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Learning Objectives

• Practice more examples of dynamic programming

• The Knapsack Problem

• The Edit Distance Problem

• (Yet Another) Parenthesis Problem
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Review: Coin Change
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Step 1 of DP: Define Subproblems

Define, for all 0 ≤ 𝑣 ≤ 𝑉:

Possible 𝑣 ≔ ቊ
𝐓𝐫𝐮𝐞 if exactly $𝑣 can be made
𝐅𝐚𝐥𝐬𝐞 otherwise 
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Step 1 of any dynamic programming algorithm is always to define your 
set of subproblems, precisely and unambiguously

• Give your subproblems reasonable names

• Clearly state the value of the subproblem (e.g., True/False)

• Describe the meaning of the parameters (e.g., 𝑣)

• Give the domain of the parameters (e.g., 0 ≤ 𝑣 ≤ 𝑉)



Step 2 of DP: Recursive Solution

• With coins 𝑐 = 2,5,10 , we know that (roughly)

Possible 𝑣 = Possible 𝑣 − 2  𝐨𝐫 Possible 𝑣 − 5  𝐨𝐫 Possible(𝑣 − 10)
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Step 2 of any dynamic programming algorithm is to solve a subproblem by 
writing a recursive definition of the solution in terms of solutions to smaller 
subproblems. We write this as a recurrence relation.

Possible 𝑣 ≔

𝐓𝐫𝐮𝐞 if 𝑣 = 0

ሧ
𝑖∈[𝑛]
𝑐𝑖≤𝑣

Possible(𝑣 − 𝑐𝑖) otherwise



Bottom-up Dynamic Programming
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fun coin_change(c : sequence<int>, V : int) -> bool:
  possible = [False for v in 0...V]
  for v in 0...V:
    if v == 0:
      possible[v] ← True
    else:
      answer = False
      for denomination in c:
        if denomination <= v:
          answer ← answer or possible[v - denomination]
      possible[v] ← answer
  return possible[V]

Definition (Bottom-Up DP): Bottom-up DP solves the subproblems in order from 
smallest to largest (so that no subproblem is solved twice).



Top-down Dynamic Programming
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Definition (Top-Down DP): Top-down DP solves the subproblems recursively but 
keeps a cache of previously solved subproblems.

fun coin_change(c : sequence<int>, V : int) -> bool:
  memoized = [⊥ for v in 0...V]
  fun possible(v):
    if memoized[v] == ⊥:
      if v == 0: memoized[v] ← True
      else:
        answer = False
        for denomination in c:
          if denomination <= v:
            answer ← answer or possible(v - denomination)
        memoized[v] ← answer
      return memoized[v]
  return possible(V)

Now with base 
case included!



General DP Design Pattern

1. Reduce the problem to smaller versions of itself
• If I make a choice in the solution, what smaller problem remains?

2. Define subproblems precisely
• Identify a set of parameters that describe the smaller problems.

3. Derive a recurrence relation
• Express the solution to each subproblem in terms of solutions to 

smaller subproblems

4. Analyze the cost of the solution
• For most problems, the cost is the number of subproblems multiplied 

by the cost of solving a single subproblem
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The Knapsack Problem
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The Knapsack Problem
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Problem (0-1 Knapsack): We are given 𝑛 items. Each item 𝑖 has a size 
𝑠𝑖 and a value 𝑣𝑖. We are also given a capacity 𝑆. The goal is to select a 
subset of the items with total size at most 𝑆 that maximizes total value. 

Each item may be used at most once

𝑺 = 𝟏𝟓

A B C D E F G

Value 7 9 5 12 15 6 12

Size 3 4 2 6 7 3 5

Items: {𝐸, 𝐹, 𝐺}
Size: 15
Value: 33

Items: {𝐴, 𝐵, 𝐹, 𝐺}
Size: 15
Value: 34



Knapsack Subproblems
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A B C D E F G

Value 7 9 5 12 15 6 12

Size 3 4 2 6 7 3 5

Subproblem Design:
• Consider making a choice about the solution
• Making a choice should make the problem smaller
• What does a smaller problem look like? Those are your subproblems
• Your recurrence then tries all options for the choice

Choice: 
Do I take 
Item G?

Solve new knapsack:

  Items: {A,B,C,D,E,F}
  Capacity: 𝑆 = 10

Solve new knapsack:

  Items: {A,B,C,D,E,F}
  Capacity: 𝑆 = 15

𝑺 = 𝟏𝟓



Knapsack Subproblems

• When we choose to add an item, we can no longer consider 
that item, and the capacity (𝑺) decreases
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Define, for all 0 ≤ 𝑘 ≤ 𝑛, and 0 ≤ 𝐵 ≤ 𝑆:

MaxVal 𝑘, 𝐵 ≔ ቊ
maximum value achievable using

items 0, … , 𝑘  with capacity 𝐵

• i.e., our subproblems consider just a prefix of the items with 
a lowered capacity.



MaxVal 𝑘, 𝐵 = ቐ

 

Knapsack Recurrence
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Key Idea: Make the choice of whether to include item 𝑘 − 1. Try including 

it and not including it, then take the best of the two outcomes

if 𝑘 = 00

if 𝑠𝑘−1 > 𝐵

otherwise

MaxVal(𝑘 − 1, 𝐵)

max MaxVal 𝑘 − 1, 𝐵 , 𝑣𝑘−1 + MaxVal 𝑘 − 1, 𝐵 − 𝑠𝑘−1

Value of taking item 𝑘 − 1Don't take item 𝒌 − 𝟏

Taking item 𝑘 − 1 reduces capacity



DP = "Clever Brute Force"

• The key part of the recurrence was the "choice"

• We try taking item 𝑘 − 1, or not taking, then take the best outcome

14

max MaxVal 𝑘 − 1, 𝐵 , 𝑣𝑘−1 + MaxVal 𝑘 − 1, 𝐵 − 𝑠𝑘−1

Clever brute force: This algorithm is correct because it tries every 
subset of items. This recurrence implemented without memoization is 
literally an exponential-time brute force over all subsets of items. DP turns 
an exponential-time brute force algorithm into an efficient algorithm by 
systematically eliminating redundancies in that search.



Analysis of Knapsack

• There are 𝑛 + 1 𝑆 + 1 = 𝑂 𝑛𝑆  subproblems

• Each does 𝑂(1) work: try taking item 𝑘 versus not taking it

• Therefore, the total cost is 𝑂 𝑛𝑆  work
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Theorem (Cost of Knapsack DP): Given 𝑛 items and a capacity of 𝑆, the 
Knapsack DP costs 𝑂 𝑛𝑆  work.



Knapsack: Example Code
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fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
  n = |s|
  MaxVal = [[0 for _ in 0...S] for _ in 0...n]
  for k in 1...n:
    for B in 1...S:
      if s[k-1] > B:
        MaxVal[k][B] ← MaxVal[k-1][B]
      else:
        MaxVal[k][B] ← max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])

  return MaxVal[n][S]

MaxVal 𝑘, 𝐵 = ൞

0 if 𝑘 = 0 
MaxVal 𝑘 − 1, 𝐵  if 𝑠𝑘−1 > 𝐵 

max MaxVal 𝑘 − 1, 𝐵 , 𝑣𝑘−1 + MaxVal 𝑘 − 1, 𝐵 − 𝑠𝑘−1  otherwise 

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
  n = |s|
  MaxVal = [[0 for _ in 0...S] for _ in 0...n]
  for k in 1...n:
    for B in 1...S:
      if s[k-1] > B:
        MaxVal[k][B] ← MaxVal[k-1][B]
      else:
        MaxVal[k][B] ← max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])

  return MaxVal[n][S]

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
  n = |s|
  MaxVal = [[0 for _ in 0...S] for _ in 0...n]
  for k in 1...n:
    for B in 1...S:
      if s[k-1] > B:
        MaxVal[k][B] ← MaxVal[k-1][B]
      else:
        MaxVal[k][B] ← max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])

  return MaxVal[n][S]

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
  n = |s|
  MaxVal = [[0 for _ in 0...S] for _ in 0...n]
  for k in 1...n:
    for B in 1...S:
      if s[k-1] > B:
        MaxVal[k][B] ← MaxVal[k-1][B]
      else:
        MaxVal[k][B] ← max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])

  return MaxVal[n][S]

Base cases initialized (don't 
need to consider in loop)



Where's the Parallelism??

• Observe that MaxVal 𝑘, 𝐵  depends only on MaxVal 𝑘 − 1, 𝐵  and 
MaxVal 𝑘 − 1, 𝐵 − 𝑠𝑘−1

• In other words, if we think of filling a 2D table of MaxVal(𝑘, 𝐵), each row 
depends only on the previous row!
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0

0

0

0

0

0

0

0 0 0 0 0 0 0 0k=0

k=n

B=0 B=S

The contents 
of a row can 
be computed 
in parallel!



Parallel Knapsack
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fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
  n = |s|
  MaxVal = parallel [[0 for _ in 0...S] for _ in 0...n]
  for k in 1...n:
    MaxVal[k] ← tabulate((fn (B : int):
      if B == 0: return 0
      else if s[k-1] > B: return MaxVal[k-1][B]
      else: return max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])
  ), S+1)
 return MaxVal[n][S]

Theorem (Cost of Parallel Knapsack): Given 𝑛 items and a capacity of 
𝑆, Parallel Knapsack costs 𝑂 𝑛𝑆  work and 𝑂(𝑛) span.

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
  n = |s|
  MaxVal = parallel [[0 for _ in 0...S] for _ in 0...n]
  for k in 1...n:
    MaxVal[k] ← tabulate((fn (B : int):
      if B == 0: return 0
      else if s[k-1] > B: return MaxVal[k-1][B]
      else: return max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])
  ), S+1)
 return MaxVal[n][S]

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
  n = |s|
  MaxVal = parallel [[0 for _ in 0...S] for _ in 0...n]
  for k in 1...n:
    MaxVal[k] ← tabulate((fn (B : int):
      if B == 0: return 0
      else if s[k-1] > B: return MaxVal[k-1][B]
      else: return max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])
  ), S+1)
  return MaxVal[n][S]

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
  n = |s|
  MaxVal = parallel [[0 for _ in 0...S] for _ in 0...n]
  for k in 1...n:
    MaxVal[k] ← tabulate((fn (B : int):
      if B == 0: return 0
      else if s[k-1] > B: return MaxVal[k-1][B]
      else: return max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])
  ), S+1)
 return MaxVal[n][S]



The Edit Distance Problem
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Minimum Edit Distance

• E.g., how many operations to transform "kitten" into "sitting"?
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Problem (Edit Distance): Given strings 𝑆 and 𝑇 of length 𝑛 and 𝑚 

respectively, what is the minimum number of edit operations required to 
transform 𝑆 into 𝑇? We allow the following edit operations:

• Insertion: insert a character into the string,
• Deletion: delete a character from the string,
• Substitution: replace one character with another

KITTEN SITTINGSITTEN SITTIN



Edit Distance Subproblems

• Important observation: Order doesn't matter
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Subproblem Design:
• Consider making a choice about the solution
• Making a choice should make the problem smaller
• What does a smaller problem look like? Those are your subproblems
• Your recurrence then tries all options for the choice

KITTEN SITTINGSITTEN SITTIN

• I could have done these three operations in any order…

• Let's make the last character match (G) and choose how



Edit Distance Subproblems

• Let's choose to make the last character match (G)

• There are three ways to do so
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KITTEN SITTINGSITTEN SITTIN

KITTEN
SITTING

Insert G

G

Compute edit distance:
KITTEN
SITTIN

Replace N With G

KITTENKITTEG
SITTING

Compute edit distance:
KITTE
SITTIN

Match G Earlier

KITTEN
SITTING
KITTE

(Delete N)

Compute edit distance:
KITTE

SITTING



Edit Distance Subproblems

• Each choice, we remove one 
character from one or both strings

• This suggests subproblems 
corresponding to prefixes
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KITTEN
SITTIN

KITTE
SITTIN

KITTE
SITTING

KITTEN
SITTING

REPLACE

Define, for all 0 ≤ 𝑖 ≤ 𝑛, and 0 ≤ 𝑗 ≤ 𝑚:

MED 𝑖, 𝑗 ≔ ቊ
minimum edit distance between

𝑆 0 … 𝑖  and 𝑇 0 … 𝑗



MED 𝑖, 𝑗 =
 

Edit Distance Recurrence
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Key Idea: Choose between inserting the last character of 𝑇, replacing the 
last character of 𝑆 with the last character of 𝑇 or deleting the last character 
of 𝑆. Take the best of the three choices

if 𝑗 = 0

if 𝑖 = 0

𝑖

𝑗

otherwisemin ቐ MED 𝑖 − 1, 𝑗 + 1

MED 𝑖, 𝑗 − 1 + 1

MED 𝑖 − 1, 𝑗 − 1 + 1 𝐢𝐟 𝑆 𝑖 − 1 ≠ 𝑇 𝑗 − 1  𝐞𝐥𝐬𝐞 0

Replace 𝑺[𝒊 − 𝟏] with 𝑻[𝒋 − 𝟏]. This costs 
0 if the characters are already the same

Delete 𝑺[𝒊 − 𝟏]Insert 𝑻[𝒋 − 𝟏]



Analysis of Edit Distance
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• There are 𝑛 + 1 𝑚 + 1 = 𝑂 𝑛𝑚  subproblems

• Each does 𝑂(1) work: try three operations and take the min

• Therefore, the total cost is 𝑂 𝑛𝑚  work

Theorem (Cost of Edit Distance DP): Given string 𝑆 and 𝑇 of lengths 𝑛 
and 𝑚, edit distance can be solved in a cost of 𝑂 𝑛𝑚  work.

Parallelism: Edit distance can be parallelized, but its tricker than 
knapsack, because subproblems depend on other subproblems in the same 
row and same column. Think about it as an exercise (or read the notes).



Edit Distance: Example Code
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fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
  n = size(S), m = size(T)
  MED = [[i+j for j in 0...m] for i in 0...n]
  for i in 1...n:
    for j in 1...m:
      MED[i][j] ← min(
        MED[i-1][j-1] + (1 if S[i] != T[j] else 0),
        MED[i-1][j] + 1,
        MED[i][j-1] + 1
      )
  return MED[n][m]

MED 𝑖, 𝑗 =

𝑖 if 𝑗 = 0 
𝑗 if 𝑖 = 0 

min ൞

MED 𝑖 − 1, 𝑗 − 1 + 1 𝐢𝐟 𝑆 𝑖 − 1 ≠ 𝑇 𝑗 − 1  𝐞𝐥𝐬𝐞 0  

MED 𝑖 − 1, 𝑗 + 1 

MED 𝑖, 𝑗 − 1 + 1 

otherwise

fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
  n = size(S), m = size(T)
  MED = [[i+j for j in 0...m] for i in 0...n]
  for i in 1...n:
    for j in 1...m:
      MED[i][j] ← min(
        MED[i-1][j-1] + (1 if S[i] != T[j] else 0),
        MED[i-1][j] + 1,
        MED[i][j-1] + 1
      )
  return MED[n][m]

fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
  n = size(S), m = size(T)
  MED = [[i+j for j in 0...m] for i in 0...n]
  for i in 1...n:
    for j in 1...m:
      MED[i][j] ← min(
        MED[i-1][j-1] + (1 if S[i] != T[j] else 0),
        MED[i-1][j] + 1,
        MED[i][j-1] + 1
      )
  return MED[n][m]

fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
  n = |S|, m = |T|
  MED = [[i+j for j in 0...m] for i in 0...n]
  for i in 1...n:
    for j in 1...m:
      MED[i][j] ← min(
        MED[i-1][j-1] + (1 if S[i-1] != T[j-1] else 0),
        MED[i-1][j] + 1,
        MED[i][j-1] + 1
      )
  return MED[n][m]

Base cases initialized (don't 
need to consider in loop)



(Yet Another) Parenthesis 
Problem
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Boolean Parenthesisation

True  and  False  or  True  and  True  or  False
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Problem (Boolean Expression Feasibility): You are given a Boolean 
expression consisting of the literals True and False, connected by the 

binary operators AND (∧) and OR (∨). The expression is written without 

parentheses. Is it possible to fully parenthesize the expression so that 
it evaluates to True?

( ) )()(( )



Boolean Parenthesisation Subproblems

• Choice: Choose the final operator

• Then recursively parenthesize both sides

29

Subproblem Design:
• Consider making a choice about the solution
• Making a choice should make the problem smaller
• What does a smaller problem look like? Those are your subproblems
• Your recurrence then tries all options for the choice

True  and  False  or  True  and  True  or  False)()( () () ()



Boolean Parenthesisation Subproblems
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Define, for all 0 ≤ 𝑖 < 𝑛, and 𝑖 ≤ 𝑗 < 𝑛:

CanParen 𝑖, 𝑗 ≔ ቐ
𝐓𝐫𝐮𝐞

if the subexpression from 𝑏𝑖  to 𝑏𝑗  can be 

parenthesized to evaluate to 𝐓𝐫𝐮𝐞 
𝐅𝐚𝐥𝐬𝐞 otherwise 

True  and  False  or  True  and  True  or  False( )
𝒊 𝒋

Parameters: Knapsack and Edit distance both used prefixes of the input as 
subproblems. When this is not enough information, considering all contiguous 
subsequences of the input is often a good subproblem choice.



CanParen 𝑖, 𝑗 = ቐ

 

Boolean Parenthesisation Recurrence
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Key Idea: Choose which operator comes last and recursively parenthesize 
the left and right subexpressions.

if 𝑖 = 𝑗𝑏𝑖

ሧ

𝑖≤𝑘<𝑗

ቊ
if op𝑘 = ∧

 if op𝑘 = ∨CanParen 𝑖, 𝑘 ∨ CanParen(𝑘 + 1, 𝑗)

CanParen 𝑖, 𝑘 ∧ CanParen(𝑘 + 1, 𝑗)
otherwise

Try all final operators
(split points)



Boolean Parenthesisation Analysis

• There are 𝛩(𝑛2) subproblems

• Subproblem 𝑖, 𝑗  does 𝑗 − 𝑖  work, which is 𝑂 𝑛

• So, the total work is 𝑂 𝑛3

32

Theorem (Cost of Boolean Parenthesisation DP): Given a Boolean 
expression with 𝑛 literals, the Boolean expression feasibility problem can be 
solved in 𝑂(𝑛3) work

Parallelism: This problem can also be parallelized. Think about which 
subproblems can be solved in parallel and identify any other opportunities 
for parallelism as an exercise (or read the notes).



Boolean Parenthesisation: Code
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fun canParenthesize(b : sequence<bool>, op : sequence<char>) -> bool:
  n = |b|
  CanParen = [[False for _ in 0...n-1] for _ in 0...n-1]
  for i in 0...n-1: CanParen[i][i] ← b[i]
  for length in 0...n-1:
    for i in 0...(n-length)-1:
      j = i + length
      answer = False
      for k in i...j-1:
        if op[k] == '∧': answer ← answer or (CanParen[i][k] and CanParen[k+1][j])
        else: answer ← answer or (CanParen[i][k] or CanParen[k+1][j])
      CanParen[i][j] ← answer
  return CanParen[0][n-1]

Order: Subproblems are ordered by length.

fun canParenthesize(b : sequence<bool>, op : sequence<char>) -> bool:
  n = |b|
  CanParen = [[False for _ in 0...n-1] for _ in 0...n-1]
  for i in 0...n-1: CanParen[i][i] ← b[i]
  for length in 0...n-1:
    for i in 0...(n-length)-1:
      j = i + length
      answer = False
      for k in i...j-1:
        if op[k] == '∧': answer ← answer or (CanParen[i][k] and CanParen[k+1][j])
        else: answer ← answer or (CanParen[i][k] or CanParen[k+1][j])
      CanParen[i][j] ← answer
  return CanParen[0][n-1]

fun canParenthesize(b : sequence<bool>, op : sequence<char>) -> bool:
  n = |b|
  CanParen = [[False for _ in 0...n-1] for _ in 0...n-1]
  for i in 0...n-1: CanParen[i][i] ← b[i]
  for length in 0...n-1:
    for i in 0...(n-length)-1:
      j = i + length
      answer = False
      for k in i...j-1:
        if op[k] == '∧': answer ← answer or (CanParen[i][k] and CanParen[k+1][j])
        else: answer ← answer or (CanParen[i][k] or CanParen[k+1][j])
      CanParen[i][j] ← answer
  return CanParen[0][n-1]

fun canParenthesize(b : sequence<bool>, op : sequence<char>) -> bool:
  n = |b|
  CanParen = [[False for _ in 0...n-1] for _ in 0...n-1]
  for i in 0...n-1: CanParen[i][i] ← b[i]
  for length in 0...n-1:
    for i in 0...(n-length)-1:
      j = i + length
      answer = False
      for k in i...j-1:
        if op[k] == '∧': answer ← answer or (CanParen[i][k] and CanParen[k+1][j])
        else: answer ← answer or (CanParen[i][k] or CanParen[k+1][j])
      CanParen[i][j] ← answer
  return CanParen[0][n-1]



Summary

• Subproblem Design:
• Consider making a choice about the solution

• Making a choice should make the problem smaller

• What does a smaller problem look like? Those are your subproblems

• Your recurrence then tries all options for the choice

• Common Subproblem Parameter Patterns:
• Reduce to smaller value (e.g., Coin Change value, Knapsack capacity)

• Reduce to prefix of the input (e.g., Knapsack items, Edit Distance)

• Reduce to an interval of the input (e.g., Boolean Parenthesisation)

34
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