Parallel And Sequential Data
Structures and Algorithms

Algorithms for Sequences

Learning Objectives

* Understanding the sequence ADT and how it can be
implemented using arrays

* Implement core Sequence operations like filter and flatten
efficiently

Recall: Sequence ADT

Definition (Sequence): A sequence of length n over elements of type T is an
ordered collection of values that can be viewed as a mapping from the indices

01,..,n—1}>T

Interface (Sequence): A sequence<T> (with value type T) supports

e nth(S : sequence<T>», 1 : int) -> T:
returns the i*? element of the sequence S

e length(S : sequence<T>) =-> int:
return the length of the sequence S

e subseq(S : sequence<T>, 1 : int, k : int) -> sequence<T>:
returns a view of the subsequence of S starting at index i with length k

Recall: Creating Array Sequences

« Assume that the sequences we construct are ArraySequence<T>, a
contiguous fixed-size array, which supports 0(1) time operations

» This is the type we will assume is returned by the tabulate primitive,
which constructs a sequence from a function

tabulate : (f : (int -> T), n : int) -> ArraySequence<T>
« tabulate(f, n) returns a sequence of length n where S[i] = (1), i.e,,
£ (0), f (1), .., f(n — D)].
« We may also use Python-like syntax in our pseudocode, e.g., we may write

parallel [f(i) for i1 in 0..n-1]

Arrays and Imperative
Parallelism

Arrays: Building Block for Array Sequences

We will assume that arrays support the following operations:

allocate<T>(n): allocate an array of length n of type T
+ A[i]: return the it element of A

|A]: return the length of A
- A[i] « x:write the value x to the ith element of A

Remark: Arrays are mutable! We will need mutation to

implement low level primitives.

Definitions

Definition (Data Race): A data race occurs when there are two

unsynchronized parallel operations on the same memory location, and at
least one of the operations is a write.

* If two operations are both reads, this is not a data race.
* This can’t happen in a purely functional program.

* In this class, we will say the presence of data race makes the
behavior of the program undefined.

Imperative Parallel Loops

Definition (Parallel For Loop): A parallel for loop executes its body for
every value of its range in parallel.

parallel for i in 0..n-1:
e(i)

where e(1) is some (impure) function of i

 This could cause data races.

* The work and span are: wW=>) W(e(i)), $=maxS(e(i))

Data Type for ArraySequence

ArraySequences

type ArraySequence<T> = {
A : Array<T> // actual Array A
s : int // initially ©
£ : int // initially |A|

0 s IA]-1

first element of the
ArraySequence
10

Basic Functions

subseq

fun subseq (S : ArraySequence<T>, s : int, £ : int) -> ArraySequence<T>:
(A)S,Jf,) =S
return (A,s+s’,?)

12

tabulate

fun tabulate (f : (int -> T), n : int) -> ArraySequence<T>:
R = allocate<T>(n)

parallel for i in 0...n-1:
R[i] « f(1)
return (R, 0, n)

fe) | (1) | f2) | £3) | fa) | £5) | fe) | £7) | f8) | fo) | W = Z W(f(i))

0<i<n
Question: Is there a data race? S = om'aX S(f (7))
<in

Answer: No! Each parallel execution of the loop

body operates on a different element of R
13

Sequence Functions

map

fun map (f :

(T ->U), S :

return tabulate(fn i => f(S[i]), |S]|)

sequence<T>) -> ArraySequence<U>:

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

f(s[e])

f(s[1])

f(s[2])

£(s[3])

£(s[4])

f(s[5])

f(s[6])

£(s[7])

f(s[8])

£(s[9])

w= Y W(f(z))

xeS

S = max S(f(z))

€S

15

append

fun append (A : sequence<T>, B : sequence<T>) -> ArraySequence<T>:
return tabulate (fn i => (A[i] if i<|A| else B[i-|A|]), |A|+|B])

Result: | Ale]l | A[1] | A[2] | A[3] | A[4] | B[e] | B[1] | B[2]

16

filter

Definition (Filter):
filter : (p : (T -> bool), S : sequence<T>) -> ArraySequence<T>

filter(p, S) returns a sequence consisting of the elements of S which
satisfy the predicate p. The relative order of the elements is preserved.

Example:

filter (fn x => x < 5, [7,1,3,11,7,2]) returns[1, 3, 2]

17

filter

Goal: implement filter in linear work and logarithmic span

0 0 0 1 0 F = map(fn x => 1 if p(x) else @, S)

NS
M\/ -

R: S[] S[] | s3] | ste] if F[i] == 1: R[x[i]] « S[i]

18

filter implementation

fun filter (p : (T -> bool), S : Sequence<T>) -> ArraySequence<T>:
F =map (fn x => 1 if p(x) else 0, S)
X, £ = scan(plus, 0, F)
R = allocate<T>(¥)

parallel for i in o...|S|-1:
if F[i] == 1:
R[x[i]] « S[i]
return (R,0,7%)

W= > W) 5= O(log|S|) + maxS(p(z))

xeS

19

flatten

Definition (Flatten):
flatten: (S : sequence<sequence<T>>) -> ArraySequence<T>

Given a nested sequence of sequences, return a sequence consisting of all the elements
of the inner sequences in the same relative order.

Example (Flatten):
flatten([[2,3],[7,8,1],[4]]) returns [2,3,7,8,1,4]

Question: Any ideas how to do this?

Answer: We could use scan again!

20

flatten

2 3 1 L = map (fn x=> |[x|, S) //length of inner sequences

0 2 5 offset, length = scan(plus, 0, L)

2 3 7 8 1 4 R[offset[i]+j] « S[i][7]

T T T

offset[0] offset[1] offset[2]

21

flatten implementation

fun flatten (S : sequence<sequence<T>>) -> ArraySequence<T>:
=map (fn x => |x]|, S)
offset, length = scan(plus, @, L)
R = allocate<T>(length)

parallel for i in @...]|S|-1:
parallel for j in ©...L[i]-1:
R[offset[i]+j] « S[i][7]
return (R, @, length)

W= 0 (z (1+|m|)) s- O(log|S1)
x€S

22

Practice!

collate

Definition (Collate):

collate : ((T, T) -> order), sequence<T>, sequence<T>) -> order

collate(f, sl1, s2) returnsthe lexicographical comparison of
sequences sl and s2 using the comparison function f

Examples (Collate):
[1,5,1,2,2] vs [1,5,2,1,0] » LESS (first difference at index 2)

[1,5,2,1,0] vs [1,5,2,1] » GREATER (longer sequence)
["a","b","C"] VS [llall,llbll,llcll] é EQUAL

24

collate

Question: Any ideas how to implement collate, within the costs:

. Work: O(min(m,n)),

. Span: 0(log(min(m, n)))

wherem = |s;|andn = |s,|

Answer: We could use reduce!

25

collate

type order = LESS | EQUAL | GREATER

fun collate(f: (T,T)->order, a: sequence<T>, b: sequence<T>») -> order:
pairs = zip(a, b)
cmps = map(f, pairs) // compare corresponding pairs in a and b
fun first notequal(x, y):
return (y if x == EQUAL else x) // propagate leftmost non-EQUAL
res = reduce(first notequal, EQUAL, cmps)
match res with:
case EQUAL: return compare(|al|, |b]|)
case _: return res

26

Optimized collate

Note: The obvious sequential algorithm will just compare the
two sequences starting from left to right until a difference is
found. Let d be the number of comparisons it does. So, the
work is 0(d). This could be much less than O(min(m,n)).

Can you think of how to achieve a parallel algorithm with
« Work: 0(d)
« Span: 0(log?(d))

Hint: Remember the doubling trick for dynamic arrays

27

Optimized collate (Solution)

* Recall the trick from dynamic arrays (15-122): when you run out of
capacity, double the size. This is efficient because

O(n+2+2++1)=0()

* We can use the same trick and do a "doubling search":

* Check whether subseq(a,9,1) and subseq(b,0,1) are equal, then
subseq(a,9,2) and subseq(b,9,2), then subseq(a,9,4) and
subseq(b,0,4), and so on... until they are not equal

* This takes O (Zd +d + g + % + ...+ 1) = 0(d) work

28

~—C —> SPa

| I SR> (2
| ; (O {24 ~ //‘ﬂ
i o o(&a;d)

o 20 . 1] N

ol 20 SEE) |

A M
S o< 4d 4
J = ﬁ:-ol]

Summary

* Efficiently implementing sequences with arrays requires some
imperative (non-functional) parallelism!

* Core sequence operations like filter and flatten can be
implemented efficiently as applications of scan

30

	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Recall: Sequence ADT
	Slide 4: Recall: Creating Array Sequences
	Slide 5: Arrays and Imperative Parallelism
	Slide 6: Arrays: Building Block for Array Sequences
	Slide 7: Definitions
	Slide 8: Imperative Parallel Loops
	Slide 9: Data Type for ArraySequence
	Slide 10: ArraySequences
	Slide 11: Basic Functions
	Slide 12: subseq
	Slide 13: tabulate
	Slide 14: Sequence Functions
	Slide 15: map
	Slide 16: append
	Slide 17: filter
	Slide 18: filter
	Slide 19: filter implementation
	Slide 20: flatten
	Slide 21: flatten
	Slide 22: flatten implementation
	Slide 23: Practice!
	Slide 24: collate
	Slide 25: collate
	Slide 26: collate
	Slide 27: Optimized collate
	Slide 28: Optimized collate (Solution)
	Slide 29
	Slide 30: Summary

