
15-210: Parallel and Sequential Data Structures and Algorithms

Contraction and Scan

1 Contraction
Recall that divide-and-conquer is a technique for solving a problem by reducing it to multiple
smaller versions of itself, solving those recursively, then combining the solutions to the smaller
problems to solve the bigger problem. Divide-and-conquer is highly attractive for parallel al-
gorithms, because the recursive calls can usually be done in parallel. However, divide-and-
conquer algorithms tend to do a lot of work if the combine step is not constant time.

Contraction is a similar technique to divide-and-conquer that can sometimes achieve better
cost bounds. Instead of breaking a problem into multiple smaller versions of itself, contraction
shrinks a problem into one smaller version of itself, solves that recursively, then uses that so-
lution to figure out the solution to the original (bigger) problem. Because it only performs one
recursive call instead of many, contraction can sometimes perform less work than divide-and-
conquer on the same problem.

As a warm up, lets solve the familiar reduce problem, which we already solved with divide-and-
conquer, using contraction.

1.1 Reduce via Contraction
The idea of contraction is to shrink a problem to a smaller problem that still contains enough
information to help us solve the bigger problem. Given a sequence of n elements that we want
to reduce, can you think of a sequence of n/2 elements that has the same answer?

Here’s a simple idea: pair up adjacent elements and reduce them (add them together). This
shrinks the sequence to one that is half as big and has the same total answer as the original.
Now we just recursively reduce this smaller sequence and we are done.

This figure shows the difference between the divide-and-conquer algorithm for reduce (left)
and the contraction algorithm for reduce (right).

1

Algorithm: Reduce via Contraction

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
match length(S) with:

case 0: return I
case 1: return S[0]
case _:

B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2-1]
+ [S[|S|-1]] if |S|%2 == 1 else []

return reduce(f, I, B)

Since there is only one recursive call, we no longer get any parallelism from the recursion. In-
stead, the contraction step itself (the step which combines pairs of elements) is parallel.

Theorem: Cost of Contraction-Based Reduce

Assuming that f can be evaluated in constant time, reduce implemented with contrac-
tion also costs O (|S |)work and O (log |S |) span.

Proof. Let n = |S |. At the root, the contraction step performs O (n) work. Each recursive call
halves the size of the sequence, so we have

W (n) =W
�n

2

�

+O (n).

This is root dominated, so W (n) =O (n). Similarly, the span at the root is O (1) since it just costs
a tabulate, so the span recurrence is

S (n) = S
�n

2

�

+O (1).

This recurrence has O (log n) levels so the span is S (n) =O (log n).

2 Scan
In the last lecture, we studied the reduce problem and its applications to parallel algorithm de-
sign. We saw that reduce is not only useful for its obvious application of computing sums, but
that it can be customized with nontrivial associative functions to compute interesting results,
like the MCSS, or the number of excess parenthesis from the Parenthesis Matching problem.

Now, we study the scan problem, which generalizes reduce to compute not just the total, but
the reduction of every prefix of a sequence with respect to a given associative function. With
scan, we can solve even more interesting problems.

Definition: Scan

Given a sequence S , an associative function and an identity, scan computes the exclusive
prefix sums and the total sum of S with respect to the associative function and identity.

2

The output of scan is equivalent to the following brute-force implementation. Of course we
will aim to implement something much more efficient.

fun scan(f : (T, T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
return tabulate(fn i => reduce(f, I, subseq(S, 0, i)), |S|),

reduce(f, I, S)

Note that scan actually returns two values. The first is the exclusive prefix sum of S (meaning
that at position i , the sum consists of all elements that occur strictly before, not including, posi-
tion i). The second return value is the total sum since it is not included as part of the first value,
since the final value of the sequence is excluded.

For example, given the sequence [2, 1, 4, 3, 6, 2, 3, 1], using addition with the identity 0, the ex-
clusive prefix sums are [0, 2, 3, 7, 10, 16, 18, 21] and the total is 22.

Remark: Scan via Divide-and-Conquer

Scan can also be implemented via divide-and-conquer, with a cost of O (n log n) work
and O (log n) span. As an exercise, try to figure out how. This is much better than brute
force, but we can still do better.

2.1 Scan via Contraction
The implementation of the scan function follows a similar pattern to reduce at the beginning.
Given a sequence S , we get a second sequence B by pairing up adjacent elements and applying
the supplied function f , which combines two elements. We then make a recursive call to scan
on B .

The tricky part is that the result of the recursive call is no longer the entire answer to the problem
like it was for reduce. Instead, we need to perform an expansion step, where we use the result
of the recursive call to figure out the solution to the original problem. To figure this out, lets
look at an example of what the recursive call returns and see what information it offers us.

The recursive call gave us back the sequence [0, 3, 10, 18] and the total value. What useful infor-
mation does it contain? Clearly the total is useful, but what about the prefix sums? Remember

3

that the sequence we need to produce is [0, 2, 3, 7, 10, 16, 18, 21]. Notice that the recursive result
contains the even-indexed elements of the answer!

To fill in the odd-indexed elements, we just observe that an element at odd index i is just the
sum (with respect to f) of its preceding prefix sum and the element at position i −1, so we can
fill them all in in parallel.

This gives us the following efficient parallel implementation of scan.

Algorithm: Scan

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
match length(S) with:

case 0: return [], I
case 1: return [I], S[0]
case _:

B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2-1]
+ ([S[|S|-1]] if |S|%2 == 1 else [])

R, total = scan(f, I, B)
return tabulate(fn i => R[i/2] if i%2==0

else f(R[i/2], S[i-1]), |S|), total

Theorem: Cost of Scan

Assuming f can be evaluated in O (1) time, scan costs O (|S |)work and O (log |S |) span.

Proof. Let n = |S |. The contraction step pairs up and sums adjacent elements, which costs
O (n) work and O (1) span. The expansion step performs a tabulate of length n to produce the
answer, which also costs O (n) work and O (1) span. The recursion step recursively calls scan
on a sequence of half the length, so it has work

W (n) =W
�n

2

�

+O (n),

which is root dominated and solves to O (n). Similarly, the span is

S (n) = S
�n

2

�

+O (1),

4

which unrolls to O (log n).

Note that this assumes f can be evaluted in constant time—if f has a different cost bounds,
then we need to do a separate analysis with the new costs to get the work and span for that
particular call to the scan function.

3 Application of Scan: MCSS Revisited
Let’s consider (yet again) the problem of Maximum Contiguous Subsequence Sum (MCSS).

Example: Brute-Force MCSS

In RefreshLab, we implemented a brute-force solution to MCSS by trying all contigu-
ous subsequences and computing their sum using reduce, then taking the maximum of
those sums (with another reduce).

fun mcss(S : sequence<int>) -> int:
fun sum(i : int, k : int): return reduce(plus, 0 subseq(S, i, k))
sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
return reduce(max, -∞, sums)

There are O (n 2) contiguous subsequences, and taking the sum of one such subsequence
using reduce has O (n)work. The work is therefore O (n 3).

Despite the high work, the span is very good since all O (n 2) subsequences can be com-
puted in parallel, so the span is dominated by the reduce calls which have O (log n) span.
The overall span is therefore O (log n).

In this section we will show that we can use scan to reduce the work of this solution, first down
to O (n 2), then with a further optimization to bring it all the way down to O (n), which is optimal
and as good as our divide-and-conquer- and reduce-based solutions!

3.1 Optimizing Interval Sum Calculations
The low-hanging fruit to address is the redundant computations of subsequence sums. Every
subsequence gets its sum computed with a separate reducewhich costs O (n). Instead, we can
use prefix sums, as computed by scan to substantially optimize this.

The key is in the following critical observation:

sum(S[i...j)) = sum(S[0...j)) − sum(S[0...i))

That is, the sum of any interval (inclusive on the left and exclusive on the right) is just the dif-
ference between two prefix sums! Since scan computes all of the prefix sums, i.e., it computes
sum(S[0...i)) for all values of i , we have all the information needed to compute the sum
of any interval in constant time. We could therefore improve our brute-force solution like so:

5

Algorithm: Improved Brute-Force MCSS

fun mcss(S : sequence<int>) -> int:
splus, total = scan(plus, 0, S)
prefix_sum = splus + [total]

fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
return reduce(max, -∞, sums)

In this improved algorithm, notice that we have left the “brute force” part untouched: it still
tries all O (n 2) contiguous subsequences then picks the largest sum. The optimization makes
sum run in O (1) after preprocessing the prefix sums using scan which costs O (n) work and
O (log n) span. The cost of the improved algorithm is therefore O (n 2)work and O (log n) span.

3.2 A Further Optimization: Prefix Minimums
The second optimization is more subtle, but is another clever application ofscan that will bring
the work all the way down to O (n).

Of course, the algorithm as it stands is still brute-force—it computes every contiguous subse-
quence’s sum individually. These subsequences have a lot in common, so there is redundancy
in here to remove. In particular, consider the interval [i , j) that corresponds to the maximum
sum. We know that this sum, in terms of prefix sums is just

prefix_sum[j] - prefix_sum[i]

Furthermore, its the maximum such value for any choice of j and i . So, if we fix a particular
value of j , we end up brute-forcing over all possible values of i ≤ j and computing this formula
for each of them. But notice that there’s a very clear choice for which i to pick. Since we want to
maximize this difference(prefix_sum[j] - prefix_sum[i]), we must pick the minimum
possible value of prefix_sum[i] for all values of i ≤ j .

Now remember that minimum is an associative function, and computing the value of an as-
sociative function on every possible prefix is exactly what scan does! So, by computing a scan
with the minimum function over the prefix sums sequence, we will find, for each position j , the
minimum value of prefix_sum[i] for all i ≤ j . Say we call this quantity min_prefix[j].

This gives us the following solution to the MCSS problem. For any fixed index j , the maximum
sum of any interval of the form [i , j) is given by

prefix_sum[j] - min_prefix[j]

With both of these quantities precomputed, we can therefore evaluate the maximum such sum
for each individual value of j in constant time. Finally we take the maximum over all values of
j and obtain the answer. Putting it all together, we get something like this:

6

Algorithm: Optimal MCSS Using Scan

fun mcss(S : sequence<int>) -> int:
splus, total = scan(plus, 0, S)
prefix_sum = splus + [total]
min_prefix, _ = scan(min, ∞, prefix_sum)
mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in 0...|S|]
return reduce(max, -∞, mcss_j)

This algorithm performs two scans, one append, one tabulate, and one reduce, all of which cost
O (n)work and at most O (log n) span. This algorithm therefore runs in O (n)work and O (log n)
span, which is as good as our previous best algorithms!

4 Scan With Custom Associative Functions
Recall the requirements of the reduce function from last lecture. The function f must be as-
sociative and I must be an identity value for the function/type.

Formally, this means that:

• for all values x , y , z , we must have f (f (x , y), z) = f (x , f (y , z)),

• for all values of x , we require f (I , x) = f (x , I) = x .

Although we already saw interesting nontrivial uses of scan with plus and min to optimize the
MCSS problem, we can solve even more problems by writing custom associative functions and
reducing/scanning with those.

Here is one interesting such problem we can solve. What makes it really interesting is that by
definition, it sounds very sequential. It is easy to come up with a sequential algorithm, but
seemingly difficult to think of a parallel algorithm.

Problem: Previous SOME

Given a sequence S of optional<T>, for every position 0 ≤ i < |S |. compute the right-
mostSOME (i.e., non-NONE) value that occurs before position i (i.e., the most recent value
seen if going left-to-right).

For example, given the sequence

[None, Some(5), None, Some(3), None, None, Some(2), None, Some(3), Some(1)],

the desired output is

[None, None, Some(5), Some(5), Some(3), Some(3), Some(3), Some(2), Some(2), Some(3)].

Notice that what happens is that the Somes “propagate” to the right and overwrite the Nones.

A simple sequential solution would be to fold left-to-right and just take the previous value if
the current value is NONE, otherwise take the current value. Essentially, a fold over the following
function would give us the answer sequentially.

7

fun take_right_some(a : optional<T>, b : optional<T>) -> optional<T>:
match b with:

case SOME(_): return b
case _: return a

The amazing thing, despite not looking like it, this function is actually associative!

Theorem: Associativity of take_right_some

The function take_right_some is associative, with NONE as an identity value.

Proof. There are eight possible cases for x , y , z , each of them can either be SOME or NONE.
The proof simply (tediously) enumerates all such cases. Let f = take_right_some.

x y z f (x , y) f (y , z) f (f (x , y), z) f (x , f (y , z))

SOME(x) SOME(y) SOME(z) SOME(y) SOME(z) SOME(z) SOME(z)
SOME(x) SOME(y) NONE SOME(y) SOME(y) SOME(y) SOME(y)
SOME(x) NONE SOME(z) SOME(x) SOME(z) SOME(z) SOME(z)
SOME(x) NONE NONE SOME(x) NONE SOME(x) SOME(x)
NONE SOME(y) SOME(z) SOME(y) SOME(z) SOME(z) SOME(z)
NONE SOME(y) NONE SOME(y) SOME(y) SOME(y) SOME(y)
NONE NONE SOME(z) NONE SOME(z) SOME(z) SOME(z)
NONE NONE NONE NONE NONE NONE NONE

Furthermore, note that f (NONE, x) = x and f (x ,NONE) = x , so NONE is an identity value.

Since this function is associative, we can use it with scan to solve the Previous SOME problem
efficiently in parallel.

Algorithm: Previous SOME

fun previous_some(S : sequence<optional<T>>) -> sequence<optional<T>>:
propagated, _ = scan(take_right_sum, NONE, S)
return propagated

This gives us an O (n)work and O (log n) span solution to find the previous non-NONE option at
every position in the sequence. This may seem contrived, but this technique of propagating in-
formation left-to-right down a sequence has useful applications in several parallel algorithms.
You will see one in your next lab!

8

	Contraction
	Reduce via Contraction

	Scan
	Scan via Contraction

	Application of Scan: MCSS Revisited
	Optimizing Interval Sum Calculations
	A Further Optimization: Prefix Minimums

	Scan With Custom Associative Functions

