Parallel And Sequential Data
Structures and Algorithms

Dynamic Programming 11

Learning Objectives

* Practice more examples of dynamic programming
* The Knapsack Problem

« The Edit Distance Problem

* (Yet Another) Parenthesis Problem

Review: Coin Change

Step 1 of DP: Define Subproblems

Step 1 of any dynamic programming algorithm is always to define your
set of subproblems, precisely and unambiguously

Define, forall 0 < v < V:

Possible(v) = True if exactly $v can be made
False otherwise

« Give your subproblems reasonable names

* Clearly state the value of the subproblem (e.qg., True/False)
« Describe the meaning of the parameters (e.qg., v)

 Give the domain of the parameters (e.g.,, 0 < v < V)

Step 2 of DP: Recursive Solution

Step 2 of any dynamic programming algorithm is to solve a subproblem by

writing a recursive definition of the solution in terms of solutions to smaller
subproblems. We write this as a recurrence relation.

« With coins ¢ = [2,5,10], we know that (roughly)
Possible(v) = Possible(v — 2) or Possible(v — 5) or Possible(v — 10)

 True ifv=0

Possible(v) = 1 \/ Possible(v — ¢;) otherwise

LE[n]
kCiSv

Bottom-up Dynamic Programming

Definition (Bottom-Up DP): Bottom-up DP solves the subproblems in order from
smallest to largest (so that no subproblem is solved twice).

fun coin_change(c : sequence<int>, V : int) -> bool:
possible = [False for v in 0...V]
for v in 0...V:
if v ==
possible[v] « True
else:
answer = False
for denomination in c:
if denomination <= v:
answer « answer or possible[v - denomination]
possible[v] « answer
return possible[V]

Top-down Dynamic Programming

Definition (Top-Down DP): Top-down DP solves the subproblems recursively but
keeps a cache of previously solved subproblems.

fun coin_change(c : sequence<int>, V : int) -> bool:

memoized = [L for v in 0...V]
fun possible(v):

if memoized[v] == -

if v == 0: memoized[v] « True Now with base

else: case included!

answer = False
for denomination in c:
if denomination <= v:
answer « answer or possible(v - denomination)
memoized[v] <« answer
return memoized[v]
return possible(V)

General DP Design Pattern

1. Reduce the problem to smaller versions of itself
 If I make a choice in the solution, what smaller problem remains?

2. Define subproblems precisely
 Identify a set of parameters that describe the smaller problems.

3. Derive a recurrence relation
 Express the solution to each subproblem in terms of solutions to
smaller subproblems
4. Analyze the cost of the solution

» For most problems, the cost is the number of subproblems multiplied
by the cost of solving a single subproblem

The Knapsack Problem

The Knapsack Problem

Problem (0-1 Knapsack): We are given n items. Each item i has a size
s; and a value v;. We are also given a capacity S. The goal is to select a

subset of the items with total size at most S that maximizes total value.
Each item may be used at most once

A|/B | C D E|F|G Items: {A,B,E)G)
Value | 7 | 9 | 5 |12 15| 6 |12 Size: 15
Size | 3|42 |6 |7 |3]|5] Value: 33

S=15

10

Knapsack Subproblems

Subproblem Design:
« Consider making a choice about the solution

« Making a choice should make the problem smaller
« What does a smaller problem look like? Those are your subproblems
« Your recurrence then tries all options for the choice

Solve new knapsack:
" 1@:-‘, Items: {A,B,C,D,E,F}
Choice: Capacity: S = 10

Value | 7 9 5112|115 | 6 | 12 Do I take

. Item G? Solve new knapsack:
Size | 3 | 4|2 |6 |7]| 3|5 " No Items: {A B,C,D,E F}

S =15 Capacity: S = 15

11

Knapsack Subproblems

« When we choose to add an item, we can no longer consider
that item, and the capacity (S) decreases

Define, forall 0 <k <n,and 0 < B < S:

maximum value achievable using

MaxVal(k, B) := { items [0, ..., k) with capacity B

* i.e., our subproblems consider just a prefix of the items with
a lowered capacity.

12

Knapsac

Key Idea: Make

k Recurrence

the choice of whether to include item k — 1. Try including

it and not including it, then take the best of the two outcomes

MaxVal(k, B) = <

(0 ifk =0

MaxVal(k — 1,B) ifs,_1>B

L max(MaxVal(k — 1,B), vy_; + MaxVal(k —1,B —s,_;)) otherwise

of taking item k — 1

Taking item k — 1 reduces capacity

13

DP = "Clever Brute Force"

» The key part of the recurrence was the "choice"
« We try taking item k — 1, or not taking, then take the best outcome

max(MaxVal(k —1,B),v;_1 + MaxVal(k — 1,B — Sk_l))

Clever brute force: This algorithm is correct because it tries every
subset of items. This recurrence implemented without memoization is
literally an exponential-time brute force over all subsets of items. DP turns

an exponential-time brute force algorithm into an efficient algorithm by
systematically eliminating redundancies in that search.

14

Analysis of Knapsack

Theorem (Cost of Knapsack DP): Given n items and a capacity of S, the
Knapsack DP costs 0(nS) work.

o Thereare(n+ 1)(S + 1) = 0(nS) subproblems
« Fach does 0(1) work: try taking item k versus not taking it
« Therefore, the total cost is 0(nS) work

15

Knapsack: Example Code

0 ifk=0
MaxVal(k, B) = { MaxVal(k — 1, B) ifs,_, > B
max(MaxVal(k —1,B),v;_; + MaxVal(k — 1,B — Sk_l)) otherwise

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
n=|s]

MaxVal = [[@ for _ in ©...S] for _ in 0...n] Base cases initialized (don't
need to consider in loop)

for k in 1...n:
for B in 1...S:
if s[k-1] > B:
MaxVal[k][B] « MaxVal[k-1][B]
else:
MaxVal[k][B] <« max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])

return MaxVal[n][S]

16

Where's the Parallelism??

» Observe that MaxVal(k, B) depends only on MaxVal(k — 1,B) and
MaxVal(k — 1,B — s _1)

« In other words, if we think of filling a 2D table of MaxVal(k, B), each row
depends only on the previous row!

The contents
of a row can
be computed

in parallel!

JNTR IB EINTR IO I
R TARIAL
JLYLYL ALY
3 iiii“t“ii
ULV ULV

Parallel Knapsack

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
n = |s|
MaxVal = parallel [[@ for _ in ©...S] for _ in 0...n]
for k in 1...n:
MaxVal[k] « tabulate((fn (B : int):
if B == 0: return ©
else if s[k-1] > B: return MaxVal[k-1][B]
else: return max(MaxVal[k-1][B], v[k-1] + MaxVal[k-1][B-s[k-1]])
), S+1)
return MaxVal[n][S]

Theorem (Cost of Parallel Knapsack): Given n items and a capacity of
S, Parallel Knapsack costs 0(nS) work and 0(n) span.

18

The Edit Distance Problem

Minimum Edit Distance

Problem (Edit Distance): Given strings S and T of length n and m
respectively, what is the minimum number of edit operations required to
transform S into T? We allow the following edit operations:

- Insertion: insert a character into the string,
- Deletion: delete a character from the string,
« Substitution: replace one character with another

 E.g., how many operations to transform "kitten" into "sitting"?

KITTEN — SITTEN — SITTIN — SITTING

20

Edit Distance Subproblems

Subproblem Design:
« Consider making a choice about the solution
Making a choice should make the problem smaller

« What does a smaller problem look like? Those are your subproblems
« Your recurrence then tries all options for the choice

- Important observation: Order doesn't matter
KITTEN —— SITTEN—— SITTIN —— SITTING

* I could have done these three operations in any order...
* Let's make the last character match (G) and choose how

21

Edit Distance Subproblems

KITTEN — SITTEN — SITTIN — SITTING

* Let's choose to make the last character match (G)

* There are three ways to do so
y Match G Earlier

Insert G Replace N With G (Delete N)

KITTENG KITTEN KITTEN
SITTING SITTING SITTING
{ ! {
Compute edit distance: Compute edit distance: Compute edit distance:
KITTEN KITTE KITTE
SITTIN SITTIN SITTING

22

Edit Distance Subproblems

KITTEN « Each choice, we remove one

SITTIN character from one or both strings
KITTEN KITTE]
SITTING SITTIN » This suggests subproblems

KITTE corresponding to prefixes

SITTING

Define, forall0 <i<n,and 0 <j < m:

. . . Jminimum edit distance between
MED(i, j) = { S[0...0)) and T[O ...§)

23

Edit Distance Recurrence

Key Idea: Choose between inserting the last character of T, replacing the

last character of S with the last character of T or deleting the last character
of S. Take the best of the three choices

MED(i, j) = <

(i ifj =0
J ifi =0

MED(i — 1,j — 1) + (L if S[i — 1] # T[j — 1] else 0)
min| { MED(i — 1,j) + 1 otherwise
\

MED(i,j — 1) + 1

Insert T[j — 1] Delete S[i — 1] Replace S[i — 1] with T[j — 1]. This costs

0 if the characters are already the same

24

Analysis of Edit Distance

o Thereare (n+ 1)(m + 1) = 0(nm) subproblems
« Fach does 0(1) work: try three operations and take the min
« Therefore, the total cost is 0(nm) work

Parallelism: Edit distance can be parallelized, but its tricker than

knapsack, because subproblems depend on other subproblems in the same
row and same column. Think about it as an exercise (or read the notes).

25

Edit Distance: Example Code

(i ifj =0

j ifi =0
MED(i, j) = MED(i — 1,j — 1) + (1 if S[i — 1] # T[j — 1] else 0)

min| < MED(i — 1,j) + 1 otherwise

\ MED(i,j — 1) + 1

fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
n=|[s|, m=|T|

MED = [[i+] for j in ©...m] for i in @...n] Base cases initialized (don't
need to consider in loop)

for i in 1...n:
for j in 1...m:
MED[i][j] <« min(
MED[i-1][j-1] + (1 if S[i-1] != T[j-1] else 0),
MED[i-1][j] + 1,
MED[i][j-1] + 1
)
return MED[n][m]

(Yet Another) Parenthesis
Problem

Boolean Parenthesisation

Problem (Boolean Expression Feasibility): You are given a Boolean
expression consisting of the literals True and False, connected by the

binary operators AND (A) and OR (V). The expression is written without
parentheses. Is it possible to fully parenthesize the expression so that
it evaluates to True?

((Tr-ue and (False or True))and (True or False))

28

Boolean Parenthesisation Subproblems

Subproblem Design:
Consider making a choice about the solution

Making a choice should make the problem smaller
What does a smaller problem look like? Those are your subproblems
Your recurrence then tries all options for the choice

(Tr-ue) and (False) or (Tr'ue) and (True) or (False)

* * t* *

» Choice: Choose the final operator
* Then recursively parenthesize both sides

29

Boolean Parenthesisation Subproblems

True and (False or True and True) or False
i J
Define, forall 0 <i<n,and i <j < n:

if the subexpression from b; to b; can be

. True :
CanParen(i,j) = parenthesized to evaluate to True
False otherwise

Parameters: Knapsack and Edit distance both used prefixes of the input as

subproblems. When this is not enough information, considering all contiguous
subsequences of the input is often a good subproblem choice.

30

Boolean Parenthesisation Recurrence

Key Idea: Choose which operator comes last and recursively parenthesize
the left and right subexpressions.

b ifi =j
CanParen(i,j) = < \/ {CanParen(i, k) A CanParen(k + 1,j) if op, = A

CanParen(i, k) v CanParen(k + 1,j) ifop, =V otherwise

\ i<k<j

Try all final operators
(split points)

31

Boolean Parenthesisation Analysis

Theorem (Cost of Boolean Parenthesisation DP): Given a Boolean

expression with n literals, the Boolean expression feasibility problem can be
solved in 0(n®) work

« There are 0 (n*) subproblems
» Subproblem (i, j) does (j — i) work, which is O(n)
« So, the total work is 0(n3)

Parallelism: This problem can also be parallelized. Think about which
subproblems can be solved in parallel and identify any other opportunities

for parallelism as an exercise (or read the notes).

Boolean Parenthesisation: Code

Order: Subproblems are ordered by length.

fun canParenthesize(b : sequence<bool>, op : sequence<char>) -> bool:
n = |b
CanParen = [[False for _ in @...n-1] for _ in 0...n-1]
for i in @...n-1: CanParen[i][i] « b[i]
for length in 0...n-1:
for 1 in 0...(n-length)-1:
j = i + length
answer = False
for k in i...j-1:
if op[k] == 'A': answer « answer or (CanParen[i][k] and CanParen[k+1][]j])
else: answer <« answer or (CanParen[i][k] or CanParen[k+1][]])
CanParen[i][j] « answer
return CanParen[0][n-1]

33

Summary

- Subproblem Design:
« Consider making a choice about the solution
« Making a choice should make the problem smaller
« What does a smaller problem look like? Those are your subproblems
* Your recurrence then tries all options for the choice
« Common Subproblem Parameter Patterns:
» Reduce to smaller value (e.g., Coin Change value, Knapsack capacity)
« Reduce to prefix of the input (e.g., Knapsack items, Edit Distance)
« Reduce to an interval of the input (e.g., Boolean Parenthesisation)

34

	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Review: Coin Change
	Slide 4: Step 1 of DP: Define Subproblems
	Slide 5: Step 2 of DP: Recursive Solution
	Slide 6: Bottom-up Dynamic Programming
	Slide 7: Top-down Dynamic Programming
	Slide 8: General DP Design Pattern
	Slide 9: The Knapsack Problem
	Slide 10: The Knapsack Problem
	Slide 11: Knapsack Subproblems
	Slide 12: Knapsack Subproblems
	Slide 13: Knapsack Recurrence
	Slide 14: DP = "Clever Brute Force"
	Slide 15: Analysis of Knapsack
	Slide 16: Knapsack: Example Code
	Slide 17: Where's the Parallelism??
	Slide 18: Parallel Knapsack
	Slide 19: The Edit Distance Problem
	Slide 20: Minimum Edit Distance
	Slide 21: Edit Distance Subproblems
	Slide 22: Edit Distance Subproblems
	Slide 23: Edit Distance Subproblems
	Slide 24: Edit Distance Recurrence
	Slide 25: Analysis of Edit Distance
	Slide 26: Edit Distance: Example Code
	Slide 27: (Yet Another) Parenthesis Problem
	Slide 28: Boolean Parenthesisation
	Slide 29: Boolean Parenthesisation Subproblems
	Slide 30: Boolean Parenthesisation Subproblems
	Slide 31: Boolean Parenthesisation Recurrence
	Slide 32: Boolean Parenthesisation Analysis
	Slide 33: Boolean Parenthesisation: Code
	Slide 34: Summary

