15-210: Parallel and Sequential Data Structures and Algorithms

Dynamic Programming Il

Last lecture we introduced the powerful problem-solving paradigm of dynamic programming.
We saw several example problems all based around variants of the coin change problem. In this
part of the lecture, we will study additional examples that look quite different on the surface but
follow the same underlying problem-solving pattern.

Dynamic programming is a way of thinking about problems that exhibit two key properties:

e Optimal substructure: an optimal solution can be built from optimal solutions to smaller
instances of the same problem.

e Overlapping subproblems: the same smaller problems arise repeatedly.

When these properties are present, dynamic programming often allows us to turn an other-
wise exponential-time brute-force algorithm into a polynomial-time one by carefully organiz-
ing and reusing work.

Idea: A General DP Design Pattern

Although each dynamic programming problem has its own domain-specific details, we
will follow the same high-level process throughout this section:

1. Reduce the problem to smaller instances. Ask: If I make one choice in the solution,
what smaller problem remains to be solved?

2. Define subproblems precisely. Identify a set of parameters that uniquely describe
the smaller problems. The art here is to define enough subproblems to capture all
possibilities, but not so many that their number becomes as inefficient as brute force.

3. Derive a recurrence relation. Express the solution to each subproblem in terms of
solutions to strictly smaller subproblems, handling base cases explicitly.

4. Analyze the cost of the solution. For most problems, the cost is the number of sub-
problems multiplied by the cost of solving a single subproblem. This is always a valid
upper bound. In some cases, we may be able to do a tighter analysis if different sub-
problems have vastly different costs.

5. Implement the algorithm in code. Use either bottom-up evaluation or top-down
memoization to ensure that each subproblem is solved only once. If the problem
asks for an explicit solution rather than just its value, extract one by storing decisions
or by backtracking through the computed subproblems.

The hardest step is almost always defining the right subproblems. Once this is done, the re-
currence and the implementation usually follow naturally. Today, we will explore some of the
different kinds of subproblem design patterns that frequently arise in dynamic programming.

1 Example: The Knapsack Problem

Dynamic programming is especially powerful when a problem involves optimizing a sequence
of choices subject to some global constraint. A canonical example, perhaps the canonical ex-
ample of this, is the knapsack problem.

Problem: 0-1 Knapsack

We are given n items. Each item i has a size s; and a value v;. We are also given a capacity
S. The goal is to select a subset of the items with total size at most S that maximizes total
value. Each item may be used at most once.

This problem models many real situations: choosing which homework problems to do given
limited time, which files to store given limited space, or which tasks to schedule under a fixed
resource budget. A brute-force solution would try all 2" subsets of items, which is infeasible
even for moderate n. Dynamic programming will allow us to do much better.

The key observation is that an optimal solution makes a binary choice for each item: either it
is included, or it is not. Consider some arbitrary item k and suppose we have a knapsack with
capacity S. Any optimal solution must fall into one of two cases:

e Item k is not used. Then the solution is an optimal solution using the remaining items with
capacity S.
e Item k isused. Then it contributes value vy and consumes size s, and the remaining prob-

lem is an optimal solution using the remaining items with capacity S — s.

Both of these are just smaller knapsack problems, in the first case a smaller set of items with
the same capacity, and in the second, a smaller set of items with a smaller capacity, which is
exactly what we are looking for!

1.1 Subproblems

The discussion above suggests that a subproblem should record:
» which items we are allowed to consider, and

* how much capacity remains.

Before defining our subproblems, it is worth pausing to consider what not to do. At first glance,
it appears that we should parameterize on which subsets of items to consider. After all, the final
solution is a subset of the n items. However, if we define a subproblem for every subset, we
would immediately run into trouble: there are 2" subsets, which is no better than brute force.

This observation highlights a recurring theme in dynamic programming: the art lies in iden-
tifying which distinctions actually matter. In the knapsack problem, it does not matter which
order items are considered. All that matters is whether an item is still available or has already
been ruled out.

This allows us to impose an arbitrary order on the items, say, items 0 through n —1, and then
ask, arbitrarily, whether or not we want to use item n —1. Whether or not we use item n, we
are now left with the subproblem of considering items {0, ..., 7 —2}. Any subset of items can
be represented uniquely by such a sequence of choices. In this sense, dynamic programming
replaces an exponential number of subsets with a polynomial number of prefixes.

We therefore define the subproblems for0< k<nand0< B<S, as
MaxVa'l(k, B)= maximum value achievable using items [0, ..., k) with capacity B.

The answer to the original problem is MaxVal(zn,S).

Remark: Subproblems should be parameterized by the simplest possible parameters

There is another subtle but important design choice here. One could imagine defining a
subproblem whose parameter is an explicit list of remaining items, and then removing
one item at each step. While this is conceptually correct, it is algorithmically inconve-
nient: passing lists around is more expensive, and memoizing such subproblems would
require storing and comparing lists.

Instead, we observe that the only information we actually need is how many items re-
main, not their identities. The integer k succinctly encodes the set [0,..., k) and avoids
unnecessary overhead. This idea, representing complex state with the simplest possible
parameters, is a key skill in designing effective dynamic programs.

1.2 Recurrence Relation

From the optimal substructure argument, we obtain the following recurrence:

Algorithm: Knapsack DP Recurrence

0 ifk=0,
MaxVal(k,B)=< MaxVal(k—1,B) if sg_1 > B,

max(MaxVal(k—1,B), vi_; +MaxVal(k—1,B—s;_;)) otherwise.

Ifitem k does not fit, we are forced to skip it. Otherwise, we try both possibilities, either taking
or skipping the item, and choose the better outcome.

As with other dynamic programming problems, the value computation is straightforward once
the recurrence is known, and the selected items can be recovered by backtracking through the
subproblems.

1.3 Cost Analysis

There are (n+1)(S+1) distinct subproblems: one for each pair (k, B)with0< k<nand0< B <
S. Each subproblem is computed using constant work once its dependencies are known.

Therefore, dynamic programming solves the 0-1 knapsack problem in ©(nS) time.

1.4 Implementation

We could convert the recurrence relation into a bottom-up implementation like so. We store
the values of the subproblems MaxVal(k, B) in a 2D array sequence indexed by the number of
items considered and the remaining capacity.

Algorithm: Bottom-up Knapsack Dynamic Program

fun knapsack(s : sequence<int>, v : sequence<int>, S : int) -> int:
n=|s|
MaxVal = [[e for _ in 0...S] for _ in o...n]

for k in 1...n:
for B in 1...S:
if s[k-1] > B:
MaxVal[k][B] « MaxVall[k-1][B]
else:
MaxVal[k][B] « max(MaxVall[k-2][B],
MaxVall[k-1][B-s[k-21] + v[k-11)

return Maxvall[n][S]

Remark: Potential Parallelism in the Knapsack Problem

Although we have analyzed the knapsack dynamic program sequentially, its structure
exposes a limited but useful amount of parallelism. Note that for this dynamic program,
each subproblem MaxVal(k, B) depends only on subproblems of the form MaxVal(k —
1,-). Therefore, given all the values of MaxVal(k—1,-), one can compute all the values of
MaxVal(k,-) independently in parallel.

As aresult, the dynamic program can be implemented bottom-up, iterating sequentially
across the values of k from 0 to 7, and in parallel across the values of B using tabulate:

for k in 1...n:
MaxVall[k] « tabulate((fn (B : int):
if B == 0: return o
else if s[k-1] > B: return MaxVall[k-1][B]
else: return max(MaxVall[k-1][B], v[k-1] + MaxVall[k-2][B-s[k-1]1])
), S+1)

A purely functional implementation could also be achieved using a fold if desired:

base = parallel [e for _ in o...S]

MaxVal = fold_left((fn (prev : sequence<int>, k : int):
// prev represents MaxVal[k-1] => compute MaxVal[k]
return tabulate((fn (B : int):

if B == 0: return o
else if s[k-1] > B: return prev[B]
else: return max(prev[B], v[k-1] + prev[B-s[k-1]])
), S+1)
), base, 1...n) // returns MaxVal[n]

This results in:
¢ O(nS) total work, and
* O(n) span, corresponding to the n sequential row dependencies.

In practice, this much parallelism is sufficient to achieve significant speedups, even
though the algorithm does not have logarithmic (or polylogarithmic) span.

2 Example: Minimum Edit Distance

The edit distance problem provides a formal way to measure how similar two strings are. Intu-
itively, it asks how many simple edit operations are needed to transform one string into another.

Problem: Edit Distance

Given strings S and T of length n and m respectively, what is the minimum number of
edit operations required to transform S into T? We allow the following edit operations:

¢ Insertion: insert a character into the string,
¢ Deletion: delete a character from the string,

¢ Substitution: replace one character with another.

For example, the edit distance between computer and commuter is1 (substituting p with m),
while the edit distance between kitten and sitting is 3 (substitute k with s, substitute e
with 1, then insert g at the end).

These kinds of problems are extremely useful in fields like computational biology, where, for
example, they are used to classify how similar certain DNA sequences are.

2.1 Subproblems

Compared to coin change or knapsack, the subproblems for edit distance are less obvious. The
difficulty is not in writing down a recurrence, but in deciding what information is sufficient to
describe a partial solution. With dynamic programming, it helps to think about what small
decisions we can make one at a time to enumerate the possible optimal ways to edit S into T.
Each small decision should reduce the problem to a smaller version of itself, the space of which
forms our set of subproblems.

Let us think about just the final character of S and T, i.e., S[n —1] and T[m —1]. Whatever
sequence of edits we apply to S, the final character must inevitably end up equal to T[m —1].
There are three ways to make this happen:

1. We could edit the final character, S[n —1], into T[m —1]. If S[n —1] already equals T[m —1]
then we do nothing, otherwise this is one substitution. The problem that remains is to edit
S[0...(n—1)) into T[0...(m —1)) in the fewest possible edits

2. We insert T[m —1] at the end of S. The problem that remains is to transform S[0...n) into
T10...(m —1)) in the fewest possible edits

3. We delete S[n — 1] and still have to match some earlier character of S with T[m], so the
problem remains to transform S[0...(n — 1)) into T'[0.../m) in the fewest possible edits

Now we see the important theme. In all three scenarios, the smaller problem we have obtained
is just to edit a pair of prefixes of the original strings. We therefore define the subproblem

MED(i, j) = the edit distance between the prefixes S[0..i) and T[0.. j),

forall0<i <nand0< j<m. The answer to the original problem is then MED(#, m).

2.2 Recurrence Relation

To compute MED(i, j) for i, j > 0, we consider how a sequence of edits might make the final
characters match. There are three possibilities following the discussion above, which will lead
us directly to our recurrence:

1. Match or substitute the last characters: align S[i—1]with T[j—1], costing 0 if they are equal
and 1 otherwise. This reduces the problem to MED(i —1, j —1).

2. Delete the last character of S: remove S[i — 1], costing 1, and reduce to MED(i — 1, j).
3. Insert the last character of T: insert T[j —1], costing 1, and reduce to MED(i, j —1).

Since we are looking for the minimum number of edits, we take the best of these three choices.
Lastly, the base cases will correspond to empty prefixes. To transform an empty string into a
string of length j simply costs j insertions, while transforming a non-empty string of length i
into an empty one costs i deletions. Putting this all together yields the recurrence

Algorithm: Minimum Edit Distance Recurrence
i if j=0,
j ifi=0,
MED(i, j)= . ;
()= MED(i—1, j— 1)+ Lyjs_1yér(j1p
miny MED(i—1,j)+1, otherwise.
MED(i, j—1)+1

Here, 1g};_1j27(j—1) is an indicator that equals 1 if the characters differ and 0 otherwise.

2.3 Cost Analysis

There are (n+1)(m +1) distinct subproblems, one for each pair (i, j). Each subproblem is com-
puted using a constant amount of work. Therefore, the edit distance dynamic program runs in
O(nm) time. As with other dynamic programs, this recurrence can be evaluated bottom-up or
top-down with memoization.

2.4 Implementation

A simple sequential imperative implementation of bottom-up edit distance could be written
like so. Here, MED is again a 2D array sequence indexed by the length of the prefixinto S and T.

Algorithm: Bottom-Up Edit Distance Dynamic Program

fun edit_distance(S : sequence<char>, T : sequence<char>) -> int:
n = size(S), m = size(T)
MED = [[i+j for j in o...m] for i in o...n]

for i in 1...n
for j in 1...m:
MED[i][j] — min(
MED[i-21[j-2] + (2 if S[i-1] '= T[j-1] else o),
MED[i-1][j] + 1,
MED[il[j-2] + 1
)

return MED[n][m]

Remark: Parallel Evaluation of the Edit Distance Dynamic Program

The dependency structure of the edit distance recurrence is a little more complicated
than Knapsack. The subproblems form a 2D grid parameterized by (i, j), but subprob-
lem (i, j) depends on subproblems (i —1, j —1), (i, j —1) and (i — 1, j). In other words, it
depends on both the previous row and previous column. So its not possible to compute
all of a row or all of a column in parallel anymore.

However, we could still parallelize a bottom-up implementation of minimum edit dis-
tance by noticing that diagonals are independent. More specifically, subproblems (i, j)
that all share the same value of i + j are independent so can be computed in parallel.

P
o) @) @) @

Therefore, we could implement a bottom-up solution that computes the elements on
the each diagonal in parallel. The number of diagonals (i.e., different values of i + j) is
at most n + m. Therefore this can be implemented in ©(nm) work and O(n + m) span.

3 Example: Boolean Expression Parenthesisation

We now study a dynamic programming problem whose structure is fundamentally different
from the previous examples. Unlike Coin Change or Knapsack, where subproblems were in-
dexed by a numerical parameter or a prefix/suffix of the input, this problem requires reasoning
about intervals of the input.

Problem: Boolean Expression Feasibility

You are given a Boolean expression consisting of the literals True and False, con-
nected by the binary operators AND (A) and OR (V). The expression is written without
parentheses. Is it possible to parenthesize the expression so that it evaluates to True?

As with all dynamic programming problems, we begin by asking: How can we reduce the prob-
lem to smaller versions of itself? Suppose the expression consists of literals

by 0py by 0Py +++ 0P, by,
where each b; € {True,False} and each op; € {A, V}.

Any fully parenthesized expression must choose some operator op,. as the last operation to be
evaluated. This splits the expression into two smaller subexpressions:

(Bo =+ b) 0P (Dis =+ bp)-

Once this split is chosen, we can determine:

¢ whether or not the left subexpression can evaluate to True,

» whether or not the right subexpression can evaluate to True,

* whether or not the operator op; can combine these values to produce True.

This observation suggests that our subproblems should correspond to contiguous intervals of
the expression.

3.1 Subproblems
We define the following subproblems for0<i<nandi<j<n:

True if the subexpression from b; to b; can be
CanParen(i, j)= parenthesized to evaluate to True,
False otherwise.

The original problem is therefore to determine the value of CanParen(0,n—1).

3.2 Deriving the Recurrence

Consider an interval [i, j] with i < j. We don’t know which of the operators will be the last
one applied, so we try all possible ways to split the interval at some operator position k, where
i <k < j. There are then two cases depending on whether the operator is AND (A) or OR (V).

e If op; =A, then the expression can be True only if both subexpressions can be True.
e Ifop; =V, then the expression can be True if either subexpression can be True.

For the base cases, we consider expressions with just a single value (True or False) and no op-
erators. Clearly, the expression True can be True and the expression False can not be True.

This leads directly to the recurrence:

Algorithm: Boolean Parenthesisation Recurrence

b; if i = j,

CanParen(i, j)= CanParen(i,k)ACanParen(k+1,j) ifop,=A otherwise
i<k<j | CanParen(i,k)v CanParen(k+1,j) ifop,=V

As in previous dynamic programming problems, this recurrence expresses the solution as a
brute-force search over all possible ways to make the final decision, but organized so that each
subproblem is solved only once.

3.3 Cost Analysis

There are ©(n?) subproblems, each corresponding to a distinct interval [i, j]. For each sub-
problem/interval, the recurrence tries (j — i) split points in the middle. The value of (j —i)is at
most O(n), so the work is at most O(n?), but with sufficient patience, one can verify that

> (i—i=0n?),

0<i<j<n

and hence this is tight. Therefore, with an appropriate bottom-up implementation or top-
down with memoization, the total work is ©(n?), and the space usage is ©(n?).

3.4 Implementation

To write a bottom-up implementation we need to establish a valid order to evaluate the sub-
problems. For interval dynamic programs, we can not simply evaluate CanParen(i, j) in in-
creasing order of i and j like we did for edit distance and knapsack, since this would break the
dependencies.

Note that since CanParen(i, j) depends recursively on the intervals (i, k) and (k + 1, j), the
dependency order can be seen to just be interval length. That is, we should evaluate intervals
oflength 1, then length 2, and so on.

Algorithm: Boolean Parenthesisation Bottom-Up Dynamic Program

fun canParenthesize(b : sequence<bool>, op :

n = size(b)

CanParen = [[False for _ in o...n-1] for _

for 1 in o...n-1: CanParen[i][1] « b[1i]

for length in o...n-1:
for i in o...(n-length)-1:
j = 1 + length
answer = False
for k in i...j-1:

13

if op[k] == "A":

answer « answer or (CanParen[i][k] and CanParen[k+1][j])

else: // opl[k] == "v’

answer « answer or (CanParen[i][k] or CanParen[k+1]1[j])

CanParen[i][j] « answer

return CanParen[oe][n-1]

Remark: Potential Parallelism in Boolean Parenthesisation

Since each subproblem CanParen(i, j) depends only on intervals of smaller length, all
of the subproblems of the same length can be evaluated in parallel. Furthermore, the
logical or taken over all split points could be expressed as a parallel reduction, so there

is quite a lot of parallelisation available in this problem.

The only sequential bottleneck is iterating over the lengths, so by parallelizing over in-
tervals of equal length and doing a parallel reduction, we could evaluate this dynamic

program in O(n3) work and O(nlogn) span.

10

sequence<char>) -> bool:

in

o..

.n-1]

	Example: The Knapsack Problem
	Subproblems
	Recurrence Relation
	Cost Analysis
	Implementation

	Example: Minimum Edit Distance
	Subproblems
	Recurrence Relation
	Cost Analysis
	Implementation

	Example: Boolean Expression Parenthesisation
	Subproblems
	Deriving the Recurrence
	Cost Analysis
	Implementation

