
Parallel And Sequential Data
Structures and Algorithms

Dynamic Programming II

1

Learning Objectives

• Practice more examples of dynamic programming

• The Knapsack Problem

• The Edit Distance Problem

• (Yet Another) Parenthesis Problem

2

Review: Coin Change

3

Step 1 of DP: Define Subproblems

Define, for all 0 ≤ 𝑣 ≤ 𝑉:

Possible 𝑣 ≔ ቊ
𝐓𝐫𝐮𝐞 if exactly $𝑣 can be made
𝐅𝐚𝐥𝐬𝐞 otherwise

4

Step 1 of any dynamic programming algorithm is always to define your
set of subproblems, precisely and unambiguously

• Give your subproblems reasonable names

• Clearly state the value of the subproblem (e.g., True/False)

• Describe the meaning of the parameters (e.g., 𝑣)

• Give the domain of the parameters (e.g., 0 ≤ 𝑣 ≤ 𝑉)

Step 2 of DP: Recursive Solution

• With coins 𝑐 = 2,5,10 , we know that (roughly)

Possible 𝑣 = Possible 𝑣 − 2 𝐨𝐫 Possible 𝑣 − 5 𝐨𝐫 Possible(𝑣 − 10)

5

Step 2 of any dynamic programming algorithm is to solve a subproblem by
writing a recursive definition of the solution in terms of solutions to smaller
subproblems. We write this as a recurrence relation.

Possible 𝑣 ≔

𝐓𝐫𝐮𝐞 if 𝑣 = 0

ሧ
𝑖∈[𝑛]
𝑐𝑖≤𝑣

Possible(𝑣 − 𝑐𝑖) otherwise

Bottom-up Dynamic Programming

6

fun coin_change(c : sequence<int>, V : int) -> bool:
 possible = [False for v in 0...V]
 for v in 0...V:
 if v == 0:
 possible[v] ← True
 else:
 answer = False
 for denomination in c:
 if denomination <= v:
 answer ← answer or possible[v - denomination]
 possible[v] ← answer
 return possible[V]

Definition (Bottom-Up DP): Bottom-up DP solves the subproblems in order from
smallest to largest (so that no subproblem is solved twice).

Top-down Dynamic Programming

7

Definition (Top-Down DP): Top-down DP solves the subproblems recursively but
keeps a cache of previously solved subproblems.

fun coin_change(c : sequence<int>, V : int) -> bool:
 memoized = [⊥ for v in 0...V]
 fun possible(v):
 if memoized[v] == ⊥:
 if v == 0: memoized[v] ← True
 else:
 answer = False
 for denomination in c:
 if denomination <= v:
 answer ← answer or possible(v - denomination)
 memoized[v] ← answer
 return memoized[v]
 return possible(V)

Now with base
case included!

General DP Design Pattern

1. Reduce the problem to smaller versions of itself
• If I make a choice in the solution, what smaller problem remains?

2. Define subproblems precisely
• Identify a set of parameters that describe the smaller problems.

3. Derive a recurrence relation
• Express the solution to each subproblem in terms of solutions to

smaller subproblems

4. Analyze the cost of the solution
• For most problems, the cost is the number of subproblems multiplied

by the cost of solving a single subproblem

8

The Knapsack Problem

9

The Knapsack Problem

10

Problem (0-1 Knapsack): We are given 𝑛 items. Each item 𝑖 has a size
𝑠𝑖 and a value 𝑣𝑖. We are also given a capacity 𝑆. The goal is to select a
subset of the items with total size at most 𝑆 that maximizes total value.

Each item may be used at most once

𝑺 = 𝟏𝟓

A B C D E F G

Value 7 9 5 12 15 6 12

Size 3 4 2 6 7 3 5

Items: {𝐸, 𝐹, 𝐺}
Size: 15
Value: 33

Items: {𝐴, 𝐵, 𝐹, 𝐺}
Size: 15
Value: 34

Knapsack Subproblems

11

A B C D E F G

Value 7 9 5 12 15 6 12

Size 3 4 2 6 7 3 5

Subproblem Design:
• Consider making a choice about the solution
• Making a choice should make the problem smaller
• What does a smaller problem look like? Those are your subproblems
• Your recurrence then tries all options for the choice

Choice:
Do I take
Item G?

Solve new knapsack:

 Items: {A,B,C,D,E,F}
 Capacity: 𝑆 = 10

Solve new knapsack:

 Items: {A,B,C,D,E,F}
 Capacity: 𝑆 = 15

𝑺 = 𝟏𝟓

Knapsack Subproblems

• When we choose to add an item, we can no longer consider
that item, and the capacity (𝑺) decreases

12

Define, for all 0 ≤ 𝑘 ≤ 𝑛, and 0 ≤ 𝐵 ≤ 𝑆:

MaxVal 𝑘, 𝐵 ≔ ቊ
maximum value achievable using

items 0, … , 𝑘 with capacity 𝐵

• i.e., our subproblems consider just a prefix of the items with
a lowered capacity.

MaxVal 𝑘, 𝐵 = ቐ

Knapsack Recurrence

13

Key Idea: Make the choice of whether to include item 𝑘 − 1. Try including

it and not including it, then take the best of the two outcomes

if 𝑘 = 00

if 𝑠𝑘−1 > 𝐵

otherwise

MaxVal(𝑘 − 1, 𝐵)

max MaxVal 𝑘 − 1, 𝐵 , 𝑣𝑘−1 + MaxVal 𝑘 − 1, 𝐵 − 𝑠𝑘−1

Value of taking item 𝑘 − 1Don't take item 𝒌 − 𝟏

Taking item 𝑘 − 1 reduces capacity

DP = "Clever Brute Force"

• The key part of the recurrence was the "choice"

• We try taking item 𝑘 − 1, or not taking, then take the best outcome

14

max MaxVal 𝑘 − 1, 𝐵 , 𝑣𝑘−1 + MaxVal 𝑘 − 1, 𝐵 − 𝑠𝑘−1

Clever brute force: This algorithm is correct because it tries every
subset of items. This recurrence implemented without memoization is
literally an exponential-time brute force over all subsets of items. DP turns
an exponential-time brute force algorithm into an efficient algorithm by
systematically eliminating redundancies in that search.

Analysis of Knapsack

• There are 𝑛 + 1 𝑆 + 1 = 𝑂 𝑛𝑆 subproblems

• Each does 𝑂(1) work: try taking item 𝑘 versus not taking it

• Therefore, the total cost is 𝑂 𝑛𝑆 work

15

Theorem (Cost of Knapsack DP): Given 𝑛 items and a capacity of 𝑆, the
Knapsack DP costs 𝑂 𝑛𝑆 work.

Knapsack: Example Code

16

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
 n = |s|
 MaxVal = [[0 for _ in 0...S] for _ in 0...n]
 for k in 1...n:
 for B in 1...S:
 if s[k-1] > B:
 MaxVal[k][B] ← MaxVal[k-1][B]
 else:
 MaxVal[k][B] ← max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])

 return MaxVal[n][S]

MaxVal 𝑘, 𝐵 = ൞

0 if 𝑘 = 0
MaxVal 𝑘 − 1, 𝐵 if 𝑠𝑘−1 > 𝐵

max MaxVal 𝑘 − 1, 𝐵 , 𝑣𝑘−1 + MaxVal 𝑘 − 1, 𝐵 − 𝑠𝑘−1 otherwise

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
 n = |s|
 MaxVal = [[0 for _ in 0...S] for _ in 0...n]
 for k in 1...n:
 for B in 1...S:
 if s[k-1] > B:
 MaxVal[k][B] ← MaxVal[k-1][B]
 else:
 MaxVal[k][B] ← max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])

 return MaxVal[n][S]

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
 n = |s|
 MaxVal = [[0 for _ in 0...S] for _ in 0...n]
 for k in 1...n:
 for B in 1...S:
 if s[k-1] > B:
 MaxVal[k][B] ← MaxVal[k-1][B]
 else:
 MaxVal[k][B] ← max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])

 return MaxVal[n][S]

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
 n = |s|
 MaxVal = [[0 for _ in 0...S] for _ in 0...n]
 for k in 1...n:
 for B in 1...S:
 if s[k-1] > B:
 MaxVal[k][B] ← MaxVal[k-1][B]
 else:
 MaxVal[k][B] ← max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])

 return MaxVal[n][S]

Base cases initialized (don't
need to consider in loop)

Where's the Parallelism??

• Observe that MaxVal 𝑘, 𝐵 depends only on MaxVal 𝑘 − 1, 𝐵 and
MaxVal 𝑘 − 1, 𝐵 − 𝑠𝑘−1

• In other words, if we think of filling a 2D table of MaxVal(𝑘, 𝐵), each row
depends only on the previous row!

17

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0k=0

k=n

B=0 B=S

The contents
of a row can
be computed
in parallel!

Parallel Knapsack

18

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
 n = |s|
 MaxVal = parallel [[0 for _ in 0...S] for _ in 0...n]
 for k in 1...n:
 MaxVal[k] ← tabulate((fn (B : int):
 if B == 0: return 0
 else if s[k-1] > B: return MaxVal[k-1][B]
 else: return max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])
), S+1)
 return MaxVal[n][S]

Theorem (Cost of Parallel Knapsack): Given 𝑛 items and a capacity of
𝑆, Parallel Knapsack costs 𝑂 𝑛𝑆 work and 𝑂(𝑛) span.

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
 n = |s|
 MaxVal = parallel [[0 for _ in 0...S] for _ in 0...n]
 for k in 1...n:
 MaxVal[k] ← tabulate((fn (B : int):
 if B == 0: return 0
 else if s[k-1] > B: return MaxVal[k-1][B]
 else: return max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])
), S+1)
 return MaxVal[n][S]

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
 n = |s|
 MaxVal = parallel [[0 for _ in 0...S] for _ in 0...n]
 for k in 1...n:
 MaxVal[k] ← tabulate((fn (B : int):
 if B == 0: return 0
 else if s[k-1] > B: return MaxVal[k-1][B]
 else: return max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])
), S+1)
 return MaxVal[n][S]

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
 n = |s|
 MaxVal = parallel [[0 for _ in 0...S] for _ in 0...n]
 for k in 1...n:
 MaxVal[k] ← tabulate((fn (B : int):
 if B == 0: return 0
 else if s[k-1] > B: return MaxVal[k-1][B]
 else: return max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])
), S+1)
 return MaxVal[n][S]

The Edit Distance Problem

19

Minimum Edit Distance

• E.g., how many operations to transform "kitten" into "sitting"?

20

Problem (Edit Distance): Given strings 𝑆 and 𝑇 of length 𝑛 and 𝑚

respectively, what is the minimum number of edit operations required to
transform 𝑆 into 𝑇? We allow the following edit operations:

• Insertion: insert a character into the string,
• Deletion: delete a character from the string,
• Substitution: replace one character with another

KITTEN SITTINGSITTEN SITTIN

Edit Distance Subproblems

• Important observation: Order doesn't matter

21

Subproblem Design:
• Consider making a choice about the solution
• Making a choice should make the problem smaller
• What does a smaller problem look like? Those are your subproblems
• Your recurrence then tries all options for the choice

KITTEN SITTINGSITTEN SITTIN

• I could have done these three operations in any order…

• Let's make the last character match (G) and choose how

Edit Distance Subproblems

• Let's choose to make the last character match (G)

• There are three ways to do so

22

KITTEN SITTINGSITTEN SITTIN

KITTEN
SITTING

Insert G

G

Compute edit distance:
KITTEN
SITTIN

Replace N With G

KITTENKITTEG
SITTING

Compute edit distance:
KITTE
SITTIN

Match G Earlier

KITTEN
SITTING
KITTE

(Delete N)

Compute edit distance:
KITTE

SITTING

Edit Distance Subproblems

• Each choice, we remove one
character from one or both strings

• This suggests subproblems
corresponding to prefixes

23

KITTEN
SITTIN

KITTE
SITTIN

KITTE
SITTING

KITTEN
SITTING

REPLACE

Define, for all 0 ≤ 𝑖 ≤ 𝑛, and 0 ≤ 𝑗 ≤ 𝑚:

MED 𝑖, 𝑗 ≔ ቊ
minimum edit distance between

𝑆 0 … 𝑖 and 𝑇 0 … 𝑗

MED 𝑖, 𝑗 =

Edit Distance Recurrence

24

Key Idea: Choose between inserting the last character of 𝑇, replacing the
last character of 𝑆 with the last character of 𝑇 or deleting the last character
of 𝑆. Take the best of the three choices

if 𝑗 = 0

if 𝑖 = 0

𝑖

𝑗

otherwisemin ቐ MED 𝑖 − 1, 𝑗 + 1

MED 𝑖, 𝑗 − 1 + 1

MED 𝑖 − 1, 𝑗 − 1 + 1 𝐢𝐟 𝑆 𝑖 − 1 ≠ 𝑇 𝑗 − 1 𝐞𝐥𝐬𝐞 0

Replace 𝑺[𝒊 − 𝟏] with 𝑻[𝒋 − 𝟏]. This costs
0 if the characters are already the same

Delete 𝑺[𝒊 − 𝟏]Insert 𝑻[𝒋 − 𝟏]

Analysis of Edit Distance

25

• There are 𝑛 + 1 𝑚 + 1 = 𝑂 𝑛𝑚 subproblems

• Each does 𝑂(1) work: try three operations and take the min

• Therefore, the total cost is 𝑂 𝑛𝑚 work

Theorem (Cost of Edit Distance DP): Given string 𝑆 and 𝑇 of lengths 𝑛
and 𝑚, edit distance can be solved in a cost of 𝑂 𝑛𝑚 work.

Parallelism: Edit distance can be parallelized, but its tricker than
knapsack, because subproblems depend on other subproblems in the same
row and same column. Think about it as an exercise (or read the notes).

Edit Distance: Example Code

26

fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
 n = size(S), m = size(T)
 MED = [[i+j for j in 0...m] for i in 0...n]
 for i in 1...n:
 for j in 1...m:
 MED[i][j] ← min(
 MED[i-1][j-1] + (1 if S[i] != T[j] else 0),
 MED[i-1][j] + 1,
 MED[i][j-1] + 1
)
 return MED[n][m]

MED 𝑖, 𝑗 =

𝑖 if 𝑗 = 0
𝑗 if 𝑖 = 0

min ൞

MED 𝑖 − 1, 𝑗 − 1 + 1 𝐢𝐟 𝑆 𝑖 − 1 ≠ 𝑇 𝑗 − 1 𝐞𝐥𝐬𝐞 0

MED 𝑖 − 1, 𝑗 + 1

MED 𝑖, 𝑗 − 1 + 1

otherwise

fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
 n = size(S), m = size(T)
 MED = [[i+j for j in 0...m] for i in 0...n]
 for i in 1...n:
 for j in 1...m:
 MED[i][j] ← min(
 MED[i-1][j-1] + (1 if S[i] != T[j] else 0),
 MED[i-1][j] + 1,
 MED[i][j-1] + 1
)
 return MED[n][m]

fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
 n = size(S), m = size(T)
 MED = [[i+j for j in 0...m] for i in 0...n]
 for i in 1...n:
 for j in 1...m:
 MED[i][j] ← min(
 MED[i-1][j-1] + (1 if S[i] != T[j] else 0),
 MED[i-1][j] + 1,
 MED[i][j-1] + 1
)
 return MED[n][m]

fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
 n = |S|, m = |T|
 MED = [[i+j for j in 0...m] for i in 0...n]
 for i in 1...n:
 for j in 1...m:
 MED[i][j] ← min(
 MED[i-1][j-1] + (1 if S[i-1] != T[j-1] else 0),
 MED[i-1][j] + 1,
 MED[i][j-1] + 1
)
 return MED[n][m]

Base cases initialized (don't
need to consider in loop)

(Yet Another) Parenthesis
Problem

27

Boolean Parenthesisation

True and False or True and True or False

28

Problem (Boolean Expression Feasibility): You are given a Boolean
expression consisting of the literals True and False, connected by the

binary operators AND (∧) and OR (∨). The expression is written without

parentheses. Is it possible to fully parenthesize the expression so that
it evaluates to True?

())()(()

Boolean Parenthesisation Subproblems

• Choice: Choose the final operator

• Then recursively parenthesize both sides

29

Subproblem Design:
• Consider making a choice about the solution
• Making a choice should make the problem smaller
• What does a smaller problem look like? Those are your subproblems
• Your recurrence then tries all options for the choice

True and False or True and True or False)()(() () ()

Boolean Parenthesisation Subproblems

30

Define, for all 0 ≤ 𝑖 < 𝑛, and 𝑖 ≤ 𝑗 < 𝑛:

CanParen 𝑖, 𝑗 ≔ ቐ
𝐓𝐫𝐮𝐞

if the subexpression from 𝑏𝑖 to 𝑏𝑗 can be

parenthesized to evaluate to 𝐓𝐫𝐮𝐞
𝐅𝐚𝐥𝐬𝐞 otherwise

True and False or True and True or False()
𝒊 𝒋

Parameters: Knapsack and Edit distance both used prefixes of the input as
subproblems. When this is not enough information, considering all contiguous
subsequences of the input is often a good subproblem choice.

CanParen 𝑖, 𝑗 = ቐ

Boolean Parenthesisation Recurrence

31

Key Idea: Choose which operator comes last and recursively parenthesize
the left and right subexpressions.

if 𝑖 = 𝑗𝑏𝑖

ሧ

𝑖≤𝑘<𝑗

ቊ
if op𝑘 = ∧

 if op𝑘 = ∨CanParen 𝑖, 𝑘 ∨ CanParen(𝑘 + 1, 𝑗)

CanParen 𝑖, 𝑘 ∧ CanParen(𝑘 + 1, 𝑗)
otherwise

Try all final operators
(split points)

Boolean Parenthesisation Analysis

• There are 𝛩(𝑛2) subproblems

• Subproblem 𝑖, 𝑗 does 𝑗 − 𝑖 work, which is 𝑂 𝑛

• So, the total work is 𝑂 𝑛3

32

Theorem (Cost of Boolean Parenthesisation DP): Given a Boolean
expression with 𝑛 literals, the Boolean expression feasibility problem can be
solved in 𝑂(𝑛3) work

Parallelism: This problem can also be parallelized. Think about which
subproblems can be solved in parallel and identify any other opportunities
for parallelism as an exercise (or read the notes).

Boolean Parenthesisation: Code

33

fun canParenthesize(b : sequence<bool>, op : sequence<char>) -> bool:
 n = |b|
 CanParen = [[False for _ in 0...n-1] for _ in 0...n-1]
 for i in 0...n-1: CanParen[i][i] ← b[i]
 for length in 0...n-1:
 for i in 0...(n-length)-1:
 j = i + length
 answer = False
 for k in i...j-1:
 if op[k] == '∧': answer ← answer or (CanParen[i][k] and CanParen[k+1][j])
 else: answer ← answer or (CanParen[i][k] or CanParen[k+1][j])
 CanParen[i][j] ← answer
 return CanParen[0][n-1]

Order: Subproblems are ordered by length.

fun canParenthesize(b : sequence<bool>, op : sequence<char>) -> bool:
 n = |b|
 CanParen = [[False for _ in 0...n-1] for _ in 0...n-1]
 for i in 0...n-1: CanParen[i][i] ← b[i]
 for length in 0...n-1:
 for i in 0...(n-length)-1:
 j = i + length
 answer = False
 for k in i...j-1:
 if op[k] == '∧': answer ← answer or (CanParen[i][k] and CanParen[k+1][j])
 else: answer ← answer or (CanParen[i][k] or CanParen[k+1][j])
 CanParen[i][j] ← answer
 return CanParen[0][n-1]

fun canParenthesize(b : sequence<bool>, op : sequence<char>) -> bool:
 n = |b|
 CanParen = [[False for _ in 0...n-1] for _ in 0...n-1]
 for i in 0...n-1: CanParen[i][i] ← b[i]
 for length in 0...n-1:
 for i in 0...(n-length)-1:
 j = i + length
 answer = False
 for k in i...j-1:
 if op[k] == '∧': answer ← answer or (CanParen[i][k] and CanParen[k+1][j])
 else: answer ← answer or (CanParen[i][k] or CanParen[k+1][j])
 CanParen[i][j] ← answer
 return CanParen[0][n-1]

fun canParenthesize(b : sequence<bool>, op : sequence<char>) -> bool:
 n = |b|
 CanParen = [[False for _ in 0...n-1] for _ in 0...n-1]
 for i in 0...n-1: CanParen[i][i] ← b[i]
 for length in 0...n-1:
 for i in 0...(n-length)-1:
 j = i + length
 answer = False
 for k in i...j-1:
 if op[k] == '∧': answer ← answer or (CanParen[i][k] and CanParen[k+1][j])
 else: answer ← answer or (CanParen[i][k] or CanParen[k+1][j])
 CanParen[i][j] ← answer
 return CanParen[0][n-1]

Summary

• Subproblem Design:
• Consider making a choice about the solution

• Making a choice should make the problem smaller

• What does a smaller problem look like? Those are your subproblems

• Your recurrence then tries all options for the choice

• Common Subproblem Parameter Patterns:
• Reduce to smaller value (e.g., Coin Change value, Knapsack capacity)

• Reduce to prefix of the input (e.g., Knapsack items, Edit Distance)

• Reduce to an interval of the input (e.g., Boolean Parenthesisation)

34

	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Review: Coin Change
	Slide 4: Step 1 of DP: Define Subproblems
	Slide 5: Step 2 of DP: Recursive Solution
	Slide 6: Bottom-up Dynamic Programming
	Slide 7: Top-down Dynamic Programming
	Slide 8: General DP Design Pattern
	Slide 9: The Knapsack Problem
	Slide 10: The Knapsack Problem
	Slide 11: Knapsack Subproblems
	Slide 12: Knapsack Subproblems
	Slide 13: Knapsack Recurrence
	Slide 14: DP = "Clever Brute Force"
	Slide 15: Analysis of Knapsack
	Slide 16: Knapsack: Example Code
	Slide 17: Where's the Parallelism??
	Slide 18: Parallel Knapsack
	Slide 19: The Edit Distance Problem
	Slide 20: Minimum Edit Distance
	Slide 21: Edit Distance Subproblems
	Slide 22: Edit Distance Subproblems
	Slide 23: Edit Distance Subproblems
	Slide 24: Edit Distance Recurrence
	Slide 25: Analysis of Edit Distance
	Slide 26: Edit Distance: Example Code
	Slide 27: (Yet Another) Parenthesis Problem
	Slide 28: Boolean Parenthesisation
	Slide 29: Boolean Parenthesisation Subproblems
	Slide 30: Boolean Parenthesisation Subproblems
	Slide 31: Boolean Parenthesisation Recurrence
	Slide 32: Boolean Parenthesisation Analysis
	Slide 33: Boolean Parenthesisation: Code
	Slide 34: Summary

