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ABSTRACT

In chip multiprocessors (CMPs), limiting the number of off-
chip cache misses is crucial for good performance. Many
multithreaded programs provide opportunities for construc-
tive cache sharing, in which concurrently scheduled threads
share a largely overlapping working set. In this paper, we
compare the performance of two state-of-the-art schedulers
proposed for fine-grained multithreaded programs: Parallel
Depth First (PDF), which is specifically designed for con-
structive cache sharing, and Work Stealing (WS), which is
a more traditional design. Our experimental results indi-
cate that PDF scheduling yields a 1.3-1.6X performance
improvement relative to WS for several fine-grain parallel
benchmarks on projected future CMP configurations; we
also report several issues that may limit the advantage of
PDF in certain applications. These results also indicate that
PDF more effectively utilizes off-chip bandwidth, making it
possible to trade-off on-chip cache for a larger number of
cores. Moreover, we find that task granularity plays a key
role in cache performance. Therefore, we present an au-
tomatic approach for selecting effective grain sizes, based
on a new working set profiling algorithm that is an order
of magnitude faster than previous approaches. This is the
first paper demonstrating the effectiveness of PDF on real
benchmarks, providing a direct comparison between PDF
and WS, revealing the limiting factors for PDF in practice,
and presenting an approach for overcoming these factors.
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1. INTRODUCTION

Chip multiprocessors (CMPs) are emerging as the de-
sign of choice for harnessing performance from future multi-
billion transistor chips. All the major chip manufacturers
have made the paradigm shift to focus on producing chips
with multiple cores. Unlike wide-issue single-core designs
that have run into power, thermal flux, and instruction-level
parallelism (ILP) limitations, CMPs allow for both perfor-
mance and power scalability across future-generation semi-
conductor fabrication processes. It is projected that by 2015,
there will be 64 to 128 cores integrated into a single chip [11].

To effectively exploit available parallelism, CMPs must
address contention for shared resources [18, 42]. In partic-
ular, CMPs share two precious hardware resources among
the cores: on-chip memory and pin bandwidth. CMPs are
limited by a fixed chip area budget that is divided mainly
between processing cores and memory (i.e., cache). Conse-
quently, techniques that improve the efficiency of cache re-
sources enable processor architects to devote less chip area
to caches and more to processing cores, which, in turn, en-
ables the CMP to exploit more parallelism. Similarly, reuse
of data cached on-chip is especially important in CMPs in
order to reduce off-chip accesses, which contend for the lim-
ited memory bandwidth. With the continued increase in the
processor/memory performance gap, off-chip accesses incur
higher penalties, making performance increasingly sensitive
to effective on-chip caching.

Many multithreaded programs provide opportunities for
constructive cache sharing, where concurrently scheduled
threads share a largely overlapping working set. Instead
of destructively competing for the limited on-chip cache, the
threads cooperate by bringing this working set on-chip for
their mutual use and reuse.

In this paper, we evaluate the impact of thread schedul-
ing algorithms on on-chip cache sharing for multithreaded
programs. Many parallel programming languages and run-
time systems use greedy thread scheduling algorithms to
maximize processor utilization and throughput. We com-
pare the performance of two state-of-the-art greedy sched-
ulers: Parallel Depth First (PDF) [5, 6], a recently proposed
scheduler designed for constructive cache sharing, and Work
Stealing (WS), a popular scheduler that takes a more tra-
ditional approach. Analytical bounds [5, 10, 8] imply that
PDF should outperform WS on CMPs with shared caches—
however, there has been no direct comparison on real bench-
marks. We study a variety of benchmark programs on pro-
jected future CMPs through simulations. Our experimental
results show that:



e For several application classes, PDF enables signifi-
cant constructive cache sharing among threads, thus
improving performance and reducing off-chip traffic
compared to WS. In particular, PDF provides a per-
formance speedup of 1.3-1.6X and an off-chip traffic
reduction of 13-41% relative to WS for parallel divide-
and-conquer programs and bandwidth-limited irregu-
lar programs. Perhaps surprisingly, in such cases, PDF
running on a CMP architecture with a relatively slow
monolithic shared L2 cache retains its advantage over
WS even when WS is run on a CMP architecture with
a faster distributed L2 cache.

e For several other application classes, PDF and WS
have similar performance, either because there is only
limited data reuse that can be exploited or because
the programs are not limited by off-chip bandwidth.
In the latter case, PDF reduces the working set size,
which has other benefits (see Section 2).

e Task granularity plays a key role in CMP cache per-
formance. To help programmers and system designers
cope with this issue, we present an automatic approach
for selecting effective task grain sizes, based on a new
working set profiling algorithm that is an order of mag-
nitude faster than previous approaches.

This is the first paper demonstrating the effectiveness of
PDF for constructive cache sharing on real benchmarks, pro-
viding a direct comparison between PDF and WS, revealing
the limiting factors for PDF in practice, and presenting an
approach for overcoming these factors.

The rest of the paper is organized as follows. Section 2
elaborates the benefits of constructive cache sharing and dis-
cusses related work. Section 3 describes PDF and WS in
detail. Section 4 provides experimental methodology, then
Section 5 presents our detailed experimental study. Sec-
tion 6 presents and evaluates our task granularity algorithm.
Finally, Section 7 concludes the paper.

2. CONSTRUCTIVE CACHE SHARING

In this section, we motivate the need for constructive
cache sharing on CMPs, then discuss related work on achiev-
ing it. Our discussion in this section, as well as the proper-
ties of the techniques we study, are in many ways agnostic
to the particulars of the CMP implementations. This gen-
erality is important, given the ongoing debate over on-chip
cache organizations, interconnect designs, and capabilities
of cores in a CMP with many cores. Our argument relies
on only two features. First, there is considerable on-chip
cache that can service requests by any core. This can be
a shared L2 cache or even private (L1 or L2) caches that
can service misses from other cores. Second, the off-chip la-
tency and bandwidth is significantly worse than the on-chip
latency and bandwidth. The on-chip cache organization can
be flat or hierarchical, uniform or heterogeneous, static or
dynamic, etc.—as long as the worst of the on-chip latency
and bandwidth is still many times better than going off chip,
our discussion and results apply.

2.1 Constructive Sharing is Critical for CMPs

Mitigating the latency and bandwidth gap. In CMPs,
there is a large latency and bandwidth gap between the on-
chip and off-chip storage. The latency to off-chip storage
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is worse because of the much slower and longer inter-chip
buses and the much larger off-chip storage (e.g., main mem-
ory) with significantly higher latency than on-chip storage
(e.g., L1 and L2 caches). The bandwidth to off-chip stor-
age is severely constrained by pin limitations. As a result,
it is not uncommon to have an order of magnitude gap be-
tween the latency and bandwidth on-chip versus off-chip. To
make matters worse, the number of cores on chip is rapidly
increasing as a result of Moore’s Law. Concurrently execut-
ing program threads on P cores may speed up the on-chip
part of the computation P-fold. However, this may also re-
sult in a P-fold demand for the precious off-chip bandwidth,
which is the case with program threads processing large dis-
joint working sets (as in many of the benchmarks we study).
The threads compete for the same limited on-chip cache stor-
age and off-chip bandwidth. In contrast, constructive cache
sharing aims to have concurrently executing threads share
a largely overlapping working set and therefore can reduce
the aggregate working set size by up to a factor of P.

Enabling better use of on-chip real estate. One ap-
proach to attacking the off-chip bottleneck is to use larger
and larger on-chip caches. If the number of cores doubles,
double the cache size. While seductive, this approach suffers
from the well-known fact that increasing the cache size of-
ten provides diminishing returns on reducing the miss rate.
Moreover, it overlooks the fact that the same area may
be more profitably devoted to other components, such as
adding more cores. Constructive sharing removes the re-
quirement that the cache scales directly with the number of
cores. As a result, a given semiconductor fabrication tech-
nology generation can support more cores within the same
area, while providing better miss rates.

Reducing power consumption. Because constructive
cache sharing reduces the amount of cache needed by mul-
tithreaded programs (by up to a factor of P), it provides
new opportunities to power down segments of the cache [25,
4, 41]. Consider, for example, a cache architecture that
supports eight 1 MB on-chip caches that can be powered
on or off as needed. If constructive cache sharing reduces
the working set from 8 MB to < 1 MB, then 7 of the 8
caches can be powered down. Moreover, constructive cache
sharing saves power by reducing the off-chip traffic—studies
have shown that an L2 miss serviced off-chip incurs 35X the
power of an on-chip L2 hit [26].

2.2 Related Work

Much of the previous work that considers shared cache
performance focuses on concurrent or interleaved indepen-
dent computations [39, 2, 36, 31, 17, 38]. In particular,
recent years have witnessed a number of investigations into
the scheduling of such tasks to improve the utilization of var-
ious platform resources, including caches, for SMT [35, 29]
and CMP [13, 37, 24, 22] processors by reducing destructive
interference. In contrast, our work focuses on promoting
constructive cache sharing among cooperating threads that
share an address space.

Interestingly, Anderson and Calandrino [3] have a similar
objective of encouraging the co-scheduling of cooperative
threads—but in the context of real-time systems. While
their approach is not particularly well-suited to non-real-
time systems, their micro-benchmark results do indicate that
intelligent co-scheduling of cooperative threads can reduce
the number of L2 misses substantially.
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Figure 1: Scheduling parallel Mergesort using WS and PDF': Picturing the misses. Each horizontal box is a
sorted array of records, where at each level, pairs of arrays from the previous level are merged until all the
records are sorted. The L2 hits and misses are shown for sorting an array of Cp bytes, where Cp is the size

of the shared L2 cache, using 8 cores.

Philbin et al. [30] studied the possibility of reducing cache
misses for sequential programs through intelligent schedul-
ing of fine-grained threads. Their approach relies on memory
access hints in the program to identify threads that should
execute in close temporal proximity in order to promote
cache reuse. Although the scheduler is not directly appli-
cable to parallel scheduling, the approach may be a useful
pre-processing step for the PDF scheduler, which relies on
the program having a cache-friendly sequential schedule.

3. WORK STEALING AND PARALLEL
DEPTH FIRST SCHEDULERS

In this paper, we compare the performance of two greedy

schedulers proposed for fine-grained multithreaded programs:

Work Stealing (WS) and Parallel Depth First (PDF).

Threads and the dependences among them are often de-
scribed as a computation DAG. Each node in the DAG rep-
resents a task, which is a thread or portion of a thread that
has no internal dependences to/from other nodes. A weight
associated with each node represents the task’s runtime. We
refer to the longest (weighted) path in the DAG as the depth
D. A node or task is ready if all its ancestors in the DAG
have completed. The DAG unfolds as the computation pro-
ceeds, and the job of the scheduler is to assign nodes of the
DAG to processor cores over time so that no node is assigned
at a time before it is ready. In a greedy scheduler, a ready
task remains unscheduled only if all processors are already
busy executing other tasks.

Work Stealing (WS) is a popular greedy thread scheduling
algorithm for multithreaded programs, with proven theoret-
ical properties with regards to memory and cache usage [10,
8, 1]. The policy maintains a work queue for each processor
(actually a double-ended queue that allows elements to be
inserted on one end of the queue, the top, but taken from
either end). When forking a new thread, this new thread is
placed on the top of the local queue. When a task completes
on a processor, the processor looks for a ready-to-execute
task by first looking on the top of the local queue. If it finds
a task, it takes the task off the queue and runs it. If the
local queue is empty it checks the work queues of the other
processors and steals a task from the bottom of the first

107

non-empty queue it finds. WS is an attractive scheduling
policy because when there is plenty of parallelism, stealing
is quite rare and, because the tasks in a queue are related,
there is good affinity among the tasks executed by any one
processor. However, WS is not designed for constructive
cache sharing, because the processors tend to have disjoint
working sets.

Parallel Depth First (PDF) [6] is another greedy schedul-
ing policy, based on the following insight. Important (se-
quential) programs have already been highly tuned to get
good cache performance on a single core, by maintaining
small working sets, getting good spatial and temporal reuse,
etc. In PDF, when a core completes a task, it is assigned
the ready-to-execute task that the sequential program would
have executed the earliest.” As a result, PDF tends to co-
schedule tasks in a way that tracks in some sense the se-
quential execution. Thus, for programs with good sequen-
tial cache performance, PDF provides good parallel cache
performance (i.e., constructive cache sharing), as evidenced
by the following theorem:

THEOREM 3.1. [5] Let My be the number of misses when
executing an arbitrary computation DAG G sequentially with
an (ideal) cache of size C. Then a parallel execution of G
using PDF on P cores with a shared (ideal) cache of size at

least C + P - D incurs at most My misses, where D is the
depth of G.

This compares favorably to the comparable upper bound for
WS, where the cache size must be at least C- P to guarantee
roughly M; misses [8, 1]. However, these analytical guar-
antees leave unanswered a number of important research
questions. For example, what is the relative performance of
the two schedulers on real benchmarks? How does the size,
Cp, of the on-chip cache effect the performance, particularly
when Cp is larger than C + P - D? In this paper, we address
these questions through experimental studies, where Cp is
determined by technology factors, and increases roughly lin-
early with P in our default configurations.

An Example. Figure 1 depicts pictorially the L2 cache

!Note that [6, 7, 28] show how to do this on-line without
executing the sequential program.



Table 1: Parameters common to all configurations.

Table 2: Default configurations.

Processor core In-order scalar

[ Number of cores [T 7274 [8]16]32]

Private L1 cache | 64KB, 128-byte line, 4-way,

1-cycle hit latency

Shared L2 cache | 128-byte line, configuration-dependent
Main Memory latency: 300; service rate: 30 (cycles)

Technology (nm) 90 [ 90 [90 [ 65 45 | 32
L2 cachesize (MB) [ 10| 8 | 4 | 8 [ 20 | 40
Associativity 20116 [ 16 [ 16 | 20 | 20
L2 hit time (cycles) [ 15 [ 13 [ 1T [ 13 [ 19 | 23

Table 3: Single technology configurations with 45nm technology.

[ Number of cores [T 727416 8JI0[12]14]16 18202224726 |
L2 cache size (MB) 48 |44 140 | 36 | 323228 (24|20 |16 | 12| 9 5 1
Set associativity 24 122 [20 [ I8 [ 16 [ 16 [ 28 [ 24 [ 20 [ 16 [ 24 | I8 [ 20 [ 16
L2 hit time (Cycles) 25 (25123 (23 |21 |21 (211919 |17 |15 |15 |13 | 7

hits and misses when using WS and PDF to schedule a paral-
lel Mergesort computation (which is detailed in Section 4.2).
Mergesorting an n byte (sub)array uses 2n bytes of memory,
because after completing a merge of two sub-arrays X and
Y of size n/2 into a sub-array of size n, the buffers holding
X and Y can be reused. In (a), we see a snapshot in which
WS is starting to encounter capacity misses because each
core, P1-P8, is working on a sub-array of size n = Cp/8,
and hence their aggregate working set of 2 - Cp does not fit
within the L2 cache. In contrast, PDF has P1-P8 perform-
ing a parallel merge into a sub-array of size Cp/2, and hence
is incurring no capacity misses. In fact, the only misses thus
far are the cold misses in bringing in the first half of the
input array. From (b) we see that with P cores there are
log P levels in which PDF incurs no misses while WS incurs
all misses. This is a general phenomenon for the common
recursive divide-and-conquer paradigm where the problem
sizes decrease by (roughly) a factor of 2 at each level of the
recursion: PDF eliminates the misses in log P levels (only).

As apparent in Figure 1, for Mergesort using PDF, the
number of misses is Mpas ~ X log(N/Cp), where N is the
number of items being sorted and each cache line can hold
B items. A standard (recursive) sequential Mergesort in-
curs My = % log(N/C) misses, where C is the size of the
cache. Note that because Cp > C, we have that Mpqr < M.
For Mergesort using WS, the number of misses is Mys =~
X log(NP/Cp), which is an additive % log P larger than
Mpas. These results hold for any Cp > C + P - D, including
Cp = P - C as well as the configurations in our study.

4. METHODOLOGY

In this section, we describe our experimental methodol-
ogy, focusing on the CMP design space to explore and the
benchmarks to use in our study.

4.1 CMP Design Space

We evaluate the performance of the WS and PDF sched-
ulers across a range of realistic (future) CMP configurations.
We assume area-constrained scaling and use a proportional
chip area allocation [20]. All area factors that we use are
based on the 2005 ITRS edition [32]. We consider, in par-
ticular, the 90nm, 65nm, 45nm, and 32nm technologies.?
Although to be concrete the configurations described be-
low are based on specific technologies, our results hold more
generally across a wide range of cache parameters.

We focus on CMP designs with private L1 caches and a

2By the end of 2006, major microprocessor manufacturers
have already been shipping or started shipping products
based on 65nm process technology. Intel has announced
plans to start 45nm production in the second half of 2007.
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shared L2 cache. For our purposes, the most important con-
figuration parameters are (i) the number of processing cores
(P) and (ii) the size of L2 cache (Cp). (We consider a private
L1 cache as a component in a core design and keep the L1
cache size per core fixed.) The die size is fixed at 240mm?.
75% of the total die area is allocated to the processing cores,
shared L2 cache, and the processor interconnect, leaving the
rest for other system-on-chip components. Of the core-cache
area, 15% is used by the processor interconnect and related
components, leaving approximately 65% of the total die area
(150mm?) for cores and caches. We model a single-threaded
in-order core. We compute its area requirement by using the
data of the IBM PowerPCRS64 ([12]), which is an in-order,
dual-threaded core, and by assuming a 5% area decrease for
removing the second hardware thread context [19]. Then
we use the logic area factors from ITRS to compute the core
area under various process technologies. Given a P, we can
determine the area occupied by all cores, and the remaining
area is allocated to the L2 cache.

Our L2 cache design assumes a rectangular cache layout in
which cache banks are connected through switches on a 2D-
mesh network, similar to S-NUCA-2 [23] but with a uniform
access delay. We calculate Cp for each technology using
ITRS estimates of SRAM cell area factors and efficiency.
The cache access latency is the network round-trip latency
to access the furthest away bank, plus the bank access delay.

Cacti 3.2 [34] is used to determine optimized cache de-
signs and their latencies. Our optimized cache designs em-
ploy 1IMB or 2MB cache banks. These bank sizes balance
network delay with bank access latency. Using realistic sig-
nal delay models [14], we calculate the bank-to-bank hop
latency to be 1 cycle for the cache sizes and technologies
considered. We optimize the overall bank access latency by
using Cacti recursively on each bank, where each recursion
step determines whether dividing this sub-bank even fur-
ther will result in lower access latency. Our optimized 1MB
cache bank design employs 4 x 256KB sub-banks with split
tag and data arrays, with an access latency of 7 cycles and
wave pipeline time of 3 cycles at 45 nm technology, while
our 2MB cache bank design employs 4 sub-banks each di-
vided into 4 x 128KB sub-banks with split tag and data
arrays, resulting in 9 cycles access latency and 2 cycles wave
pipeline time for the same technology. We assume conserva-
tively that those latencies are the same for the 90nm, 65nm
and 32nm geometries.

Given the above methodology, we generate realistic con-
figurations in two different design spaces: scaling technology
and single technology. The non-varying configuration pa-
rameters of our experiments are summarized in Table 1.

Scaling technology. Under scaling technology, we assume



that the process technology will change as we increase the
number of cores. Such an assumption represents realistic
trends over time, as designers tend to increase the number
of cores with subsequent process generations. One effect
of scaling technology is that configurations with more cores
tend to also accommodate larger caches. The six settings as
shown in Table 2 are selected as the default configurations
for the given number of cores.

Single technology. In contrast, the single technology
design space represents the trade-offs associated with a par-
ticular technology. Microprocessor designers typically must
design for a particular process generation and, consequently,
must evaluate trade-offs within a particular technology. We
study the 45nm process technology as a contemporary de-
sign space, with Table 3 showing the selected configurations
for this technology.

Given a particular configuration, we evaluate the perfor-
mance of the two schedulers on each multithreaded program
by (1) annotating the program to mark task boundaries, (2)
collecting a trace of its computation DAG annotated with
the memory references for each task, and finally (3) execut-
ing the DAG on the simulated CMP in accordance with the
scheduler. (Details are in [16].)

4.2 Benchmarks

We study the effect of scheduling on a number of bench-
marks from a variety of domains. In this section we focus on
only three of the benchmarks (LU, Hash Join, and Merge-
sort), as representative of common classes of benchmarks,
deferring discussions of other benchmarks to Section 5.5.

LU. LU is a representative scientific benchmark, with its
easy parallelization and small working sets. We used the
parallel LU implementation of the Cilk distribution. The
benchmark performs a recursive factorization on a dense
NxN matrix. The input matrix is partitioned into four
quadrants recursively, until the size of the quadrant is equal
to the block size B. A smaller block size creates a larger
number of smaller threads. The block size effectively con-
trols the grain of parallelism, thus we did not have to modify
the benchmark. (Due to trace size limitations, the largest
input size we were able to factorize is a 2K x2K matrix of
doubles, or 32MB input data. As this is smaller than the L2
cache in the 32-core default configuration, we only report
LU results for up to 16 cores.)

Hash Join. Hash Join is representative of many (com-
mercial or otherwise) programs that use large irregular data
structures and benefit from large caches. We use a state-of-
the-art database hash join code [15]. In an initial I/O parti-
tion phase, each of the two large input tables is partitioned
into fragments that fit within the memory buffer allocated
for the join (1GB in our study). We study the second, join
phase, which joins pairs of partitions; in current database
systems, this is the most time-consuming phase. Each par-
tition is divided into sub-partitions that fit within the L2
cache. For each sub-partition, the keys from the “build”
table are placed in a hash table, which is then probed for
matches from the “probe” table. The matching build and
probe records are concatenated to produce outputs. While
the original code used one thread per sub-partition, we fur-
ther divided the probe procedure (which typically dominates
the join phase [15]) for each sub-partition into multiple par-
allel tasks to produce finer-grained threading. Here, we re-
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port representative experiments that join a pair of build and
probe partitions that fit tightly in a 1GB memory buffer.
Every build record matches 2 probe records where each
record is 100B and the join attribute is 4B.

Mergesort. Mergesort is representative of many pro-
grams that use a recursive divide-and-conquer paradigm.
Our Mergesort benchmark is structured after libpmsort [40],
a parallel recursive mergesort library, but with the serial
merging of two sorted sub-arrays modified to use a parallel
merge instead. We select a total of £k splitting points from
the two sorted sub-arrays, for a suitable value of k seeking
to optimize the cache performance at the given level of re-
cursion (details in Section 5.4 and Section 6.2). For each
chosen value from one array, we locate the closest value in
the other array using binary search. In this way, we create k
pairs of array chunks, which can be merged in parallel. An
example Mergesort run was given in Figure 1.

S. EXPERIMENTAL STUDY

In this section we present a detailed experimental study
of the PDF and WS schedulers. We explore the CMP design
space in order to answer the following questions: (i) Is the
choice of PDF vs. WS significant in practice? If yes, what
types of applications benefit most from PDF? (ii) How does
the performance of PDF vs. WS change across the CMP
design space?” How does this impact the choice of CMP
design points? (iii) Are the results sensitive to changes in
architectural parameters? (iv) What is the impact of thread
granularity on the performance of PDF vs. WS?

In the following, we begin in Section 5.1 by comparing
PDF and WS using the default CMP configurations. Sec-
tion 5.2 explores the CMP design points under the 45nm
technology. Section 5.3 performs sensitivity analysis. Sec-
tion 5.4 studies the impact of thread granularity. Finally,
Section 5.5 summarizes our findings.

5.1 Default Configurations: PDF vs. WS

Figure 2 compares the performance of PDF and WS for
the three application benchmarks running on our default
CMP configurations with 1 to 32 cores. Each row of sub-
figures in Figure 2 shows the performance results of a single
application. The left column reports the speedup of running
the application using all the cores compared to sequential
execution of the application on one of the cores with the
same CMP configuration. The right column reports the L2
cache misses of the application with different schedulers.

From Figure 2, we see that the comparisons between PDF
and WS vary significantly for the three applications. There-
fore, we analyze the results for each application in turn.

LU. Figures 2(a)-(b) depict the performance results of LU
for five default configurations, using PDF and WS. We can
see that PDF incurs 36.8% fewer L2 misses per instruction
than WS. However, the miss per instruction ratio is very
low to begin with because of the benchmark’s small working
set. In fact, the average memory bandwidth utilization for
LU is only 0.15%-1.57% for PDF and 0.15%-2.41% for WS,
with PDF having slightly smaller utilization as expected.
Therefore, the reduced L2 misses by PDF scarcely affects
performance, and the absolute speedups are practically the
same for both PDF and WS.

Hash Join. Figures 2(c)-(d) report the performance re-
sults of joining a single pair of memory-sized partitions for
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Figure 2: Parallel Depth First vs. Work Stealing
with default CMP configurations.

all six default configurations. We can see that PDF achieves
significantly better performance than WS. For 2-32 cores,
PDF achieves a factor of 1.97-14.28 fold speedups over se-
quential execution, while WS obtains only a factor of 1.81-
10.19 fold speedups. These result in a factor of 1.09-1.50
fold relative speedups of PDF over WS. The good perfor-
mance of PDF comes from effective constructive cache shar-
ing to avoid off-chip cache misses. As shown in Figure 2(d),
PDF incurs 13.2%-38.5% fewer L2 misses per instruction
than WS. Interestingly, the performance increase by dou-
bling the number of cores is significantly smaller from 16
to 32 cores than in other cases. This is because Hash Join
is main memory bandwidth-bound for the 16-core and 32-
core configurations: it utilizes 89.5%-90.1% of the available
memory bandwidth with PDF and 92.2%-97.3% with WS.

Mergesort. Figures 2(e)-(f) show the performance results
of sorting 32 million integers using Mergesort, for the six de-
fault CMP configurations. For 2-32 cores, PDF achieves a
factor of 2.00-26.44 fold speedups over sequential execution,
while WS obtains a factor of 1.93-22.30 fold speedups. These
lead to a factor of 1.03-1.19 fold relative speedups with 2-32
cores of PDF over WS. Figure 2(f) depicts the L2 misses per
instruction ratios. Similar to Hash Join, PDF incurs 13.8%-
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Figure 3: Parallel Depth First vs. Work Stealing
under a single technology (45nm).

40.6% fewer L2 misses per instruction than WS. Comparing
Figure 2(b), Figure 2(d), and Figure 2(f), we see that the
L2 misses per instruction ratio of Mergesort (around 0.1%)
is much lower than Hash Join (around 0.6%), but is still sig-
nificant enough compared to LU (around 0.01%) to make a
difference on performance. We can clearly see the trend that
the larger the ratio of L2 misses per instruction, the larger
impact constructive cache sharing may have, and therefore
the larger relative performance benefits of PDF over WS.
Moreover, unlike Hash Join, Mergesort experiences only up
to 71.0% memory utilization due to the lower misses per in-
struction ratios, and thus the absolute speedup continues to
increase dramatically from 16 to 32 cores.

Considering the performance results of the three bench-
marks, we conclude that PDF achieves significantly better
performance than WS for a group of important applications
that have non-trivially large working sets, as evidenced by
the L2 misses per instruction ratios. Because LU does not
differentiate between PDF and WS, we focus on Hash Join
and Mergesort in the rest of the experimental study.

5.2 Single Technology Analysis

Figure 3 shows the execution time of Hash Join and Merge-
sort using PDF and WS, for 1-26 cores under the 45nm pro-
cess technology. As shown previously in Table 3, the L2
cache size decreases from 48MB with 1 core to 1IMB with 26
cores. We examine Figure 3 for two purposes: (i) comparing
the performance of PDF and WS; and (ii) understanding the
impact of PDF on the choices of CMP design points. For
the first purpose, as shown in Figure 3, we see that PDF
wins across all the CMP configurations, achieving over WS
a factor of 1.06-1.64 fold speedup for Hash Join and a factor
of 1.03-1.11 speedup for Mergesort.

For the second purpose, as shown in Figures 3(a) and (c),
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we can see that the major trend of all the curves is to gen-
erally decrease as the number of cores increases, meaning
that application performance generally improves with more
cores. When there are 10 or more cores, the curves seem flat.
However, when we zoom into the 10-26 core performance in
Figures 3(b) and (d), we see that the curves actually vary.
The Hash Join curves reach the lowest points around 18
cores then go up, while the Mergesort curves continue to
decrease until 24 or 26 cores. With 18 or more cores, Hash
Join utilizes over 95% of the main memory bandwidth. In-
creasing the number of cores while decreasing the cache size
only makes the situation worse, leading to the worse perfor-
mance. In contrast, Mergesort is not bounded by memory
bandwidth and its performance improves with more cores.®
When making a design choice in the CMP design space,
a typical goal is to optimize the performance of a suite of
benchmark applications (e.g., SPEC) measured by aggre-
gate performance metrics. Compared to WS, PDF pro-
vides larger freedom in the choice of design points in order
to achieve a desired level of performance (e.g., more than
K times faster than a reference configuration) for a mul-
tithreaded application. For example, for Hash Join, 10-26
cores with PDF achieve similar or better performance than
the best WS performance. Similarly, 20-26 cores with PDF
achieve similar or better performance than the best WS per-
formance for Mergesort. Thus designers are able to make
better trade-offs balancing sequential vs. multithreaded, and
computation-intensive vs. memory-intensive programs.

3From 24 cores (5MB cache) to 26 cores (IMB cache),
Mergesort with PDF experiences a large jump (41% in-
crease) in its L2 misses per instruction ratio. This explains
the jump in its execution time in Figure 3(d).
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5.3 CMP Parameter Sensitivity Analysis

Figure 4 and Figure 5 compare the performance of PDF
vs. WS varying the L2 cache hit time and varying the main
memory latency. The results are similar to our default con-
figurations. In particular, compared to WS, PDF achieves a
factor of 1.21-1.62 fold relative speedups for Hash Join and
1.03-1.29 fold relative speedups for Mergesort.

Interestingly, from Figure 4, we can compare the PDF bar
for a 19-cycle L2 hit time with the WS bar for a 7-cycle hit
time. This comparison reveals that PDF running on a CMP
architecture with a relatively slow monolithic shared cache
(19-cycle hit time) retains its advantage over WS even when
WS is run on a CMP architecture with a faster distributed
on-chip cache (7-cycle hit time to a core’s local bank). This
is because for Hash Join and Mergesort, in our experiments,
the number of L2 hits is on par with the number of L2
misses, so the L2 miss time dominates any differences in L2
hit times.

5.4 Impact of Thread Granularity

In the course of parallelizing the benchmark applications,
we found that task granularity had a large impact on cache
performance and execution times. As discussed in Section 4.2,
the original versions of the Hash Join and Mergesort pro-
grams both suffered from being too coarse-grained. The
original Hash Join code generates only one thread per cache-
sized sub-partition. The original Mergesort code employs a
serial merging procedure. By parallelizing the probe proce-
dure within the processing of a sub-partition in Hash Join
and by parallelizing the merging procedure for Mergesort,
we removed serial bottlenecks and improved constructive



cache sharing among multiple threads.* As a result, our
fine-grained versions are up to 2.85X faster than the coarse-
grained originals.

We further study the impact of task granularities on the
fine-grained versions of the code. Here we focus on the more
interesting, recursive task structure of the Mergesort DAG.
(In contrast, Hash Join has a simple two-level task struc-
ture.) Figure 6 shows Mergesort’s L2 misses per instruction
and execution time, as a function of the task working set
sizes. Because of the regularity of Mergesort’s recursive task
structure, adapting the Mergesort code to use a desired task
working set size is straightforward. We choose the sorting
sub-array size to be half the desired working set size®, so
that the sub-array can be sorted efficiently within a single
sequential task.

Figure 6 shows that while the cache performance of WS is
relatively flat across the range of task sizes, the cache per-
formance of PDF improves considerably with smaller task
sizes. As a result, PDF’s cache performance advantage in-
creases with smaller task sizes (e.g., PDF incurs fewer than
half as many misses as WS for 32KB task sizes with the
32-core default configuration). Thus, as the figure shows,
thread granularity has a large impact on the relative perfor-
mance gains of PDF vs. WS. When each scheduler gets its
optimal task size, PDF is 1.17X faster than WS because of
this improved cache performance.

5.5 Summary of Our Benchmark Study

Although in this section we have focused on only three
benchmarks, in all, we have studied additional benchmarks
from a variety of domains: numeric (Cholesky [9], Matrix
Multiply), scientific simulation (Barnes, Heat [9]), data min-
ing (Hmmer [21]), sorting (Quicksort), meshing (Triangle [33])
and classification (C4.5 [27]). We now summarize the key
findings from the experimental results in this section as well
as briefly describe the lessons we learned from our extended
benchmark study.

First, there are benchmarks (Hash Join, Mergesort) for
which PDF’s advantage translates into up to 1.3—1.6X per-
formance improvement over WS. As discussed in Section 4,
Hash Join is representative of many (commercial or other-
wise) programs that use large irregular data structures and
benefit from large caches. Mergesort demonstrates the ben-
efits PDF provides for benchmarks with a recursive divide-
and-conquer paradigm. Many other benchmarks (Quick-
sort, Triangle, C4.5) follow this paradigm. However, unlike
Mergesort, their “divide” steps may break a subproblem into
two highly imbalanced parts because the “divide” point is
often chosen for specific algorithmic needs not for balanc-
ing the two parts. Fortunately, PDF can effectively handle
irregular parallel tasks that are dynamically spawned [5].

Second, many benchmarks (LU in the above study, and
other benchmarks such as Matrix Multiply, Cholesky, Barnes)
can achieve good cache performance with a very small amount
of data in cache. In such cases, the fact that WS increases

“In all the above experiments in Section 5, we manually
choose the number of splitting points k in the parallel merge
to obtain sufficient parallelism. Within the sub-DAG of sort-
ing a sub-array A that is half the L2 cache size, we choose
k so that the aggregate number of merging tasks per DAG
level is 64, which is larger than the number of cores.
®Recall that the working set size for mergesorting a sub-
array of size n is 2n.
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the working set by the number of cores P does not effect per-
formance, because the aggregate working set still fits in the
shared cache, and hence WS matches PDF’s performance.
As discussed in Section 5.1, the small working set often man-
ifests itself as low L2 misses per instruction ratios. Our re-
sults support that this ratio should be on the order of 0.1%
or more for PDF to make a significant difference in exe-
cution time. However, even for applications with smaller
ratios, PDF can be valuable. As pointed out in Section 2,
PDF’s smaller working set can translate into better use of
on-chip real estate and reduced power consumption. Addi-
tionally, when multiple programs are run at the same time,
the PDF version is less of a cache hog and its smaller work-
ing set is more likely to remain in the cache across context
switches.

Third, PDF achieves significant performance gains over
WS across a large number of CMP design points and ar-
chitectural parameters as shown in the above subsections.
Because of this, PDF provides larger freedom in the choice
of design points in order to achieve a desired level of bench-
mark performance.

Finally, most benchmark programs, as written, use such
coarse-grained threading that there is no opportunity for
cache-friendly scheduling. In fact, many programs use a
scheduler only at the beginning of the program: for P pro-
cessors, P threads are spawned at the beginning of the
program and no further spawning is done. Thus, in our
study, we incorporate much finer-grained threading in the
programs (e.g., Hash Join and Mergesort) we study. Our
work quantifies the benefits of more fine-grained threading.
Because of its importance, in the following section, we focus
on the problem of selecting task granularities.

6. AUTOMATIC SELECTION OF THREAD
GRANULARITY

One of the important findings in Section 5 is that task
granularity has a large impact on cache performance and
execution times. On the one hand, coarse-grained tasks
may have serial bottlenecks and large disjoint working sets
that hinder constructive cache sharing. On the other hand,
threading that is too fine-grained increases scheduling and
synchronization overheads, as well as any instruction over-
heads for running parallel code versus sequential code.® Thus
judiciously choosing task granularity is an important yet
challenging problem.

In general, selecting good task sizes is challenging because
it requires predicting how P tasks that might run concur-
rently would interact in the L2 cache. To guide the selec-
tion of appropriate task grain sizes, we have developed an
efficient working-set profiler for multi-threaded programs,
which can be used for profile-based feedback during software
development to set appropriate task sizes. In this approach,
programs are first written with fine-grained tasks, and the
profiler suggests groups of tasks to combine into larger tasks
based on their working sets.

In the following, Section 6.1 presents our working set pro-
filer, and Section 6.2 describes how to use its information to
automatically choose task granularities.

5Tn Mergesort, for example, it is well known that sorting
small sub-arrays sequentially is faster than continuing to
apply parallel Mergesort recursively.



6.1 Efficient One-Pass Profiling for Groups of
Consecutive Tasks

We call a group of consecutive tasks (corresponding to
a sub-graph in the DAG) a task group. Consider the case
of parallel Mergesort. The task group for sorting an en-
tire sub-array consists of three smaller task groups: sorting
the left half, sorting the right half, and merging the two
parts. Parallel merging may be formed into multiple levels
of task groups by recursively dividing a group containing
K tasks into two sub-groups containing | K /2] and [K/2]
tasks, respectively. In this way, task groups form a hierar-
chical structure, where each parent task group is a superset
of all the child task groups, sibling task groups are disjoint,
and the leaf nodes are the finest-grain individual tasks. In
general, given very fine-grained tasks, we would like to know
the working set sizes of all task groups and use this infor-
mation to guide task selections.

To obtain the working set size of a single task group, a
straightforward approach would be to generate the memory
reference trace of the task group and then perform trace-
driven simulations of set-associative caches across a range
of cache sizes (starting with a cold cache). We call this ap-
proach SetAssoc. As we will show, SetAssoc’s performance
suffers considerably when a large number of nested task
groups are to be measured. This is because it must pro-
cess the trace of the entire application multiple times, once
for each level of the task group hierarchy.

We propose a one-pass algorithm that first processes a
program’s memory reference trace once to collect statistics
on every task and then uses the gathered statistics to effi-
ciently compute the working set size of potential groups of
consecutive tasks. We restrict our analysis to tasks that are
consecutive in a sequential run of the program, as these are
the tasks that are naturally grouped together when coarsen-
ing. Note that our use of predefined hierarchical task groups
already captures opportunities to group parallel siblings to-
gether.

To collect per-task statistics, we perform a one-pass cache
simulation using an augmented version of the standard LRU
stack model. Specifically, when a task i references a memory
location R within a cache line L, the cache simulator returns
two values: L’s distance, d, from the top of the stack, and the
ID, j, of the task that last touched L (called the previous-ID
for L). Note that whether or not R is a cache miss depends
on both the cache size and the task group considered. To
understand why the latter is also important, consider a task
group of consecutive tasks b,b+1,...,4,...,e. Then, start-
ing with a cold cache before task b, reference R of task i
would be a cold miss if the previous-ID, j, for L is earlier
than b (i.e., 7 < b), but possibly a hit if j > b (depending
on the cache size). Therefore, the per-task statistics must
capture both the distance and the previous task informa-
tion. We design the per-task statistics as a two-dimensional
histogram. The distance dimension is divided into buckets
Dy < Dy < -+ < Dy, corresponding to the list of increasing
cache sizes for working-set computations. In the previous-
task dimension, the bucket ID is the difference between the
task IDs of the current and previous visits to the same line.
For example, given the above return values for reference R,
the algorithm looks for D,_1 < d < Dy, and then incre-
ments the count of the bucket (Dp,i — j) by 1.

After obtaining the per-task two-dimensional histogram,
the algorithm computes the working set size of any group of
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consecutive tasks as follows. Given a task group including
task b to e, the number of cache hits for a cache size D, is
equal to the sum of all the buckets (D,T") where D < D,
and T' < i — b for every task i in the group.

Let us examine the complexity of the above algorithm.
The LRU stack model can be implemented as a doubly
linked list of nodes representing cache lines. Moreover, all
the nodes can be indexed by a hash table with cache line
addresses as hash keys. A typical operation involves four
steps: (i) looking up the cache line address of a reference R;
(ii) counting the distance from the current node to the stack
top; (iii) updating the stack model by moving the touched
node to the top of the stack; and (iv) retrieving and updat-
ing the previous-ID. Steps (i), (iii) and (iv) are all O(1). For
step (ii), we build a tree structure on top of the linked list to
count the distance from a node to the stack top in O(log N),
where N is the number of cache lines in the largest cache
size being considered. For good cache performance, we use
a B-tree structure with cache-line-sized tree nodes. We call
this algorithm LruTree.

We compare the performance of the LruTree and the Se-
tAssoc algorithms by processing a trace of Mergesorting 32
million integers. The trace consists of 2.85 billion mem-
ory references, over 110,000 tasks, and over 190,000 task
groups. We ran the algorithms on a desktop machine with
3.2GHz Pentium 4, 1GB memory, and a Seagate Barracuda
7200rpm IDE disk. We find that the SetAssoc algorithm
took 253 minutes, while the LruTree algorithm ran in only
13.4 minutes—an 18X improvement. Because of the nesting
nature of task groups, SetAssoc suffers from revisiting each
memory record over 22 times on average, whereas LruTree is
a one-pass algorithm. This performance advantage increases
as the problem and DAG sizes grow. Note that LruTree can
be implemented with on-the-fly trace consumption, thus re-
ducing the cost of generating traces.

6.2 Using Profiling Information for Automatic
Task Coarsening

The automatic task coarsening algorithm traverses the
task group tree from top to bottom and evaluates a heuristic
stop criterion at every node. Suppose node G’s working set
size is W, and it has K child task groups of similar sizes.
We stop at G’s children if the following is true:”

W < K X (cachesize/(numcores x 2))

In this way, the child tasks can keep the cores busy. Note
that due to task size variability, some child tasks may finish
early and other parallel work may be scheduled, leading to
sub-optimal cache behavior. The “2” in the criterion is to
reduce this effect.

To incorporate the task selection information into paral-
lel programs, we capitalize upon the fact that many paral-
lel programs are written with a general divide-and-conquer
structure as shown in Figure 7(a). When the Parallelize
function is evaluated True for the parameter, the task is
further divided into child parallel tasks; otherwise, a se-
quential version of the code is executed. Typically, the
Parallelize function compares the parameter with an ap-
propriate threshold value 7', which must be hand-tuned based
on the programmer’s knowledge of the program data struc-

"Note that G’s children may have dependencies as in the
case of Mergesort. For each independent set of children, we
separately apply the criterion and decide whether to stop.



Function parallel_f(param) {
If (Parallelize(param, __FILE _, _LINE )) {
Spawn (parallel_f (Subdivide(param, 1)));
Spawn (parallel_f(Subdivide(param, 2)));

Spawn (parallel_f(Subdivide(param, k)));

Sync ();
combine_results(param) ;
} Else {

sequential_f (param) ;

}

(a) Example divide-and-conquer style parallel program
CMP Configuration | Calling Location Param
L2 Size [ # Cores | _File__ | _Line__ || Threshold

(b) Table for implementing the Parallelize function

Figure 7: Incorporating task selection results into
parallel programs.

tures and would vary with different cache sizes at run-time.
Such tuning is error-prone and further complicated by the
presence of constructive cache sharing.

This tuning task can be greatly simplified by including
a parallelization table as part of the compiled program, as
shown in Figure 7(b). In the table, Param thresholds are in-
dexed by CMP configuration parameters and the locations
of parallelization decisions. At compile-time, these thresh-
olds are seeded with default values that correspond to very
fine-grain threading. The program is then profiled as de-
scribed in Section 6.1. Each task group is also annotated
with the corresponding param value by recording the value
at every spawn invocation. After that, the above analysis is
used to determine the stopping task groups for the combina-
tions of CMP configurations and calling locations. Finally,
the default threshold values in the table are replaced with
the param values that are associated with the stopping task
groups in the final executable.

Note that we obtain the working set information once
through a single profiling pass, but we need to perform a
task coarsening analysis for every CMP configuration be-
cause the stopping criterion is configuration dependent. For-
tunately, the number of CMP configurations can be reason-
ably bounded by the expected lifetime of the executable.
Moreover, the run-time table lookup costs can be reduced,
with appropriate compiler/system support, by identifying
the CMP configuration at program initialization and replac-
ing the lookup with a single memory read.

Finally, we evaluate the effectiveness of the automatic task
coarsening algorithm. Figure 8 compares three schemes us-
ing the Mergesort benchmark while varying the number of
cores. The left bar uses the manually selected tasks and
corresponds to our previous results in Section 5. The mid-
dle and right bars both use the same task selections recom-
mended automatically by our algorithm. The difference is
how we perform CMP simulation using the task selections.
For the right bar, we manually change the Mergesort code
to realize the selection. We run CMP simulation based on
the new trace. In contrast, for the middle bar, we use the
same finest-grain trace in the CMP simulation but simply
substitute a new task DAG based on the recommended task
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Figure 8: Effectiveness of the task selection schemes.

grouping. Therefore, compared to the right bar, an indi-
vidual task of the middle case may be less efficient because
it still contains the parallel code (e.g., parallel merging).
From Figure 8, we see that the right bars are within 5% of
the optimal in all cases, demonstrating the effectiveness of
our automatic task coarsening scheme.

7. CONCLUSION

The advent of Chip Multiprocessor (CMP) platforms re-
quires a reevaluation of standard practices for parallel com-
puting. While traditional Symmetric MultiProcessors (SMPs)
encourage coarse-grained parallelism with largely disjoint
working sets in order to reduce interprocessor coherence traf-
fic (often the key system bottleneck), CMPs encourage fine-
grained parallelism with largely overlapping working sets in
order to increase on-chip cache reuse.

This study demonstrates that the Parallel Depth First
(PDF) scheduler, which was designed to encourage coopera-
tive threads to constructively share the on-chip cache, either
matches or outperforms the Work Stealing (WS) scheduler
on a variety of CMP configurations for all the fine-grained
parallel programs studied. By making more effective use of
cache resources, the PDF scheduler also broadens the design
space for microprocessor designers—potentially enabling the
inclusion of more cores at the expense of cache resources that
are less critical given PDF. Finally, task granularity plays
a key role in CMP cache performance, and we present an
automatic approach for selecting effective task grain sizes
when using PDF.
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