). On
a per-generator basis, we again largely observed signifpzzsitive correlations. There were two
deviations from this pattern. First, we found no significemtrelation for half of the algorithms on
D11, and forminimax-Q on D3. Second, there was a significaefgativecorrelation formini-
max-Q on D11, thoughminimax-Q-IDR still exhibited significant positive correlation.

6.5. CONVERGENCE TOREPEATED-GAME NASH EQUILIBRIUM

In §6.3 we considered algorithms’ tendencies to converge tdiled@ of the stage game. The
algorithms actually played a repeated game, however. We tnowto analyzing this repeated
game’s properties. The payoff profiles achievable in Naghiliegum of a repeated game are
precisely the enforceable profiles (see, e.g., Osborne ahth&ein (1994)). In order to determine
whether a given strategy profile is an equilibrium of a repeagiame, it is also necessary to consider
how these strategies behave off the equilibrium path (eayv,they punish deviations by the other
agent). While the algorithms that we studied lack punishnmeechanisms, it is still meaningful
to assess how frequently they converged to payoff profilesistent with repeated game Nash
equilibria. We therefore build on the results fréms.4, asking how oftebothalgorithms achieved

enforceable payoffs.

journal.tex; 15/11/2008; 22:19; p.36

37

OBSERVATION 13. Q@ Lear ni ng was involved in matches whose payoff profiles were consis-
tent with a repeated game Nash equilibrium more often thanadimer algorithm.

Of the algorithms that we examine@;learning most frequently had runs that were consis-
tent with a repeated game Nash equilibrium (Figure 30). K e@nsistent with a repeated game
equilibrium in 76.8% of its runs.Determined and AWESOM#&ere the next most frequently
consistent75.0% and73.8% of their runs respectively). Overall, consistency with pe&ted game
Nash equilibrium was common, but not universal. It is worthpbasizing that an enforceable
payoff profile depends on both agents’ actions, and so thavilmhof weak agents likeandom
lowered the scores for stronger opponents.

7. Discussion and Conclusion

In this article we described MALT, a standardized testbednfaltiagent experimentation. This
testbed allows researchers to focus on experimental dasdjanalysis instead of implementation.
We also presented an in-depth analysis of a large experiweenbnducted ourselves using MALT.
The most striking conclusion from our experiment was Qaearning achieved consis-
tently excellent results, in many senses outperformingrétyns based on deeper insights about
the multiagent setting (e.g3IGA-WoLF, AWESOMEndmeta). We were surprised by this find-
ing, since we had taken for granted the idea that modernjagatt algorithms would do better
in a repeated-game environment than a classical, singletadgorithm. The evidence we have
shown to the contrary suggests that it should be possiblernsiderably improve the empirical
performance of MAL algorithms. We suggest four areas in Wigifforts could be worthwhile.
First, a more experimentally-driven focus seems cruciair €&periment was large, but there
are many empirical questions that it does not answer. Soamiging future directions include:

— More examination of the relationship between performamcegame properties like size;

— More detailed investigation of algorithm behavior on im&t@s from single generators;

— Investigation of additional algorithms like Hyper-Q (Tesa, 2004) and Nash-Q (Hu and
Wellman, 1998);

— Study of N-player repeated games and stochastic games (along tkeofivel et al. (2005)).

Second, the more sophisticated algorithms have many wipabameters. Finding optimal set-
tings for them was beyond the scope of our paper, and we thsédi@d on published parameter
settings. Nevertheless, it is possible that some algosthuld have performed considerably better
if they had been configured differently. Indedgklearning had only three parameters and all
were easy to set, which might partly explain its strong pennce. Tuning the other algorithms
would require considerable experimental effort; hopgfMIALT will be of assistance. There are
some interesting questions to ask:

— Is one parameter setting good for many problems, or is itdlse that some parameter settings
are effective on some matches and poor on others?
— Which of an algorithm’s (e.gmeta’s) parameters are the most important?

journal.tex; 15/11/2008; 22:19; p.37

38

— DoesAWESOMEperformance change radically when it selects the sgc@itimal Nash
equilibrium as its special equilibrium? How about the ‘&&lberg’ equilibrium?

— For gradient algorithms, is it better to perform retracttvmormalization?

— Do parameter settings that yield high reward also yield legret?

Third, we presented two different tweaks to existing algponis: minimax-Q-IDR andGSA
These algorithms offered several improvements over thpgirént” algorithms, and in many cases
probabilistically dominated them. It would be interestiogexplore similar modifications of other
existing algorithms.

Finally, managing a portfolio of existing algorithms sedikes a promising approach for design-
ing algorithms with good empirical propertiesSWESOManhdmeta can both be seen as portfolio
algorithms: they switch between different components thasethe opponent’s behavior. Much
remains to be learned about the best framework for buildortfqlio algorithms, especially if we
insist on frameworks that do not require hand-constructiba portfolio. Again, this direction of
research invites a host of empirical questions. What feataf a game and of game play should a
portfolio track? In what situations does adding an algamitio a portfolio improve performance?

Acknowledgements

Thanks to Nando de Freitas for his involvement in the eadges of this project, and for helping
us to develop the argument in Appendix A. Thanks to Holger Blosiand Yevgeniy Vorobeychik
for feedback on drafts, and to anonymous reviewers at MLAdtpful suggestions. Finally, thanks
to Vincent Conitzer for providing us with code fAWESOM&nd helping us to use it.

Appendix A. Independent vs. Stratified Sampling

For all of the experiments described in this article, we wawacerned with the expected per-
formance of a match, denoted By, (). Here, f is some metric functiony ~ M is a match,
and(~ Z is a random seed that completely determined any non-detistini behavior in both
algorithms. The game instance/seed pairing uniquely defina. When designing our experiment,
we needed to choose whether to stratify runs based on thénnkaicinstance, if we had enough
time to run100 simulations, we could either have sampled a single rudGnmatches, o0
runs on10 matches. Stratification clearly yields more detailed d&wuathe role that random-
ization plays in each match. However, for estimating comrmommary statistics—means and
quantiles—stratification should be avoided.

Formally, consider two schemes of sampling frathand Z. Underindependent sampling/
and Z are sampled separately each time, yielding a set of samples, Z1), ..., (M,, Z,)}.
Understratified samplingk samples are taken froMd and for each sample @ff, 7 is sampled;
times, yielding a set of sampl¢$My, Z11), ..., (M1, Z16,), ..., (Mg, Zk s,)} In both schemes,
the sample mean is used as an estimate for the population. I8eae G and Z are sampled
independently, both schemes yield unbiased estimatomsetAr, the following result shows that
the schemes differ in terms of variance.

journal.tex; 15/11/2008; 22:19; p.38

39

LEMMA 7.1. Independent sampling yields a lower-variance estimai& [q‘f(Mz)} than stratified
sampling.

Proof First, independent random variables have no covariance.
Cov [f(Ms, Zi), f(Mj, Z;)] = Cov [f (M, Zy), f (M, Zmn)] @)

On the other hand, if two samples share the same stratumatihe sample: ~ M) then they have
weakly higher covariance.

Cov [f(Mg, Zk), f(My, Zgm)] > Cov [f(M;, Z;), f(Mj, Zj)] 8

Using Equations (7) and (8) we can write
Var [Z f(M;, Zi)‘| =Y Cov[f(M;, Z), f(M;, Z;)]
i i,j

< Z Cov [f(MU Zi,j)> f(Mkv Zk,l)]

=Var Zf(MUZZ,]) . O

2

We also claimed that stratifying increases the varianceuahtijle point estimation. This result
can be found (albeit without proof) in Heidelberger and Le(1i984).

References

Airiau, S., S. Saha, and S. Sen: 2007, ‘Evolutionary TouerarBased Comparison of Learning and Non-Learning
Algorithms for Iterated GamesJournal of Artificial Societies and Social Simulatibé(3), 7.

Axelrod, R.: 1987, ‘The Evolution of Strategies in the Itex Prisoner’s Dilemma’. In: L. Davis (ed.[3enetic
Algorithms and Simulated Annealinlylorgan Kaufman, Los Altos, CA, pp. 32—-41.

Banerjee, B. and J. Peng: 2004, ‘Performance bounded re@rfent learning in strategic interactions’. KAAI 11

Banerjee, B. and J. Peng: 2006, ‘RV: a unifying approach tiopmance and convergence in online multiagent learning’.
In: AAMAS '06 pp. 798-800.

Bowling, M.: 2004a, ‘Convergence and no-regret in multi#dearning’. In:NIPS 17

Bowling, M.: 2004b, ‘Convergence and no-regret in multisiglearning’. Technical Report TR04-11, University of
Alberta.

Bowling, M. and M. Veloso: 2001, ‘Rational and convergerarteng in stochastic games’. IRICAI 17.

Bowling, M. H. and M. M. Veloso: 2002, ‘Multiagent learningsing a variable learning rate’Artificial Intelligence
136(2), 215-250.

Brown, G.: 1951, ‘lterative solution of games by ficticiodsyd. In: Activity Analysis of Production and Allocation
New York.

Claus, C. and C. Bouitilier: 1997, ‘The dynamics of reinfonemt learning in cooperative multiagent systems’ AAAI
4. pp. 746 — 752.

Conitzer, V. and T. Sandholm: 2007, ‘AWESOME: A general riaglent learning algorithm that converges in self-play
and learns a best response against stationary opponbtashine Learning7(1), 23-43.

journal.tex; 15/11/2008; 22:19; p.39

40

Fudenberg, D. and D. M. Kreps: 1993, ‘Learning Mixed Equiib Games and Economic Behavig(3), 320-367.

Govindan, S. and R. Wilson: 2003, ‘A global newton methoddmpute Nash equilibria'Journal of Economic Theory
11Q(1), 65 — 86.

Greenwald, A. and K. Hall: 2003, ‘Correlated-Q learningi: ICML 20.

Heidelberger, P. and P. Lewis: 1984, ‘Quantile estimatiocseipendent sequence®perations Researcd?(1), 185-209.

Hu, J. and M. Wellman: 1998, ‘Multiagent reinforcement teag: theoretical framework and an algorithm’. I&@ML
15. pp. 242 — 250.

Hu, J. and M. P. Wellman: 2003, ‘Nash Q-learning for gensetatt stochastic gamesJournal of Machine Learning
Researcht, 1039-1069.

Lemke, C. and J. Howson: 1964, ‘Equilibrium points of bimagiames.’. In:Journal of the Society for Industrial and
Applied Mathematicsvol. 12. p. 413423.

Lipson, A.: 2005, ‘An empirical evaluation of multiagenglaing algorithms’. Master's thesis, University of Brftis
Columbia, Vancouver, Canada.

Littman, M.: 1994, ‘Markov games as a framework for multeagreinforcement learning’. IhRCML 11. pp. 157 — 163.

Littman, M.: 2001, ‘Friend-or-foe Q-learning in generairs games’. IniCML 18. pp. 322 — 328.

McKelvey, R., A. McLennan, and T. Turocy: 2004, ‘Gambit: tsedire tools for game theory’. Version 0.97.00tp:
/leconweb.tamu.edu/gambit

Monderer, D. and A. Sela: 1996, ‘AX22 game without the fictitious play propertyGames and Economic Behavior
14, 144-148.

Monderer, D. and L. Shapley: 1996, ‘Fictitious play progddr games with identical interestslournal of Economic
Theory68(1), 258-265.

Nudelman, E., J. Wortman, K. Leyton-Brown, and Y. Shohan@£0Run the GAMUT: a comprehensive approach to
evaluating game-theoretic algorithms’. WAMAS 3

Osborne, M. and A. Rubinstein: 1994,Course in Game TheorpIT Press.

Powers, R. and Y. Shoham: 2005, ‘New criteria and a new dlgarfor learning in multi-agent systems’. IMIPS
Vol. 17. pp. 1089-1096.

R Development Core Team: 2006, ‘R: alanguage and environimestatistical computing’. R Foundation for Statistical
Computing, Vienna, Austria.

Rapoport, A., M. Guyer, and D. Gordon: 1978)e 2x2 GameUniveristy of Michigan Press.

Sandholm, T.: 2007, ‘Perspectives on multiagent learniAgfificial Intelligencel71(7), 382—391.

Shoham, Y. and K. Leyton-Brown: 200Blultiagent Systems: Algorithmic, Game-Theoretic, andi¢aig-oundations
New York: Cambridge University Press.

Shoham, VY., R. Powers, and T. Grenager: 2007, ‘If multi-a¢garning is the answer, what is the questiorn®tificial
Intelligencel71(7), 365-377.

Singh, S., M. Kearns, and Y. Mansour: 2000, ‘Nash converg@figradient dynamics in general-sum games’.UA}
16.

Spall, J. C.: 2003Introduction to Stochastic Search and Optimization: Eation, Simulation and ControlHoboken,
New Jersey: John Wiley & Sons.

Sutton, R. and A. Barto: 199®einforcement Learning, An IntroductioBambridge, Massachusetts: The MIT Press.

Tesauro, G.: 2004, ‘Extending Q-learning to general adaptiulti-agent systems’. IlNIPS 16

Vu, T., R. Powers, and Y. Shoham: 2005, ‘Learning againstipialopponents’. INnAAMAS

Watkins, C. and P. Dayan: 1992, ‘Q-learning: technical nd#achine Learning3, 279—-292.

Zinkevich, M.: 2003, ‘Online convex programming and gefizeal infinitesimal gradient ascent’. ICML'03.

journal.tex; 15/11/2008; 22:19; p.40

