
15-210: Parallel and Sequential Data Structures and Algorithms

Divide-and-Conquer and Reduce

1 Reductions
Earlier that we saw a simple divide-and-conquer algorithm for computing sums.

Algorithm: Parallel Sequence Sum

fun sum(S : sequence<int>) -> int:
match length(S) with:

case 0: return 0 // Empty sequence
case 1: return S[0] // Singleton sequence
case _:

L, R = split_mid(S) // Helper function
Lsum, Rsum = parallel (sum(L), sum(R))
return Lsum + Rsum

This algorithm runs in O (n) and O (log n) span. As it stands, it only computes sums, but it turns
out we can generalize this idea to compute more, and not just a little bit more (like multiplica-
tion), but a lot more. In this lecture we will explore the power of generalizing the idea of a sum
and how far it can take us in parallel algorithm design.

1.1 Generalizing Sums: Folds
There are many ways to generalize the notion of a “sum”. For now, we will think of a sum as
addition (for us, of numbers, but if you do a lot of math you might think of adding elements of
a group, or if you want to sound fancy, a monoid...).

s0+ s1+ s2+ · · ·+ sn−1+ sn

The first generalization we will consider is a common and powerful tool in functional program-
ming called a fold.

Definition: Fold

A (left) fold over a sequence s with a binary operation f and an initial value I computes

f (f (f (f (f (I , s0), s1), s2), . . . , sn−1, sn).

This generalizes a sum because if we pick the operation f to be addition, i.e., f (x , y) = x + y ,
then a fold over this function with initial value 0 is precisely the sum of the input sequence.

We call this a left fold specifically because it applies the function f to the elements of s in
left-to-right order. One can define a right fold in the same way, except the function is applied

1

right-to-left instead. Note that for an arbitrary function f , applying the function in a different
order may result in a completely different output.

Therefore, to compute a fold, this requires an inherently sequential algorithm. If we have no
guarantees about the behavior of f , the best we can do to ensure we get the correct answer is
apply it left-to-right and compute the fold expression exactly as prescribed by the definition.
This leaves no room for parallelism!

1.2 Folds without order: Reduce
We would like to be able to take inspiration from our parallel divide-and-conquer sum algo-
rithm, but for arbitrary operations f , there is essentially no hope. To make this feasible, we
need to restrict our attention to values of f for which we can relax the order of evaluation,
which will make room for parallelism.

A reduce over a binary operator is a fold that can be evaluated in any order and always yield
the same result. This is equivalent to saying the expression can arbitrarily parenthesized. In
terms of sums, it is equivalent to saying we can evaluate left-to-right, right-to-left, or like

(s0+ (s1+ s2))+ · · ·+ (sn−1+ sn) .

Definition: Reduce

A reduce over a sequence s with a binary associative operation f and an identity value
I computes a fold of f over s where the order of application of f may be arbitrary.

For instance, the above example of arbitrarily re-parenthesizing a sum is equivalent to evalu-
ating an arbitrary binary operation f like so

f
�

f
�

s0, f (s1, s2)
�

, · · · , f (sn−1, sn)
�

.

The powerful insight that underlies most of today’s lecture is that being allowed to order to
evaluations of f in any order gives us the ability to do divide-and-conquer, since splitting the
input sequence in half is essentially making the choice to parenthesize the left half and right
half and then evaluate them recursively, before finally evaluating their results.

Algorithm: Parallel Reduce

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
match length(S) with:
case 0: return I
case 1: return S[0]
case _:

L, R = split_mid(S)
Lres, Rres = parallel (reduce(L), reduce(R))
return f(Lres, Rres)

2

1.3 Understanding Reduce
Reduce comes with two requirements that are not requirements of an ordinary fold. First, f
must be an associative function.

Definition: Associative function

An associative function over a type T satisfies for all values x , y , z of type T :

f (f (x , y), z) = f (x , f (y , z)).

Second, the initial value must be an identity value

Definition: Identity

I is an identity for type T if for all values x of type T :

f (I , x) = f (x , I) = x .

1.4 Cost of Reduce
When analyzing the cost of reduce, we need to make assumptions about the cost of f . In gen-
eral, if f can have an arbitrary cost, we cannot infer anything about reduce. The simplest case
is when f can be evaluated in constant time.

Theorem: Cost of Reduce

Assuming f can be evaluated in O (1) time, reduce costs O (|S |)work and O (log |S |) span.

Proof. The work recurrence is

W (n) = 2W
�n

2

�

+O (1),

which is leaf dominated as has O (n) leaves which do O (1)work.

The span recurrence is

S (n) = S
�n

2

�

+O (1),

which unrolls to O (log n).

2 “Generic” Divide-and-Conquer
The implementation of reduce should look awfully familiar and remind us of some algorithms
that we wrote just recently.

2.1 SMCSS
Recall MCSSLab from Week 1, where we implemented the “strengthened MCSS” problem using
divide-and-conquer. The algorithm looked something like this:

3

fun smcss(S : sequence<int>) -> (int,int,int,int):
match length(S) with:

case 0: return (0,0,0,0)
case 1:

m = max(0, A[0])
return (m, m, m, A[0])

case _:
L, R = split_mid(S)
(m1,p1,s1,t1), (m2,p2,s2,t2) = parallel (smcss(L), smcss(R))
return (max(s1 + p2, m1, m2),

max(p1, t1 + p2),
max(s2, t2 + s1),
t1+t2)

The code is also divide-and-conquer, but beyond that it has striking similarities to our imple-
mentation of reduce. It has an empty sequence case, a length 1 base case, and a general case
which splits the input into two halves, recursively solves the problem on those halves, and then
combines those answers.

What is remarkable is that smcss is actually just a special case of reduce. If we factor out the
combining-the-two-halves logic into its own function,

type sums = (int,int,int,int)

fun combine_smcss((m1,p1,s1,t1) : sums, (m2,p2,s2,t2) : sums) -> sums:
return (max(s1 + p2, m1, m2),

max(p1, t1 + p2),
max(s2, t2 + s1),
t1+t2)

Then we can observe that we can implement smcss as a reduce like so:

Algorithm: SMCSS as Reduce

fun smcss(S : sequence<int>) -> (int,int,int,int):
fun base(x : int): return (max(0,x),max(0,x),max(0,x),x)
return reduce(combine_smcss, (0,0,0,0), map(base, S))

That is, we use a map to solve the base cases by converting each individual input element into
its corresponding base case value, then we perform the recursive divide-and-conquer by simply
passing combine_smcss to reduce as the binary operation!

This is not an isolated coincidence. Let’s look at another example.

2.2 Parenthesis Matching
In the Parenthesis Matching recitation, we continued to practice divide-and-conquer by giv-
ing an efficient parallel implementation of the parenthesis matching problem. Specifically,
this strengthened parenthesis matching problem counted the number of excess left and right
parenthesis in a given subexpression.

4

fun excessParens (ps : sequence<Paren>) -> (int,int):
match length(ps) with:

case 0: return (0, 0)
case 1:

if (ps[0] == L): return (0, 1)
else: return (1, 0)

case _:
a, b = split_mid(ps)
((i,j),(k,l)) = parallel (excessParens (a), excessParens (b))
if (j <= k): return (i + k - j, l)
else: return (i, l + j - k)

Again, we see the same pattern emerge: an empty case, a length-1 sequence base case, and
a general case which splits the input into two and recursively solves the problem on the two
halves before combining those results together into a final result.

We can once again factor out the “combination” logic into its own function.

fun combine_paren((i : int, j : int), (k : int, l : int)) -> (int, int):
return (i + k - j, l) if j <= k else (i, l + j - k)

Using this combination function, we can once again rewrite this entire algorithm as a reduce!

Algorithm: exccessParens as Reduce

fun excessParens(p : sequence<Paren>) -> (int,int):
fun base(x : Paren): return (0,1) if x == L else (1,0)
return reduce(combine_paren, (0,0), map(base, p))

2.3 Reduce as “Generic Divide-and-Conquer”
This observation gives us a recipe to convert many (but not all) divide-and-conquer algorithms
into much shorter code by using reduce. In general, this technique is applicable whenever
the “divide” step of the divide-and-conquer is trivial: it must simply split the input in half and
recurse. If the algorithm needs additional steps before recursion, it isn’t applicable.

For example, Quicksort doesn’t just break the input into two halves and recurse, it partitions
the input into those elements less than the pivot and those greater than the pivot, then recurse
on those—so its not in the right format. We saw, however, that many algorithms are, like the
smcss problem and the excessParen problem.

Generally, if an algorithm is in the following form:

fun algo(S : sequence<T>):
match length(S) with:
case 0: return empty
case 1: return base(S[0])
case _:

L, R = split_mid(S)
Lres, Rres = parallel (algo(L), algo(R))
return combine(Lsum, Rsum)

5

then we can convert it to an equivalent reduce like so:

Algorithm: “Generic” Divide-and-Conquer

fun algo(s : sequence<T>):
return reduce(combine, empty, map(base, s))

Note thatmapbeing used to handle the base case makes this strictly more generic than areduce
on its own which would require that the output of the algorithm be the same as the input type
T of the sequence. Using map allows us to make the output type different, which is powerful
and necessary in most applications of this technique.

3 Merge
Recall the merge operation from 15-122 and 15-150, which is often motivated as a subroutine
for the sorging algorithm Merge Sort.

Definition: Merge

Given two sorted sequences, return a sorted sequence containing the elements of both.

That is, we want to implement a function of the following form:

fun merge(A : sequence<T>, B : sequence<T>) -> sequence<T>

where both inputs A and B must be sorted as a precondition and the output must be equivalent
to sort(append(A, B)) (but hopefully computed much more efficiently than that).

We know from 15-122 and 15-150 that merge is easy to implement sequentially in O (n) time,
with either an array or a linked list. We are interested in a parallel implementation that is just
as efficient, i.e., we want to aim for O (n)work and reasonably low span.

As the theme of today’s lecture suggests, we are going to use divide-and-conquer!

3.1 Divide-and-conquer Merge
Merge presents one clear challenge that makes it different from previous divide-and-conquer
algorithms we have looked at. The input is not just one sequence, but two! Which one do we
split? And how do we split them?

We could start with our usual tried-and-tested method of just splitting everything in half and
see what happens, but something will go wrong.

Let’s say we start with the following two sequences, which we split in half, recursively merge,
and then try to combine back together.

6

The issue that becomes apparent is that there is no easy way to combine the two recursive
results. Indeed, what we have as the two recursive results are two sorted sequences that need
merging! Oops, we are right back to the same problem we started with but with absolutely no
progress... Clearly something is wrong.

The issue is that we chose to split both sequences down the middle, but this resulted in two
sequences that were still interleaved. Instead, we want to split the sequences so that the left one
is strictly smaller than the right one—so that when we are done the combine step can simply
be to append the two sequences and then we are done!

3.1.1 Finding the correct split point

Our goal as stated above is to find a split point such that the left sequence will contain elements
smaller than the right sequence. We can still split the first sequence (A) in half—since its sorted,
all of the elements on the left are smaller than the elements on the right. We need to figure out
the corresponding split point of B, which may not be the middle.

To ensure that the same property is true of the merged sequences, that the left half is smaller
than the right half, we need to then splitB so that the left side of the split only contains elements
that are smaller than the right half of A. We can do this by selecting the smallest element in the
right half of A, and binary searching for that element in B, and using the resulting position as
the split point for B. This results in two left halves whose elements are all less than the elements
of the two right halves!

Starting with the same two sequences as before, let’s see what happens when we split A in half
and use binary search to find the corresponding split point in B.

7

This time, we end up with two sorted sequences which now crucially have the property that the
left one contains elements smaller than the right one. So the combine step is to simply append
them and we are done!

3.1.2 Balancing the divide-and-conquer

Since we are now splitting not necessarily down the middle, we have to be careful to ensure that
our divide-and-conquer actually makes progress in reducing the problem size. If we always
split the same sequence in half and leave the other sequence imbalanced, its not clear that this
will result in good work and span bounds.

Luckily there is a simple fix to this. Instead of arbitrarily choosing A to be the sequence that gets
split in half and B to be the sequence that gets split in a possible imbalanced way, we can just
always split the larger sequence in half. Therefore after about 2 log(|A|+ |B |) levels of recursion
we can be assured that both will have been completely split down to single elements!

3.2 Implementing Merge
Armed with this knowledge, we have enough information to implement a reasonable version
of merge. We just need to add in some base cases. The following should suffice:

• When one of the sequences is empty, just return the other one.

• When both sequences are length one, return a sequence of the min and max of the two.

In all other cases, at least one of the sequences has length at least two and can therefore be split
in the recursive case which will bring us closer to a base case, so this is enough for termination.

8

Unfortunately, this algorithm is still not going to be as efficient as we want! It has a slight prob-
lem which will lead to it performing slightly too much work.

Algorithm: Slightly inefficient merge

fun merge(A: sequence<T>, B : sequence<T>) -> sequence<T>:
if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

if |B| == 0: return A
if |A| == |B| == 1: return [min(A[0], B[0]), max(A[0], B[0])]

LA, RA = split_mid(A)
k = binary_search(B, RA[0]) // smallest index s.t. B[k] >= RA[0]
LB, RB = subseq(B,0,k), subseq(B,k,|B|-k)
ML, MB = parallel (merge(LA, LB), merge(RA, RB))
return append(ML, MB)

3.2.1 Cost Analysis

Claim: Cost of Inefficient Merge

This implementation of merge costs Θ(n log n)work.

Proof. The issue is append at the combine stage. This costs linear work in the size of the se-
quences, which will make the work recurrence balanced, performingΘ(n)work per level across
Θ(log n) levels, for a total of Θ(n log n).

Idea: Removing the Append

Combining the two recursive calls with append is the natural pure way to implement
merge. However, we can speed it up significantly by allowing ourselves some leeway to
write imperative/impure code. Instead of appending the results together into a new
sequence, we can instead have the recursive calls simply write their answer directly into
a pre-allocated output array. Therefore zero additional work has to be done by the com-
bine step—when the recursive calls complete, the answer will already be there!

3.3 Efficient (Impure) Merge
Our improved merge algorithm lives outside the blissful safety of pure functions and write di-
rectly into the output. This removes the extra work of the append and makes it efficient.

Of course, we can hide this impurity behind a safe (pure) function which actually allocates
the output sequence, calls the impure function to populate it, and then returns it to the caller.
Such is the design of many functional libraries—internally they may use side effects and impure
functions but expose a pure interface to the outside world.

9

This implementation ofmerge takes three sequences as input: A andB, the sequences to merge,
and Out, a sequence of length |A| + |B| in which the output will be written.

Algorithm: Efficient (Impure) Merge

fun merge(A: sequence<T>, B : sequence<T>, Out : mutable sequence<T>):
if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

if |B| == 0:
Out[0...|A|] ← A
return

if |A| == |B| == 1:
Out[0...1] ← [min(A[0], B[0]), max(A[0], B[0])]
return

LA, RA = split_mid(A)
k = binary_search(B, RA[0]) // smallest index s.t. B[k] >= RA[0]
LB, RB = subseq(B,0,k), subseq(B,k,|B|-k)
Lout, Rout = subseq(Out,0,|LA|+|LB|), subseq(Out,|LA|+|LB|,|RA|+|RB|)
_, _ = parallel (merge(LA, LB, Lout), merge(RA, RB, Rout))

A pure function that calls this one and hides the impurity could then be implemented as:

fun merge(A: sequence<T>, B : sequence<T>) -> sequence<T>:
Out = parallel [None for _ in 1...|A|+|B|]
merge(A, B, Out) // impure, mutates Out
return Out

Remark: Efficient Pure Merge

It is still possible to implement a purely functional parallel merge with no side-effects
in O (n) work, but it requires representing the inputs as balanced binary search trees
instead of sequences, since BSTs can be efficiently appended in O (height).

In practice this would be substantially less efficient due to many extra small memory
allocations and cache inefficiency.

3.4 Analysis of Efficient Merge

Claim: Cost of Merge

The efficient merge implementation is O (n)work and O (log2 n) span, where n = |A|+|B |.

The proof solves the work recurrence using the “substitution”, i.e., “guess and check” method.
The guess is rather unintuitive, but the proof goes through once you have it.

Proof. The key factor that makes the analysis work is to observe that since WLOG |A| ≥ |B | and
we split A in half, the size of the subproblems is between 1/4n and 3/4n .

10

More specifically, Let W (n) denote the work of merging two sequences of total length n , then
the work recurrence looks like

W (n) =W (αn) +W ((1−α)n) + c log n ,

where α is between 1/4 and 3/4 and technically is not constant but may vary from level to level
of the recursion (but it always lies in this range).

We can verify that W (n) =O (n) using the substitution method. The tricky part is canceling out
the c log n term which comes from the cost of the binary search. The trick is to assume that
W (n) is of the form

W (n)≤ c1n − c2 log n

for some constants c1, c2 that are large enough to satisfy the base cases and then proceed.

W (n) =W (αn) +W ((1−α)n) + c log n ,

≤ c1αn − c2 log(αn)+ c1(1−α)n − c2 log((1−α)n) + c log n ,

= c1n − c2(logα+ log n + log(1−α) + log n)+ c log n ,

= c1n − c2 log n − (c2(log n + log(α(1−α)))− c log n).

Now pick the constant c2 such that c2 > c , which makes the rightmost term positive, so

W (n)≤ c1n − c2 log n − (something positive),

≤ c1n − c2 log n ,

which proves that W (n) =O (n). The span recurrence is much simpler. Based on the previous
observation, we know that

S (n)≤ S (0.75n)+Θ(log n).

This recurrence has log4/3 n levels which cost O (log n), so the total span is at most O (log2 n).

Remark: More Efficient Merge

You can improve the span of merge to just O (log n) with a slightly more complicated
algorithm. The trick is to divide the input not into two parts, but into a much larger
number of parts and recurse on them all in parallel! This gets you to a base case much
much quicker, and you can afford to do it because each level of recursion only has to pay
for its binary searches which are relatively cheap.

4 Sorting by Folding and Reducing with Merge
Lastly, now that we have the merge function, what can we do with it? It turns out, more than
you’d think. Although you might not realize it at first, the merge function is associative.

Claim: Merge is Associative

The merge operation given two sorted sequence is an associative operation.

11

Proof. Since merge must produce a sorted sequence given any sorted inputs, the result of
merging three sequences x , y , z must always be sorted regardless of the order that the merges
are applied. If any order produced a different output, it would not be sorted, and hence the
output must be the same for any order.

Sincemerge is associative, given our newfound knowledge from earlier, our first instinct should
be to put it in reduce and see what happens, because that would be interesting!

4.1 Parallel MergeSort as reduce merge
Since merge requires sequences as its input, we can treat the base case as being mapping a sin-
gle element to a singleton sequence, i.e., a sequence containing that one element. A sequence
of one element is considered sorted, so this is a valid input for merge.

Lastly, the identity value for a merge is the empty sequence, so we could therefore write the
following mystery code for any sequence:

fn(s : sequence<T>): return reduce(merge, [], map(singleton, s))

We argued that this code must be valid since it meets all the requirements of reduce, but what
does it actually do? It takes all the elements of a sequence, puts them into their own singleton
sequences, and merges them into a single sorted sequence.

Hang on, its just merging the elements of the input together until they are one sorted sequence?
That’s just Merge Sort! Through the magic of reduce, we have managed to write Merge Sort in
just one line of code. That’s pretty cool.

Theorem: Cost of Parallel MergeSort

Parallel MergeSort, which can be implemented by the following line of code:

fn(s : sequence<T>): return reduce(merge, [], map(singleton, s))

runs in O (|S | log |S |)work and O (log2 |S |) span, assuming we use the O (log n) spanmerge.

Proof. MergeSort recurses on sequences of size n/2 and performs O (n)work at the root for the
merge operation. The work recurrence is therefore

W (n) = 2W
�n

2

�

+O (n).

This is a balanced recurrence which performs O (n) work per level and does O (log n) levels of
recursion, hence the work is O (n log n).

Correspondingly the span recurrence (assuming merge costs O (log n) span) is

S (n) = S
�n

2

�

+O (log n).

Unrolling the recurrence gives S (n) =O (log2 n).

12

4.2 InsertionSort as fold merge
Finally, what if we do a left fold instead of a reduce? We know that it must produce the same
answer since a fold and a reduce always compute the same result if the function is associative,
it just might compute it in a different way.

fn(s : sequence<T>): return fold_left(merge, [], map(singleton, s))

This function takes a sequence and one-by-one, merges one additional new element into a
sorted prefix. Hang on, that’s just called Insertion Sort!

So, to wrap up today in one sentence: with the magic of higher-order functions, we can write
both Insertion Sort and MergeSort in a single line of code (by slightly cheating by also writing
merge which is many more than one line of code, but still.) Pretty cool!

13

	Reductions
	Generalizing Sums: Folds
	Folds without order: Reduce
	Understanding Reduce
	Cost of Reduce

	``Generic'' Divide-and-Conquer
	SMCSS
	Parenthesis Matching
	Reduce as ``Generic Divide-and-Conquer''

	Merge
	Divide-and-conquer Merge
	Finding the correct split point
	Balancing the divide-and-conquer

	Implementing Merge
	Cost Analysis

	Efficient (Impure) Merge
	Analysis of Efficient Merge

	Sorting by Folding and Reducing with Merge
	Parallel MergeSort as reduce merge
	InsertionSort as fold merge

