Asymptotic Analysis and Recurrences

15-210 — Parallel and Sequential Data-structures and Algorithms

Dcmw)/ "’S/GCP\E'O\/’
¢s . Cmy.edu/aSkaToy foddballs

1/ 33

Asymptotic Analysis
Recurrences

Tree Method

Brick Method

Substitution Method

2 /33

Asymptotic Analysis

3/33

Asymptotic Analysis: Motivation

Used throughout the curriculum:
m 15-122 Principles of Imperative Computation
m 15-251 Great Theoretical Ideas in Computer Science
m 15-150 Principles of Functional Programming
m 15-451 Algorithms

W(n) = 7n* +3nlogn + 11/n + + 2.72342142

log n

4 /33

Asymptotic Analysis: Motivation

Used throughout the curriculum:
m 15-122 Principles of Imperative Computation
m 15-251 Great Theoretical Ideas in Computer Science
m 15-150 Principles of Functional Programming
m 15-451 Algorithms

W(n) = 7n* +3nlogn + 11/n +

+2.72342142 € O(n?)
log n

4 /33

Asymptotic Analysis: Motivation

Used throughout the curriculum:
m 15-122 Principles of Imperative Computation
m 15-251 Great Theoretical Ideas in Computer Science
m 15-150 Principles of Functional Programming
m 15-451 Algorithms

W(n) = 7n* +3nlogn + 11/n + +2.72342142 € O(n?)

log n
Asymptotic analysis is a useful abstraction:
m Avoid details of the machine/model /compiler
m Avoid details of the algorithm
m Gives a way to compare algorithms in theory

we care about cost with large inputs

4 /33

Asymptotic Analysis: Dominate

Definition
For two functions f, g : R>g — Rx>q we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c- f(n) for all n > ng

5 /33

Asymptotic Analysis: Dominate

Definition
For two functions f, g : R>g — Rx>q we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c- f(n) for all n > ng

5 /33

Asymptotic Analysis: Dominate

Definition
For two functions f, g : R>g — R>¢ we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c¢- f(n) for all n > ng

ftn) g(n) - g

(o

2n n -/00 |00

n 2n 10 7 R I A 1|
nlog,n n
on 21.1n

6 /33

Asymptotic Analysis: Dominate

Definition
For two functions f, g : R>g — R>¢ we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c - f(n) for all n > ng

() gtn) em T A D) st

2 10

> 20 XV v, 9(’71“'*[”
nlog,n n 1 2 '\7[

2n 21.1n X X Q M
— o C 4 0) (ﬂné ho S f\l\

" zﬁa)Saszc_/MlD) 7(M\¢>Q ‘P@Vll

6 /33

Asymptotic Analysis: Big-O, Big-©, and Big-{2

Definition
For two functions f, g : R>g — R>¢ we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c- f(n) for all n > ng

O(f(n)) = {g(n) s.t. f(n) asymptotically dominates g(n)}
Q(f(n)) = {g(n) s.t. g(n) asymptotically dominates f(n)}
O(f(n)) =

7/33

Asymptotic Analysis: Big-O, Big-©, and Big-{2

Definition
For two functions f, g : R>g — R>¢ we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c- f(n) for all n > ng

O(f(n)) = {g(n) s.t. f(n) asymptotically dominates g(n)}
Q(f(n)) = {g(n) s.t. g(n) asymptotically dominates f(n)}
O(f(n)) = O(f(n)) Q(f(n))

7/33

Asymptotic Analysis: Big-O, Big-©, and Big-{2

Definition
For two functions f, g : R>g — R>¢ we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c- f(n) for all n > ng

O(f(n)) = {g(n) s.t. f(n) asymptotically dominates g(n)}
Q(f(n)) = {g(n) s.t. g(n)
)

O(f(n)) = O(f(n)) NQ(f(n))

asymptotically dominates f(n)}

7/33

Asymptotic Analysis: Conventions

m f(n)=0O(n?)
m 7(n)is O(n?)
m correct form: f(n) € O(n?)

= f(n) = g(n) + O(n)
m correct form: f(n) € g(n) + O(n)
m or equivalently f(n) — g(n) € O(n)

m O(n) = O(n?)
m correct form: O(n) C O(n?)

8 /33

Proof that log(n!) = @(nlog n)

9 /33

Limit Theorem for Little-o and Little-w

For positive functions f and g, the following are equivalent:

f(n) = o(g(n))

g(n) = w(f(n))
)
n||—>oog(n) =0

This is usually the easiest way to prove that one function is Little-o of another one.

10 / 33

Uses of the Limit Theorem (Exercises)

Use this theorem and I'Hopital’s rule to prove the following results:

n* = o(a") for any k and any a > 1

In words this means: Any polynomial, no matter how big, is eventually dwarfed by any
expontially growing function.

logn=o(nP) forany p>0

|.e. logs grow more slowly than any polynomial, even those of tiny degree.

11 / 33

Recurrences

12 / 33

Recurrences: Introduction

Recursive program with numeric values

Recurrences:
m base case(s) & recursive case(s)
m convenient for modeling costs
m derived from a recursive algorithm: abstract away details
m goal: find a closed form solution, at least asymptotically

13 / 33

Recurrences: Introduction

Recursive program with numeric values

Recurrences:
m base case(s) & recursive case(s)
m convenient for modeling costs
m derived from a recursive algorithm: abstract away details
m goal: find a closed form solution, at least asymptotically

Three methods to solve recurrences:
m [ree method
m Brick method
m Substitution method

13 / 33

Recurrences: Examples

0
F(n)=1 s -
V| F(n—1)4 F(n—2) otherwise

14 / 33

Recurrences: Examples

— §/&--
o)
n If n S
F(n) — {F(n _ 1) + F(n — 2) (;cthergwilse
with ¢ = ﬁ =L6(5

- (0"

14 / 33

Recurrences: Examples

"—(1—¢)"
n if n<1 B V5
Fn) = { n— n— 0 er_wise
F(n—1)+ F(n—2) oth ith o f
€ O(¢")

14 / 33

Recurrences: Examples

"—(1=y)"
F(n) = n if n <1 B V5
V| F(n—1)4 F(n—2) otherwise f
with ¢ =
< O(¢")
Recurrence for mergesort:
~if (n<1) then ¢
Wi(n) = else 2W(5) + Winerge(n) + & € O(nlog, n)

14 / 33

Recurrences: Simplifications

First off all, since we're only doing asymptotic analysis we will assume that the value of
the base case is is a constant denoted c¢p.

15 / 33

Recurrences: Simplifications

First off all, since we're only doing asymptotic analysis we will assume that the value of
the base case is is a constant denoted cp.

Secondly many of the recurrences we want to solve involve integer parameters. For
example, in the case of mergesort, we recurse on one part of size [n/2] and the other
of size | n/2|. But when we wrote the recurrence we just expressed this as 2W (3).

15 / 33

Recurrences: Simplifications

First off all, since we're only doing asymptotic analysis we will assume that the value of
the base case is is a constant denoted cp.

Secondly many of the recurrences we want to solve involve integer parameters. For
example, in the case of mergesort, we recurse on one part of size [n/2] and the other
of size | n/2|. But when we wrote the recurrence we just expressed this as 2W (3).

We assert here without proof that this will not affect the asymptotic correceness of our
analysis. Suffice it to say that this stems from the fact that for large n this change is
miniscule, and that the realm of large n is where the preponderence of the recurrence
Is being computed.

15 / 33

Tree Method

16 / 33

Tree Method: Unfold Recurrence, Sum by Level

n

W(n) = 2W (2) + O(n)

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

W(n) = 2W (3)+0(n)

= W(ﬁ>+W(ﬁ)+c1-n+c2

VN
Q/ \Q ﬂ/ \Q
AN

17 / 33

Tree Method: Unfold Recurrence, Sum by Level
W(n) = 2W (3)+0(n)

n n

/N
3 2 2(c15 + @) =an+ 20
/ A\ / A\
n u 2 . 4(c17 + @) = can—+4c
RN RTARYAY

=

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

W(n) = 2W (3)+0(n)

n n

n
/ \ an+ e
2 2 2(a? + @) = an + 26
AN
n n n n 4(c1z + @) =can+4c

AN

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

424K +F = | N
W(n) = 2W(§>+O(n) _:;z{/ nelf

n n

" an¥ o
Z/ \Z A+ a)=(anf2q 2
logy n ¢ z/ \:; g/ \g 4(C1£+C2)7@4C2)
FARRARFANNAY oo

total cost is cinlog, n + c(n — 1) 4+ ¢cpn € O(nlog, n) Jﬁ’.
L1 = = N[17733

Tree Method: Another Example

log, n <

w() =

Cl

W(n) = W(ﬁ> + W (ﬁ) + n’

nu :
N,
ﬂ/ \ﬂ ﬂ/ \Q
AN

total cost is n® + = + T 4 ...

2

cost(Ly) = n?

cost(Ly) =2(3)* =

cost(Ly) = 4(4)* =

cost(Ly) =cp - n

<2n°+c¢p-ne O(n?

18 / 33

Tree Method: Unfold Recurrence, Sum by Level

W(n) = 2W(g) +/n

19 / 33

Tree Method: Unfold Recurrence, Sum by Level

W(n) =2W(3) €v/n TC,

N,
S VANVAN

AN

Tree Method: Unfold Recurrence, Sum by Level

W(n) = 2W(g) +/n
/"\ A Vo=
| > 2 AVoz 2c1/n/2 +2¢c, =
821\)\ / N\

4c1m+4c2
4 4 4 4 Vv £
IVIVIV T sy v

total cost is O(n)

C1y/ N+ C =

19 / 33

Brick Method

20 / 33

Brick Method (An extension of the Tree Method): Introduction
Consider geometric series

S={(1l,a,0...,a" with o #£ 1

21 /33

Brick Method (An extension of the Tree Method): Introduction

Consider geometric series

(8%
F > 1 < ;
ora>13 x (a_l)a

X€ES

1
F <1 <
ora <1,y x (1_a)

x€eS

21 / 33

Brick Method: Introduction

Consider recurrence tree, for any node v
m C(v) = cost of v
m D(v) = set of children of v

Root dominated:
m C(v) > a) ,epp) C(u) forall v with a > 1

m total cost is (%) C(root) € O(C(root))

22 /33

Brick Method: Introduction

Consider recurrence tree, for any node v
m C(v) = cost of v
m D(v) = set of children of v
Leaf dominated:
m al(v) < epn C(u) forall v with v > 1

m total cost is the cost of leaves € O(C(leaves))

23 / 33

Brick Method: Root Dominated Examples

W(n) = W)+ W(2) + n?

m cost root: n?
2

: . (n)2 2 _
m cost children: (5)° 4 (5)° = %
m cost root > 2 cost children = root dominated: O(n?)

m applies at all nodes

24 / 33

Brick Method: Root Dominated Examples

W(n) = W(%)+ W(5)+n’ AN —
m cost root: n? /\5,4

A
m cost children: (2)°+ (2)° =% 3 L

m cost root > 2 cost children = root dominated: O(n?)

—
m applies at all nodes
_ 5 2
W(n) = W(3)+ W()+n
m cost root: n? y
: : 2 5n\2 _ n* | 25n® __ 29n? —
m cost children: (£)* 4 (32£)2 =12 + 2 =23© < U
m cost root >dFtost children = root dominated: O(n?)
26 ~

79
1 24 / 33

Brick Method: Root Dominated Proof

S={(1,a,0,...,a" with o #£ 1

1 1
szaa—l ’ ZX<1—CM

with0<a<1

Theorem
If C(v) > a) ,cpn) Cu) for all v with a > 1, then the total cost is

O(C(root)).

25 / 33

Brick Method: Root Dominated Proof

S={(1,a,0,...,a" with o #£ 1

with0<a<1
—

Theorem

If C(v) > a) ,cpn) Cu) for all v with a > 1, then the total cost is
O(C(root)).

Proof.

total C = C(Lo) + C(L1) +---+ C(Lyg)
— C(Lo)l +1/a+ -+ 1/a%),

< Clto) (1175) =€) (ﬁil)r < 0(C(Lo)

5]/ 33

Brick Method: Leaf Dominated Examples

W(n) = W)+ W(2)+ Vi
m cost root: y/n
m cost children: /2 + /2 =+/2y/n
m cost of leaves: 2'°&2" = p

m « cost node < cost children = leaf dominated: O(n)

26 / 33

Brick Method: Leaf Dominated Examples

W(n) = W(Z) + W(2)+ 7
m cost root: y/n
m cost children: /2 + /2 =+/2y/n
m cost of leaves: 2'°&2" = p

m « cost node < cost children = leaf dominated: O(n)

W(n) = W(2) + W)+ W(2) + - KQ\
m cost node: \/n v7. "
m cost children: /24 /34 /5 = %ﬁ \/;\;/

3

m cost of leaves: 31627 = plog2 1'@9—“
m « cost node < cost children = leaf dominated:@

26 / 33

Brick Method: Leaf Dominated Example

W(n) = W(3)+ W(3)+ W(3)++/n
m cost node: \/n
m cost children: /24 /24 /5 = %ﬁ
m cost of leaves: 39827 = plog23

m « cost node < cost children = leaf dominated: O(n'°%23)

27 / 33

Brick Method: Leaf Dominated Proof

S={(1,a,0,...,a" with o #£ 1

1 1
szaa—l ’ ZX<1—CM

with0<a<1

Theorem
IfC(v) <= D _uep(v) Clu) for all v with a > 1, then the total cost is

O(C(leaves)).

28 / 33

Brick Method: Leaf Dominated Proof

S={(1,a,0,...,a" with o #£ 1

Z o — 1 Z < L th0<a<1
X = X W1 (@
a—1 " 1 —

Theorem
IfC(v) <= D _uep(v) Clu) for all v with a > 1, then the total cost is
O(C(leaves)).

Proof.
total cost = C(Lg) + C(L1) + -+ C(Ly)
< 1/a® - C(Lg)+1/a% - C(Ly) + -+ C(Lg)
= C(Ly)(1+1/a+---+1/a%)
< Q

L) (%) € Olc(La)

28 / 33

Brick Method: Balanced

The costs of each level are approximately the same
Neither leaf nor roof dominated

For example in mergesort: W(n) =2W(3) + O(n)

N,
S VANVAN

AN

29 / 33

Brick Method: Balanced

The costs of each level are approximately the same
Neither leaf nor roof dominated

For example in mergesort: W(n) =2W(3) + O(n)

N,
S VANVAN

AN

total cost is

29 / 33

Brick Method: Balanced

The costs of each level are approximately the same
Neither leaf nor roof dominated

For example in mergesort: W(n) =2W(3) + O(n)

log, n <

VN
Q/ \Q ﬂ/ \Q
AN

total cost is log, n- O(n) = O(nlog, n)

29 / 33

Brick Method “Masterform”

W(n)=a- W (g) + f(n)

f(n) compare: f(n):a-f (%)

> root dominated
f(%) e f(%) < leaf dominated

a copies — balanced

leaves = 3'°8v" = plogy 3

30 / 33

Brick Method “Masterform”

W(n)=a- W (g) + f(n)

f(n) compare: f(n):a-f (%)

> root dominated
f(%) e f(%) < leaf dominated

a copies — balanced

leaves = 3'°8b" = plogsa

The techniques described in this lecture allow you to derive the result of the “Master

Theorem”™ whenever necessary.
30 / 33

Substitution Method

31 /33

Substitution Method: “Guess and Check”

Computing can be tricky if tree is unbalanced
= W(n) = W(5)+ W(2)+/n

32 / 33

Substitution Method: “Guess and Check”

Computing can be tricky if tree is unbalanced

= W(n) = W(3)+ W(3)+ v i\
= This recurrence is leaf-dominated as \/n < /3 + /3 2

m How many leaf nodes?

32 /33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced
s W(n) = W(2)+ W(2)+vn <=
m This recurrence is leaf-dominated as y/n < \/g+ \/g

m How many leaf nodes? New recurrence: L(n) = L(5) + L(§)

N

32 /33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced
= W(n) = W(2)+ W(2) +/n
m This recurrence is leaf-dominated as y/n < \/g—l— \/g

m How many leaf nodes? New recurrence: L(n) = L(5) + L(3)

The substitution method consists of two steps
m (educated) guess: good luck... intuition

m check: proof by induction

Our guess: L(n) = n® for some b
m base case: [(1)=1=1)

= induction: n® = (2)° 4+ (2)°

-ﬂﬁ'

32 /33

Substitution Method: “Guess and Check”

Computing can be tricky if tree is unbalanced
s W(n) = W(2) + W(Z) + /7
= This recurrence is leaf-dominated as \/n < /3 + /3

m How many leaf nodes? New recurrence: L(n) = L(5) + L(3)

The substitution method consists of two steps
m (educated) guess: good luck... intuition

m check: proof by induction

Our guess: L(n) = n® for some b
m base case: [(1)=1=1)
= induction: n® = (2)” + (2)”

m after simplification (dividing by nb): 1= (%)b + (%)b

e

32 /33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced
= W(n) = W(2)+ W(2) +/n
m This recurrence is leaf-dominated as y/n < \/g—l— \/g

m How many leaf nodes? New recurrence: L(n) = L(5) + L(3)

The substitution method consists of two steps
m (educated) guess: good luck... intuition

m check: proof by induction

Our guess: L(n) = n® for some b
m base case: [(1)=1=1)
= induction: n® = (2)° 4+ (2)°
m after simplification (dividing by n?): 1 = (%)b + (%)b

m solution: b~ .788, so L(n) ~ n'"®® and W(n) € O(n""3®)
32 / 33

Asymptotic Analysis
Recurrences

Tree Method

Brick Method

Substitution Method

33 /33

