
Parallel And Sequential Data
Structures and Algorithms

Algorithms for Sequences

1

Learning Objectives

• Understanding the sequence ADT and how it can be
implemented using arrays

• Implement core Sequence operations like filter and flatten
efficiently

2

Recall: Sequence ADT

3

Recall: Creating Array Sequences

4

Arrays and Imperative
Parallelism

5

Arrays: Building Block for Array Sequences

• We will assume that arrays support the following operations:

• allocate<T>(n): allocate an array of length n of type T

• A[i]: return the ith element of A

• |A|: return the length of A

• A[i] ← x: write the value x to the ith element of A

6

Remark: Arrays are mutable! We will need mutation to
implement low level primitives.

Definitions

7

Definition (Data Race): A data race occurs when there are two
unsynchronized parallel operations on the same memory location, and at
least one of the operations is a write.

• If two operations are both reads, this is not a data race.

• This can’t happen in a purely functional program.

• In this class, we will say the presence of data race makes the
behavior of the program undefined.

Imperative Parallel Loops

8

• This could cause data races.

• The work and span are:

Definition (Parallel For Loop): A parallel for loop executes its body for
every value of its range in parallel.

parallel for i in 0…n-1:
e(i)

where e(i) is some (impure) function of i

Data Type for ArraySequence

9

ArraySequences

10

type ArraySequence<T> = {
A : Array<T> // actual Array A
s : int // initially 0
ℓ : int // initially |A|

}

0 |A|-1

first element of the
ArraySequence

A:

s

Basic Functions

11

subseq

12

fun subseq (S : ArraySequence<T>, s : int, ℓ : int) -> ArraySequence<T>:
(A,s’,ℓ’) = S
return (A,s+s’,ℓ)

0 |A|-1

A:

s’

ℓ′

s+s’ ℓ

tabulate

13

fun tabulate (f : (int -> T), n : int) -> ArraySequence<T>:
R = allocate<T>(n)
parallel for i in 0...n-1:
R[i] ← f(i)

return (R, 0, n)

f(0) f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9)

Question: Is there a data race?

Answer: No! Each parallel execution of the loop
body operates on a different element of R

Sequence Functions

14

map

15

fun map (f : (T -> U), S : sequence<T>) -> ArraySequence<U>:
return tabulate(fn i => f(S[i]), |S|)

S[0] S[1] S[2] S[3] S[4] S[5] S[6] S[7] S[8] S[9]

f(S[0]) f(S[1]) f(S[2]) f(S[3]) f(S[4]) f(S[5]) f(S[6]) f(S[7]) f(S[8]) f(S[9])

append

16

fun append (A : sequence<T>, B : sequence<T>) -> ArraySequence<T>:
return tabulate (fn i => (A[i] if i<|A| else B[i-|A|]), |A|+|B|)

A[0] A[1] A[2] A[3] A[4] B[0] B[1] B[2]

A[0] A[1] A[2] A[3] A[4] B[0] B[1] B[2]Result:

W = S =

filter

17

Definition (Filter):

filter : (p : (T -> bool), S : sequence<T>) -> ArraySequence<T>

filter(p, S) returns a sequence consisting of the elements of S which
satisfy the predicate p. The relative order of the elements is preserved.

Example:

filter (fn x => x < 5, [7,1,3,11,7,2]) returns [1, 3, 2]

3
18

Goal: implement filter in linear work and logarithmic span

filter

1 0 1 1 0 0 1 0 F = map(fn x => 1 if p(x) else 0, S)

0 1 2 3 4 5 6 7

0 1 1 2 3 3 3 4 x,ℓ = scan(plus, 0, F)

0 1 2

R: S[2]S[0] S[3] S[6] if F[i] == 1: R[x[i]] ← S[i]

19

filter implementation

fun filter (p : (T -> bool), S : Sequence<T>) -> ArraySequence<T>:
F = map (fn x => 1 if p(x) else 0, S)
X, ℓ = scan(plus, 0, F)
R = allocate<T>(ℓ)
parallel for i in 0...|S|-1:
if F[i] == 1:

R[x[i]] ← S[i]
return (R,0,ℓ)

W = S =

flatten

20

Definition (Flatten):

flatten: (S : sequence<sequence<T>>) -> ArraySequence<T>

Given a nested sequence of sequences, return a sequence consisting of all the elements
of the inner sequences in the same relative order.

Example (Flatten):

flatten([[2,3],[7,8,1],[4]]) returns [2,3,7,8,1,4]

Question: Any ideas how to do this?

Answer: We could use scan again!

21

7 8 1

0 2 5 offset, length = scan(plus, 0, L)

R[offset[i]+j] ← S[i][j]

2 3 4S:

L = map (fn x=> |x|, S)2 3 1 // length of inner sequences

offset[0] offset[1] offset[2]

flatten

2 3 7 8 1 4

22

flatten implementation

fun flatten (S : sequence<sequence<T>>) -> ArraySequence<T>:

L = map (fn x => |x|, S)

offset, length = scan(plus, 0, L)

R = allocate<T>(length)

parallel for i in 0...|S|-1:

parallel for j in 0...L[i]-1:

R[offset[i]+j] ← S[i][j]

return (R, 0, length)

W = S =

Practice!

23

collate

24

Definition (Collate):

collate : ((T, T) -> order), sequence<T>, sequence<T>) -> order

collate(f, s1, s2) returns the lexicographical comparison of
sequences s1 and s2 using the comparison function f

Examples (Collate):

[1,5,1,2,2] vs [1,5,2,1,0] → LESS (first difference at index 2)
[1,5,2,1,0] vs [1,5,2,1] → GREATER (longer sequence)

["a","b","c"] vs ["a","b","c"] → EQUAL

collate

25

Question: Any ideas how to implement collate, within the costs:

● Work: 𝑂(min 𝑚, 𝑛),

● Span: 𝑂(log(min(𝑚, 𝑛)))

where 𝑚 = 𝑠1 and 𝑛 = 𝑠2

Answer: We could use reduce!

collate

26

type order = LESS | EQUAL | GREATER

fun collate(f: (T,T)->order, a: sequence<T>, b: sequence<T>) -> order:

pairs = zip(a, b)

cmps = map(f, pairs) // compare corresponding pairs in a and b

fun first_notequal(x, y):

return y if x == EQUAL else x // propagate leftmost non-EQUAL

res = reduce(first_notequal, EQUAL, cmps)

match res with:

case EQUAL: return compare(|a|, |b|)

case _: return res

type order = LESS | EQUAL | GREATER

fun collate(f: (T,T)->order, a: sequence<T>, b: sequence<T>) -> order:

pairs = zip(a, b)

cmps = map(f, pairs) // compare corresponding pairs in a and b

fun first_notequal(x, y):

return y if x == EQUAL else x // propagate leftmost non-EQUAL

res = reduce(first_notequal, EQUAL, cmps)

match res with:

case EQUAL: return compare(|a|, |b|)

case _: return res

type order = LESS | EQUAL | GREATER

fun collate(f: (T,T)->order, a: sequence<T>, b: sequence<T>) -> order:

pairs = zip(a, b)

cmps = map(f, pairs) // compare corresponding pairs in a and b

fun first_notequal(x, y):

return y if x == EQUAL else x // propagate leftmost non-EQUAL

res = reduce(first_notequal, EQUAL, cmps)

match res with:

case EQUAL: return compare(|a|, |b|)

case _: return res

type order = LESS | EQUAL | GREATER

fun collate(f: (T,T)->order, a: sequence<T>, b: sequence<T>) -> order:

pairs = zip(a, b)

cmps = map(f, pairs) // compare corresponding pairs in a and b

fun first_notequal(x, y):

return y if x == EQUAL else x // propagate leftmost non-EQUAL

res = reduce(first_notequal, EQUAL, cmps)

match res with:

case EQUAL: return compare(|a|, |b|)

case _: return res

type order = LESS | EQUAL | GREATER

fun collate(f: (T,T)->order, a: sequence<T>, b: sequence<T>) -> order:

pairs = zip(a, b)

cmps = map(f, pairs) // compare corresponding pairs in a and b

fun first_notequal(x, y):

return (y if x == EQUAL else x) // propagate leftmost non-EQUAL

res = reduce(first_notequal, EQUAL, cmps)

match res with:

case EQUAL: return compare(|a|, |b|)

case _: return res

Optimized collate

27

Note: The obvious sequential algorithm will just compare the
two sequences starting from left to right until a difference is
found. Let d be the number of comparisons it does. So, the
work is 𝑂(d). This could be much less than 𝑂(min(𝑚, 𝑛)).

Can you think of how to achieve a parallel algorithm with
• Work: 𝑂 𝑑
• Span: 𝑂(log2 𝑑)

Hint: Remember the doubling trick for dynamic arrays

Optimized collate (Solution)

28

• Recall the trick from dynamic arrays (15-122): when you run out of
capacity, double the size. This is efficient because

𝑂 𝑛 +
𝑛

2
+

𝑛

4
+⋯+ 1 = 𝑂 𝑛

• We can use the same trick and do a "doubling search":

• Check whether subseq(a,0,1) and subseq(b,0,1) are equal, then
subseq(a,0,2) and subseq(b,0,2), then subseq(a,0,4) and
subseq(b,0,4), and so on… until they are not equal

• This takes 𝑂 2𝑑 + 𝑑 +
𝑑

2
+

𝑑

4
+ …+ 1 = 𝑂 𝑑 work

29

Summary

• Efficiently implementing sequences with arrays requires some
imperative (non-functional) parallelism!

• Core sequence operations like filter and flatten can be
implemented efficiently as applications of scan

30

	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Recall: Sequence ADT
	Slide 4: Recall: Creating Array Sequences
	Slide 5: Arrays and Imperative Parallelism
	Slide 6: Arrays: Building Block for Array Sequences
	Slide 7: Definitions
	Slide 8: Imperative Parallel Loops
	Slide 9: Data Type for ArraySequence
	Slide 10: ArraySequences
	Slide 11: Basic Functions
	Slide 12: subseq
	Slide 13: tabulate
	Slide 14: Sequence Functions
	Slide 15: map
	Slide 16: append
	Slide 17: filter
	Slide 18: filter
	Slide 19: filter implementation
	Slide 20: flatten
	Slide 21: flatten
	Slide 22: flatten implementation
	Slide 23: Practice!
	Slide 24: collate
	Slide 25: collate
	Slide 26: collate
	Slide 27: Optimized collate
	Slide 28: Optimized collate (Solution)
	Slide 29
	Slide 30: Summary

