15-210: Parallel and Sequential Data Structures and Algorithms

Algorithms for Sequences

1 Arrays and Imperative Parallelism

Recall from Lecture One, the sequence abstract data type (ADT).

Interface: The Sequence ADT

A sequence represents a finite, ordered collection of elements that supports efficient
(i.e., constant-time) random access. Conceptually, a sequence behaves like an array or
a contiguous view into an array.

Sequence Access:

e nth : (S : sequence<T>, i : int) -> T
Return the i™M element (zero-indexed) of the sequence S.

e length : (S : sequence<T>) -> int
Return the length (number of elements in) the sequence S.

The nth function is usually abbreviated as S[i], and length is abbreviated as |S|.
Subsequence Views:

e subseq : (S : sequence<T>, i : int, k : int) -> sequence<T>
Returns a view of the subsequence of S starting at index i with length k.

The function subseq does not copy elements, otherwise it would be inefficient.

Any concrete type that implements this interface is considered a sequence. Since a sequence
is, at a high level, a thing that behaves like an array, the most obvious way to implement the
sequence ADT is using arrays!

So far in class we have just been assuming that functions like tabulate and our other sequence
functions return array-sequences.

e tabulate : ((int -> T), int) -> ArraySequence<T>

In this lecture, we will go a bit more under the hood and talk about how ArraySequence and
many important sequence algorithms are implemented.

1.1 Arrays

Arrays work slightly differently in different programming languages, but for the most part they
support the following set of fundamental operations with some syntax in some form or another:

allocate<T>(n): allocate an array of length n of type T

A[1i]: return the i element of A

|Al: return the length of A

A[i] « x: write the value x to the i" element of A

All of these operations runs in O(1) time. In most languages, | A| would be writtenasA.length
orA.size() orsomethingsimilar, but we'll keep this shorthand to make our pseudocode nicer.

And of course, to make everything work under the hood, we are going to need to assume that
arrays are mutable. The fourth operation in our list of primitive array operations allows us to
write a value to an element of the array.

1.2 Imperative Parallel Loops

Thus far, we have written and described parallelism in algorithms using only functional con-
structs; either parallel list comprehension (our pseudocode for tabulate), which evaluates a
(pure) function over many indices in parallel and returns the results as a sequence, or parallel
tuple evaluation, which evaluates several expressions in parallel and returns their results.

When we use these constructs to express parallelism, by default we try to avoid side-effects
since this makes the code harder to reason about and more error prone. To implement the low
level parallel operations that our algorithms rely on (for example, to implement tabulate itself),
we will however need to write imperative parallel code, i.e., parallel code with side effects.

The standard abstraction used and supported by most imperative parallel programming li-
braries is the parallel for loop. A parallel for loop evaluates the iterations of its loop body in
parallel. Since it returns no value, its purpose is to execute a loop that produces side effects.

Definition: Parallel For Loop

A parallel for loop executes its body for every value of its range in parallel. In our pseu-
docode, we denote a parallel for loop, where e (i) is some (impure) function of i, as:

parallel for i in ...:

e(i)
Since the iterations of the parallel for loop execute in parallel, its work and span are

w =Z W(e(i), S=maxS(e(i)).

Now that we have a parallel construct that can execute imperative code, we are vulnerable to a
new kind of bug that we must be extremely careful to avoid, a data race.

Definition: Data Race

A data race occurs when there are two unsynchronized parallel operations on the same
memory location, and at least one of the operations is a write.

Note that two parallel reads of the same memory location is not a data race. Any access that
involves a write must be treated with care.

The precise meaning of “synchronization” depends on the programming language, its memory
model, and sometimes even the hardware. These details are beyond the scope of this class. As
a result, we will adopt a deliberately conservative rule: All parallel operations in this class are
treated as unsynchronized.

Under this rule, any pair of parallel operations that access the same memory location, where at
least one is a write, constitutes a data race. This cannot happen in a purely functional program,
since values are never mutated. However, it can happen in imperative parallel constructs such
as parallel for loops.

In this class, the presence of a data race means the algorithm is incorrect. Programs with data
races are considered to have undefined behavior and are not valid algorithms.

2 ADataType for ArraySequence

Because we want our implementation of subseq (extract a contiguous subsequence) to be fast,
our data structure for ArraySequences will keep the actual array, along with two additional in-
tegers. These are the starting point of the subsequence, and the length of it. So we have:

type ArraySequence<T> =

A: Array<T>
s: int
1: int
}
A:
2} S |A]-1

s is the starting index of the subsequence in the array A, and ¢ is the length of the subsequence.
When we create an ArraySequence initially, s will be zero and 1 will be the length of the array.

2.1 nthand length

nth and length are straightforward to implement given the ArraySequence data type.

Algorithm: nth

fun nth (S : ArraySequence<T>, i : int) -> T:
(A,S,_) =S
return A[s+i]

Algorithm: length

fun length(S : ArraySequence<T>) -> int:
(_1 —1 1) =S
return 1

Both of these run in constant time (work and span).

2.2 subseq

Since our ArraySequence data type stores an offset and length, implementing subseq trivial;
we just add to the start and set the new length while keeping the same underlying array.

Algorithm: Subseq

fun subseq (S: ArraySequence<T>, s: int, 1: int) -> ArraySequence<T>:
(A,s’,1'") =S
return (A,s+s’,1)

subseq also runs in constant time (work and span).

2.3 tabulate

Since tabulate is our key primitive for creating a new ArraySequence, it actually has to al-
locate the memory for the array and fill it with its values. We can do this using our assumed
allocate primitive and a parallel for loop to populate the values.

Algorithm: Tabulate

fun tabulate (f : (int -> T), n : int) -> ArraySequence<T>:
R = allocate<T>(n)
parallel for i in o...n-1:
R[1] « f(1)
return (R, o, n)

Is there a data race? No! Because each of the parallel executions of the loop body operates on
a different element of R. (We assume that the function f is pure, i.e., has no side effects.)

The work and span of tabulate are

W= > W), $=maxS(f(i).

0<i<n

3 Sequence Functions

With ArraySequence as a concrete implementation of the sequence ADT, we can now imple-
ment a range of useful algorithms on sequences. We have already seen how to implement a
few of these in past lectures (most notably reduce, scan, and merge, and also sort by doing
areduce over the merge function as an implementation of MergeSort!)

e map(f,S): applies the function f to every element of S, returning a sequence of results

* append(S1, S1):concatenate the two given sequences into a single sequence

e filter(p, S):returnasequence containing the elements of S that satisfy the predicate f
e flatten(S): givenanested sequence, return a sequence of the values of the inner sequences
e reduce(f, I, S):compute the sum of S with respect to the function f and identity I

e scan(f, I, S):compute the prefix sums of S with respect to the function f and identity I
» merge(S1, S2): given two sorted sequences, return a sorted sequence of their elements

e sort(S): return a copy of the given sequence with the elements in sorted order

Some of these are straightforward applications of tabulate, while others will require more
complicated algorithms, possibly involving some of the other functions.

3.1 Map

The map function applies a given (pure) function to the elements of a given sequence and
returns a new sequence consisting of the results. This can be implemented by just calling
tabulate using a function that maps from an index i to f(S[i]).

Algorithm: Map

fun map (f : (T -> U), S : sequence<T>) -> ArraySequence<U>:
return tabulate(fn i => f(S[i]), ISI)

The work and span of map are

W= W(f(x), S=maxS(f(x).

x€S§

3.2 Append

The append function takes two sequences and concatenates them together. This can also be
implemented as an application of tabulate. We just case on whether the index i is within the
first or the second sequence.

Algorithm: Append

fun append (A : sequence<T>, B : sequence<T>) -> ArraySequence<T>:
return tabulate (fn i => (A[i] if i<|A]| else B[i-[A[|]), [Al+|B])

The work and span of append are

W = O(|A| +|B]), S=0(1).

3.3 Filter

filter(p, S) returnsasequence consisting of the elements of S which satisfy the predicate
p-. The relative order of the elements is preserved. The type signature of filter is:

filter : (p : (T -> bool), S : sequence<T>) -> ArraySequence<T>
For example filter (fn x => x < 5, [7,1,3,11,7,2]) returns [1,3,2]

Our goal is to do this in linear work and logarithmic span (that’s the interesting part). Suppose
we have a sequence of eight elements asinput to filter, and the ones that satisfy the predicate
are the 0,274,314 6™ The trick is to figure out where in the output these elements occur.

This is done by the following key observation: the position of a surviving element in the output
is exactly equal to the number of surviving elements that occur before it. Counting the number
of elements before each elements sounds like a prefix sum, because it is, so we can use scan!

1] 1 1 0) 1 0 F = map(fn x => 1 if p(x) else @, S)
0\ 1 2\ 3\ 4 5 /é 7
o \\ 1 2 3 3 3 4 x,¥ = scan(plus, @, F)

R: | sfe] S[\] S[31 | s[e] if F[i] == 1: R[x[1i]] « S[i]
0~ 1% 2 3

Theideais to first map each element x to 1 if it survives (i.e., if p(x) returns True) or 0 otherwise.
These indicator variables are then scanned to produce the prefix sums, i.e., exactly how many
surviving elements occur before each element. These prefix sums then give the algorithm the
locations to which to write the survivors in the output array, which can be done in parallel since
no two elements will ever occupy the same position, so no data race will occur.

Algorithm: Filter

fun filter (p : (T -> bool), S : Sequence<T>) -> ArraySequence<T>:

F=map (fn x => 1 if p(x) else o, S)
x,1 = scan(plus, o, F)
R = allocate<T>(1)
parallel for i in o...|S|-1:

if F[i] == 1:

R[x[1]] < s[il

return (R,0,1)

The work and span of filter are given by the sums of the work and span of the map and scan
calls performed, which depend on the work and span of the predicate p:

W= Wp(x), §=0(og|s)+maxS(p(x)).

x€S§

3.4 Flatten

The flatten function takes a sequence of sequences (i.e., a 2D nested sequence) and produces
anew sequence consisting of all the elements of the inner sequences in the same relative order.
In other words, it concatenates all of the inner sequences. The type of flatten is:

flatten: (S : sequence<sequence<T>>) -> ArraySequence<T>
For example, flatten([[2,3],[7,8,1]1,[4]]) returns [2,3,7,8,1,4].

The fundamental problem here is similar to that of filter: for each element we need to figure
out its position in the output array. The solution is therefore also very similar to thatof filter.
The position of an element in the output array is its position in its inner (input) array plus the
lengths of all the inner sequences that occur before it. This is yet another scan!

S: 2 3 7 8 1 4

2 3 1 L = map (fn x=> |x|, S) //length of inner sequences

0 2 5 offset, length = scan(plus, 0, L)

2| 3| 7] 8| 1| a R[offset[i]+]] « S[i][]]

I I I

offset[0] offset[1] offset[2]

The ideais to use scan to compute the prefix sums of the lengths of the inner sequences. These
tell you where in the output the elements of each sequence should go. Then, the algorithm
can simply copy each element of the input sequences to its destination in parallel. Similar to
filter, no two input elements share the same output position so no data race occurs.

Algorithm: Flatten

fun flatten (S : sequence<sequence<T>>) -> ArraySequence<T>:
L =map (fn x => |x]|, S)
offset, length = scan(plus, o, L)
R = allocate<T>(length)
parallel for i in o...|S|-1:
parallel for j in o...L[i]-1:
Rloffset[i]+j] « S[il[j]
return (R, o, length)

The work and span of flatten are:

W=0 (Z(l + |x|)), S = 0(log|S)).

x€S

	Arrays and Imperative Parallelism
	Arrays
	Imperative Parallel Loops

	A Data Type for ArraySequence
	nth and length
	subseq
	tabulate

	Sequence Functions
	Map
	Append
	Filter
	Flatten

