
Teaching Statement

Daniel R. Licata

I love teaching, and have successfully taught undergraduates at Carnegie Mellon and Brown. I have

• Lectured to small (20-30 students), medium (50-80 students), and large (150-225 students) class-
rooms, for 2 semesters for each size; and taught interactive lab sections for 9 semesters.

• Designed a course from scratch, including the course’s content, activities, and assessments; and re-
fined the course design during three semesters teaching it.

• Integrated research ideas into a course for first- and second-year undergraduates.

• Managed a staff of 15-18 teaching assistants (TAs). In two of three semesters, one of my grad TAs
won the department teaching award. Also, I instituted an undergrad TA system for the course, where
students just out of the course become TAs, and then gradually take on more responsibility over time.

• Instructed both computer science majors and non-majors, in both very tech-focused (Carnegie Mellon)
and liberal arts (Brown) environments.

Much of this experience was after getting my PhD, when I designed and delivered a new introductory
computer science course on functional programming, parallelism, and software verification (15-150: Func-
tional Programming1) for three semesters at Carnegie Mellon University (CMU). The audience consisted of
80 students in Spring 2011 (all computer science majors and first-years); 205 students in Fall 2011 (includ-
ing majors and many non-majors, mostly sophomores and juniors); and 225 students in Spring 2012 (both
majors and non-majors; mostly first-years and sophomores). I designed the course content, the pedagogical
activities (lectures, labs, homeworks), and the assessments, with the help of my PhD advisor Robert Harper
during the first semester, and some excellent TAs throughout. I gave all the lectures all three semesters,
instructed students during lab sessions, and managed the TA-student interactions. Students performed well
on a series of difficult homeworks and projects. All computer science majors go on to take a required Par-
allel Data Structures and Algorithms course (taught by theory faculty), which builds directly on the skills
introduced in my course, and the instructors of this course were happy with my students’ preparation. Ad-
ditionally, students rated me as excellent on course evaluations, and strongly praised my teaching in written
comments.

Before that, I was a TA for 8 semesters. As a grad student at CMU, I TAed our undergraduate program-
ming language class (sophomores and juniors; around 50 students), and our undergraduate constructive logic
class (juniors and seniors; around 30 students); both had weekly lecture-style recitations with 20-30 students.
At Brown, I TAed our two-course intro CS sequence, which taught functional and object-oriented/imperative
programming, for six semesters.

In the rest of this statement, I will (1) describe how I integrated research-level ideas on parallelism into
my introductory course, (2) describe an aspect of my teaching philosophy and how it influenced my practice,
and (3) summarize my course evaluations.

1Full course materials are available at www.cs.cmu.edu/˜15150/previous-semesters/spring-2012

1

Parallelism in the Intro Sequence

Recently, the CMU CS department redesigned its introductory sequence, with the fairly ambitious goal of
integrating research ideas on deterministic parallelism by Guy Blelloch and others into first- and second-
year courses. The objective is to teach students to see the inherent opportunities for parallelism in problems.
My course introduces these ideas, which are developed further the following semester. I was aware of this
research, but had not done any work on it myself, and was largely learning it as I taught it. The following
examples illustrate how I made these ideas accessible and compelling to young students.

I introduce deterministic parallelism in the first few minutes of the first lecture: The students are arranged
into rows in a large classroom. I say that, first of all, I want to get a little background information: how many
of them have programmed before? They start to raise their hands, but I tell them to put them down. Instead,
we’re going to count how many people have programmed before as follows: We start from the first student
in the top-left corner of the room, who knows whether or not she has programmed before. She passes this
number to the person next to her, who adds one if he’s programmed before, and otherwise just passes it on.
This takes a little while for the top row. Then we do the same thing for the next row. But I don’t really want
to spend the whole lecture counting up how many people have programmed before, so let’s try this instead:
In parallel, let’s count up each row, and then we can add up these counts to get the final answer! After
acting this out, we write the code. This little counting exercise illustrates the main ideas of deterministic
parallelism: The computation has a well-defined answer (how many students have programmed before?),
and parallelism is just a means of getting to that answer more quickly. Moreover, the parallelism arises
naturally from (the lack of) data dependencies—-the count for one row doesn’t depend on the count for
another, so we can do them in parallel.

The next example shows that parallelism fits in naturally with standard examples in a programming
course, such as sorting. After implementing the usual mergesort on lists, we analyze its asymptotic time
complexity, including both the total amount of work done, which is the usual sequential complexity, and the
span, which is the length of the longest data dependency. The span provides a bound on the the running
time with unlimited computational resources, and there is a theorem relating the work and span to the
running time with a fixed number of processors. You might think that, because mergesort does a tree-based
decomposition of problems (to sort [6, 4, 5, 3, 2, 7, 8, 1], sort [6, 4, 5, 3] and [2, 7, 8, 1], and therefore [6, 4]
and [5, 3], etc.), the span would be O(log n). However, mergesort requires auxiliary operations for spliting
and merging lists, and on lists these are inherently sequential, and take linear time even with unbounded
computational resources—so the span is O(n). We conclude that lists are a bad data structure for parallelism,
and start to study trees, which naturally support binary parallelism. Mergesort on trees is a more complex
piece of code, but it is an appropriate increment in difficulty for this point in the course.

The next example shows that students at this level can do compelling projects with deterministic paral-
lelism. After the midterm, we introduce a new data structure called sequences, which support n-way vector
parallelism, and students implement the Barnes Hut algorithm for simulating the motion of celestial bodies
using Newton’s laws of motion and universal gravitation. In lecture, we cover the naı̈ve algorithm for n
bodies, which computes all n2 mutual forces, and can be easily implemented using sequences with only
O(log n) span (in parallel, compute the force on each body due to all other bodies, and, for each body, add
the n forces due to the other bodies on a tree). Barnes Hut improves the work to O(n log n) by recursively
decomposing space into quadrants, and approximating the force due to many far-away bodies (e.g. the
gravitational pull of the entire Andromeda galaxy on the Earth) by a single point at their center of mass.
Instructors at at Cornell and Princeton have since used this project in their courses.

Through these kinds of examples, I made deterministic parallelism accessible and compelling to my
first- and second-year students.

2

Teaching Philosophy and Practice

To my mind, the most important outcomes of a computer science education are skills (knowledge how to
do something), rather than facts (knowledge that something is true): we should teach students a variety of
skills (programming, algorithmic thinking, proof, software system design, user interface design, . . .) that
will be useful throughout their careers and further education. I have modeled my approach to teaching skills
on Ted Sizer’s conception of coaching—ask students to practice skills, observe them, suggest improvement,
and repeat. I would like to share some examples of how I have integrated coaching into my course.

A prerequisite for coaching is to be clear about what skills students are acquiring. Rather than organizing
the course around a long list of concepts and facts (the use of higher-order functions for structuring programs,
how parallelism arises from the absence of data dependencies, . . .), I chose to organize the course objectives
around three skills: students learn to write parallel functional programs; to analyze sequential and parallel
time complexity; and to write and prove mathematical specifications about their code. The facts we want
them to learn come up naturally as a substrate for practicing these skills. Importantly, the course interweaves
these skills throughout the semester, so that students have time to gradually get better at them. The weekly
course activities include two 80-minute lectures, an 80-minute interactive lab, and a homework assignment.
To a significant extent, I think of the purpose of lecture as getting students ready for lab, which in turn gets
them ready for the homework, which is where they really learn the skills.

In lecture, I introduce new skills in a way that facilitates later coaching on the assignments. For example,
I am careful to demonstrate the skills in the way I expect the students to do them—for example, doing a proof
at the level of detail I expect students to do on the homework, rather than asking them to be more precise
than I am. I also describe and follow explicit methodologies that break a skill down into subtasks, which
helps coaching by allowing us pinpoint where a student is stuck. I have also integrated a little coaching even
into a large lecture setting: I often make students tell me what to write on the board (and will go down the
wrong path, to see why it’s wrong, if that’s what they suggest), and break up into partners to do exercises
(so they coach each other).

While most intro-level classes at CMU have a weekly TA-led lecture (recitation), I chose to use this
time instead for interactive coaching. Each week, students come in and work on a miniature homework
assignment. The TAs and I circulate around the room, proactively coaching—answering questions when
students have them, but also anticipating pitfalls and preemptively making suggestions. I designed labs with
opportunities to coach students on all three of the course skills, not just programming: in one crucial lab,
students fill in a proof template, so that we can coach them through a particularly tricky new style of proof.

Coaching is integrated into the homeworks in two ways: First, we grade as a group, and read students’
code, to provide consistent and useful feedback. Second, the TAs hold tutoring hours in a large classroom,
where students can work and ask questions intermittently. One particularly useful opportunity for coaching
comes in the capstone of the verification component of the course, when students implement and prove
correct a regular expression matcher. This piece of code is very difficult to write, unless you write the
program and do its correctness proof at the same time. In the tutoring sessions for this assignment, we
coached many students through this proof, and this often led to an “ah ha” moment when they realized what
the correct piece of code is, and, more broadly, the importance of verification.

To provide this coaching, I used the staffing I was afforded a little unconventionally: while there is an
official distinction between TAs and “course assistants” (CAs), who typically grade and hold office hours
only, I asked all the TAs and CAs to do the same duties (though the more experienced people naturally took
on more leadership roles). Giving the CAs more responsibility allowed us to have more instructors in lab,
and helped foster a TA culture with a lot of camaraderie. It also created a staff pipeline, with new TAs
staying on and eventually taking on more leadership roles.

3

Student Evaluations

Summary

On CMU’s Faculty Course Evaluations, my students repeatedly rated me above average to excellent on
the following criteria, and my scores are almost always well above the department/college/university
averages.

• Displaying an interest in students’ learning

• Providing a clear explanation of the course requirements

• Providing a clear explanation of the learning objectives or goals of the course.

• Providing feedback that helped students improve their performance

• Demonstrating the importance and significance of the subject matter

• Explaining the subject matter of the course

• Showing respect for all students

• Overall teaching

• Overall quality of the course

The charts include my average score on these criteria, along with the averages for the CS department, the
college (all undergrad classes), and the school (all classes, including graduate) in the specified semester. The
blue bar is my score.

Spring, 2012:

4

Fall, 2011:

Spring, 2011:

5

Selected Comments

On lecture:

Preface: I’m a Junior here, and to be honest, the 15-150 lecture series was one of the best, if
not the best, set of lectures that I’ve experienced here at CMU. . . . The lectures are absolutely
perfect! Please don’t change them! =)

. . . great class, great professor, and great TA’s. Dan really cares about the subject and you can
see that conveyed in his lectures. He clearly knows the material, he knows what he wants to
teach and every lecture has a very clear direction. Very organized lectures. Learned a lot.

It seemed liked every lecture was carefully planed and had a purpose. And I don’t think I’ve
ever seen a class with better lecture notes, they’re incredibly helpful.

Lectures are actually entertaining (RARE at CMU in CS)

Lectures were simply amazing. Please do not change the lectures. The only thing I might
change is to give a little more time on the in-class assignments, because it gets the class excited
about the problem at hand / interested in the solution, and it gives them an opportunity to try
it out, but sometimes it’d be nice to have an extra 3-5 minutes. The labs and homeworks are
helpful too. The overall structure of 15-150 seems nearly perfect.

This is one class that I do not want to miss a lecture because it is so helpful. That is probably in
part Dan’s doing, since he is a very good and useful lecturer. Of all the CS classes I’ve taken,
this is definitely the best taught one.

On assignments:

Labs are also the best out of any class I’ve taken here and their format should be copied for
every lab-based CS class.

I found all of the homeworks and lectures and lab to be very useful. I think the course is
structured extremely well, and allows for a great learning experience.

Labs and the homeworks started off easy but built you up to the point where you can tackle more
challenging problems.

I thought this class was really well managed and structured. It was easy to get help, and
emails or questions on the bboard are answered promptly. Assignments were well-thought out
and clear. Lecture notes were awesome and very well explained. Also, concepts were very
clearly explained.

LABS definitely keep the labs. And while the Barnes-Hut was difficult, I liked it. Same with
the Connect-4. Programs that work together into something easily testable, and FUN to test,
make programming better. For instance, the first time my Connect-4 compiled and ran, it exe-
cuted one time-step and said ”Maxie, you win!” Simple anecdotes like that make larger scale
programming a lot more fun, and make the course more fun.

6

One of my favorite classes. Dan is very approachable, and course staff is very approachable -
unusually and exceptionally useful lab/recitation sessions. The pace of the class is comfort-
able, but still fast enough to learn a lot.

Dan’s teaching has been very clear. Assignments and labs have been well-integrated with the
course material and even though it was difficult at times it was never overwhelming.

On outcomes:

This class was very challenging, but worthwhile. I feel like I learned quite a lot in a short
amount of time.

This was a very challenging course, but definitely my favorite this semester. Dan Licata is an
amazing professor, and I hope he teaches future courses so I can can have him again.

Dan was a really great instructor and helped me become actually interested in the subject
matter - I was only taking the course to fulfill a requirement, but I came around to actually
enjoying class and the homeworks.

I think this was a fantastic course. I got to learn so much and it was some very exciting material
presented in a very organized way.

Professor Licata is a great instructor. He knows the material well and can easily relate the
material to real world applications that makes the understanding of the subject matter very
easy. He also is very willing to help you understand the topics.

Started out slowly for me (since I just took 15-122) but quickly picked up into a comfortably
challenging pace. Made me more interested in functional programming, and I will probably
take similar classes later on at CMU.

Professor Licata is a great speaker and a dedicated teacher that has always been willing to
listen to students’ concerns. He teaches in a well-structured and innovative way, making
learning a memorable, applicable hands-on experience in lab, and preparing us for today’s
and tomorrow’s job markets by presenting applications of functional programming in the
industry today. However, the notes he posts are very long.

On interaction with students:

He was always willing to help students outside of class (through Piazza or by attending lab), and
he was very active in explaining difficult concepts and encouraging students who struggled
with a particular topic or assignment.

Dan is the best. He’s always willing to go above and beyond what’s expected of him to help his
students, whether that’s just re-explaining a topic from lecture or looking through their code
at 2AM to help them find a bug they’ve been looking for for days. The lectures are long, but
somehow he manages to keep our attention. It’s been such a pleasure to take this class while it
was still taught by Dan.

7

Professor Licata really treated me well when I was having problems, and I really appreciated
that. Even though I did not think his lectures were amazing, outside of class he showed an
interest in his students learning above what I have experienced previously at CMU.

Dan did a great job this semester. He was very encouraging. I was very very impressed with
his understanding and compassion towards the students.

General:

Dan Licata is the best teacher I’ve had at CMU, bar none (I’m a senior). If the CS department
were serious about educating undergraduates, they would do everything possible to keep and
learn from Dan. He knows how to teach. *This* is how you run a course. More information
learned more easily in this course than any other 100 or 200 level CS course.

Dan Licata is one of the best teachers I’ve ever had. I knew what I was going to learn, why I
was learning it, and felt it was truly something cutting edge and important. Plus, the teaching
was super effective and I feel I know all the stuff. A++ would take class again.

Dan’s probably the best professor I’ve had since coming to CMU. He cares so much about the
class and students. I would take a course with him again in a heartbeat.

This was the best introductory CS course I have taken (out of 15-100, 15-111, and 15-123).
Professor Licata was very competent and I could tell that a lot of thought and time was put
into the design and teaching of the course. I appreciated that the lectures were taught on the
blackboard, instead of with PowerPoint slides.

Okay, so I’ve rated other teachers as ”excellent” before, but I kind of wish I hadn’t now because
Dan really stands out, especially in respect to displaying an interest in student learning and
caring about the students. He’s super nice and friendly and knows everyone’s names and is
just an outstanding lecturer in general and one of my favorite professors. He’s really helpful if
you email him for help too. This is one of my favorite CS classes I’ve taken, and he’s probably
a large part of the reason why.

Dan was actually the best professor I have encountered at this university. He was extremely
helpful and respectful to all students. I was very happy with his teaching.

This is my favorite CS course that I have taken at CMU so far. Dan Licata is a wonderful
professor and great lecturer, and the class is structured extremely well. This class definitely
gets an A+!

Seriously, don’t let Dan leave. Or just do what Coachella did and get a high quality hologram of
him made. He’s hilarious and keeps the lectures engaging. The homeworks were pretty helpful,
and I feel like labs prepared me for them well.

Dan Licata is an excellent teacher. It’s a shame he’s going to Princeton. I wish CMU would
just hire him now.

8

