15-496/859X: Computer Science Theory for the Information Age Carnegie Mellon University

Spring 2012
V. Guruswami \& R. Kannan

Problem Set 3 Solution by Yuan Zhou

1. (a) $\sigma(u(S) v(S)+u(T) v(T)+u(U) v(U))$.
(b) Since $\|u\|_{2}=\|v\|_{2}=1$, we have $\|u\|_{1},\|v\|_{1} \leq \sqrt{n}$. Therefore, there are at most $2 \sqrt{n} / \delta$ possibilities for each of $u(S), v(S), u(T), v(T), u(U), v(U)$. Therefore, there are at most $(2 \sqrt{n} / \delta)^{6}$ possible $f(S, T, U)$ vectors needed for the purpose of approximation.
(c) We maintain a list \mathcal{L}_{i} of $f(S, T, U)$ vectors for the first i vertices. We start from $\mathcal{L}_{0}=$ $\{(0,0,0,0,0,0)\}$, and at each of the n iterations, we derive \mathcal{L}_{i} from \mathcal{L}_{i-1}, where $1 \leq i \leq n$. For each element $(a, b, c, d, e, f, g) \in \mathcal{L}_{i-1}$, we consider the new vectors $\left(a+u_{i}, b+\right.$ $\left.v_{i}, c, d, e, f\right),\left(a, b, c+u_{i}, d+v_{i}, e, f\right),\left(a, b, c, d, e+u_{i}, d+v_{i}\right)$ (corresponding to adding vertex i to S, T, U). Round the three new vectors to the nearest multiple of δ^{\prime} (which will be chosen later), and add them to \mathcal{L}_{i}.
Finally, \mathcal{L}_{n} is the desired set of approximation vectors.
Now that at each iteration, we might introduce a δ^{\prime} additive error. There might be a $n \delta^{\prime}$ additive error in the final approximation vectors. Therefore, we need to set $\delta^{\prime}=\delta / n$, and the list size is upper bounded by $\left(2 \sqrt{n} / \delta^{\prime}\right)^{6}=O\left(n^{1.5} / \delta\right)^{6}$.
(d) We use the natural extension of the dynamic programming described above, getting a list of at most $O\left(n^{1.5} / \delta\right)^{6 k}$ approximating vectors (at precision δ). By choosing $k=O(1 / \epsilon)$, the additive error introduced in the SVD step can be upper bounded by $\epsilon n^{2} / 2$. The rest of the error is upper bounded by (for every partition S, T, U)

$$
\begin{aligned}
& \mid \sum_{t=1}^{k} \sigma_{t}\left(u_{t}(S) v_{t}(S)+u_{t}(T) v_{t}(T)+u_{t}(U) v_{t}(U)\right) \\
& -\sum_{t=1}^{k} \sigma_{t}\left(\left(u_{t}(S)+\delta_{t, 1}\right)\left(v_{t}^{\prime}(S)+\delta_{t, 2}\right)+\left(u_{t}(T)+\delta_{t, 3}\right)\left(v_{t}^{\prime}(T)+\delta_{t, 4}\right)+\left(u_{t}(U)+\delta_{t, 5}\right)\left(v_{t}(U)+\delta_{t, 6}\right)\right) \mid
\end{aligned}
$$

where $\left|\delta_{t, j}\right| \leq \delta$ are the error terms. The value above is upper bounded by

$$
\begin{aligned}
& \sum_{t=1}^{k} \sigma_{t}\left(\left|u_{t}(S) v_{t}(S)-\left(u_{t}(S)+\delta_{t, 1}\right)\left(v_{t}(S)+\delta_{t, 2}\right)\right|\right. \\
& \left.\left.\quad+\left|u_{t}(T) v_{t}(T)-\left(u_{t}(T)+\delta_{t, 3}\right)\left(v_{t}(T)+\delta_{t, 4}\right)\right|+\mid u_{t}(U) v_{t}(U)-\left(u_{t}(U)+\delta_{t, 5}\right)\left(v_{t}(U)+\delta_{t, 6}\right)\right) \mid\right) \\
= & \sum_{t=1}^{k} \sigma_{t}\left(\left|\delta_{t, 1} v_{t}(S)+\delta_{t, 2} u_{t}(S)+\delta_{t, 1} \delta_{t, 2}\right|\right. \\
& \left.\quad+\left|\delta_{t, 3} v_{t}(T)+\delta_{t, 4} u_{t}(T)+\delta_{t, 3} \delta_{t, 4}\right|+\left|\delta_{t, 5} v_{t}(U)+\delta_{t, 6} u_{t}(U)+\delta_{t, 5} \delta_{t, 6}\right|\right) \\
\leq & \sum_{t=1}^{k} \sigma_{t}\left(\delta\left(\left|u_{t}(S)\right|+\left|v_{t}(S)\right|+\left|u_{t}(T)\right|+\left|v_{t}(T)\right|+\left|u_{t}(U)\right|+\left|v_{t}(U)\right|\right)+3 \delta^{2}\right) \\
\leq & \left.\sum_{t=1}^{k} \sigma_{t}\left(\delta \cdot 2 \sqrt{n}+3 \delta^{2}\right) \quad \quad \text { (since }\|u\|_{1},\|v\|_{1} \leq \sqrt{n}\right) \\
\leq & \left.\sum_{t=1}^{k} \sigma_{t} \cdot 3 \sqrt{n} \delta \quad \text { (for large enough } n\right)
\end{aligned}
$$

$$
\leq k \sigma_{1} \cdot 3 \sqrt{n} \delta
$$

$$
\leq k n^{2} \cdot 3 \sqrt{n} \delta
$$

Therefore, we can upper bound this value by $\epsilon n^{2} / 2$ by choosing $\delta=\epsilon /(6 k \sqrt{n})=$ $\Omega\left(\epsilon^{2} / \sqrt{n}\right)$. This would give an algorithm with ϵn^{2} additive error which runs in time $n^{O(1)} \cdot O\left(n^{1.5} / \delta\right)^{6 k}=(n / \epsilon)^{O(1 / \epsilon)}$.
2. The probability that at least one of the x_{i} 's is one is

$$
1-\prod_{i=1}^{n}\left(1-\operatorname{Pr}\left[x_{i}=1\right]\right) \leq 1-(1-(1-\epsilon) / l)^{l} \approx 1-1 / e^{1-\epsilon}
$$

for large enough l.
Now back to our problem of estimating the number of distinct elements. Suppose we want a $(1+\epsilon)$ approximation and there are l distinct elements. To get an estimation within $l(1 \pm \epsilon)$ for the min-hash method, at least one of the l elements should be mapped to the first $1 /(l(1-\epsilon))$ fraction of the hash buckets (which happens with probability $1 /(l(1-\epsilon)) \approx$ $(1+\epsilon) / l)$. Even when the hash function is l-wise independent (i.e., the l elements are hashed in a fully independent way), by the exercise above, the probability that at least one of the l elements mapped to the first $1 /(l(1-\epsilon))$ fraction of the hash buckets is at most $1-1 / e^{1+\epsilon}$. Therefore, with constant probability, we are not able to get a $(1+\epsilon)$ approximation.
3. (a) The different f_{s} 's might cancel each other due to difference in their signs.
(b) By solving the equation

$$
\int_{t=0}^{x} 2 \cdot \frac{1}{\pi} \cdot \frac{d t}{1+t^{2}}=\frac{1}{2},
$$

we get the median value of $|\Lambda|$ is $x=1$.
(c) Let z_{1}, z_{2} be the value such that

$$
\operatorname{Pr}\left[Z \leq z_{1}\right]=1 / 2-\epsilon, \operatorname{Pr}\left[Z \leq z_{2}\right]=1 / 2+\epsilon
$$

Now, we only need to prove that,

$$
\operatorname{Pr}\left[z_{1} \leq M \leq z_{2}\right] \geq 1-\delta
$$

We are going to show that $\operatorname{Pr}\left[z_{1} \leq M\right] \geq 1-\delta / 2$. Similarly, we can show that $\operatorname{Pr}[M \leq$ $\left.z_{2}\right] \geq 1-\delta / 2$. By a union bound, we prove the desired statement.
To prove $\operatorname{Pr}\left[z_{1} \leq M\right] \geq 1-\delta / 2$, we note that

$$
\operatorname{Pr}\left[z_{1} \leq M\right] \geq \operatorname{Pr}\left[\text { more than half of } s_{i} \text { 's are no less than } z_{1}\right] .
$$

Since each s_{i} is an independent sample of Z and therefore is no less than z_{1} with probability $1 / 2+\epsilon$ (by the definition of z_{1}). By a Chernoff bound, we know that as long as $k=C \log (1 / \delta) / \epsilon^{2}$ for some large enough C, we have
$\operatorname{Pr}\left[\right.$ more than half of s_{i} 's are no less than $\left.z_{1}\right] \geq 1-\delta / 2$,
which implies that $\operatorname{Pr}\left[z_{1} \leq M\right] \geq 1-\delta / 2$.
(d) We are going to show that

$$
\begin{aligned}
& \int_{1-10 \epsilon}^{1} 2 \cdot \frac{1}{\pi} \cdot \frac{d x}{1+x^{2}}>\epsilon \\
& \int_{1}^{1+10 \epsilon} 2 \cdot \frac{1}{\pi} \cdot \frac{d x}{1+x^{2}}>\epsilon
\end{aligned}
$$

which would imply the desired statement.
Note that for $x \in[1-10 \epsilon, 1+10 \epsilon]$ and small enough ϵ, we have $2 \cdot \frac{1}{\pi} \cdot \frac{1}{1+x^{2}} \geq \frac{2}{\pi} \cdot \frac{1}{3} \geq 1 / 6$. Therefore,

$$
\int_{1-10 \epsilon}^{1} 2 \cdot \frac{1}{\pi} \cdot \frac{d x}{1+x^{2}} \geq \int_{1-10 \epsilon}^{1} \frac{d x}{6}=\frac{10}{6} \cdot \epsilon>\epsilon
$$

and

$$
\int_{1}^{1+10 \epsilon} 2 \cdot \frac{1}{\pi} \cdot \frac{d x}{1+x^{2}} \geq \int_{1}^{1+10 \epsilon} \frac{d x}{6}=\frac{10}{6} \cdot \epsilon>\epsilon
$$

(e) Let $k=C \log (1 / \delta) / \epsilon^{2}$ as defined in part (c). Take $k s$ independent samples of Λ : $\left\{X_{i}^{(t)}\right\}_{i \leq s, t \leq k}$. Now we keep k running sums $S_{t}=\sum_{i=1}^{s} a_{i} X_{i}^{(t)}$, and return the value $\operatorname{median}\left(\left|S_{1}\right|,\left|S_{2}\right|, \cdots,\left|S_{k}\right|\right)$.
Note that the algorithm runs in sub-linear space: only keeps $k=C \log (1 / \delta) / \epsilon^{2}$ values (if not considering the samples from Λ).
Now we are going to analyze the performance of the algorithm. Observe that each S_{i} is independently distributed as $\sum_{i=1}^{s}\left|a_{i}\right| \Lambda$. By part (c), we know that for an independent Λ, with probability at least $1-\delta$, we have

$$
1 / 2-\epsilon \leq \operatorname{Pr}\left[\left(\sum_{i=1}^{s}\left|a_{i}\right|\right)|\Lambda| \leq \operatorname{median}\left(\left|S_{1}\right|,\left|S_{2}\right|, \cdots,\left|S_{k}\right|\right)\right] \leq 1 / 2+\epsilon
$$

Now, by part (c), we know that $(1-10 \epsilon)\left(\sum_{i=1}^{s}\left|a_{i}\right|\right) \leq \operatorname{median}\left(\left|S_{1}\right|,\left|S_{2}\right|, \cdots,\left|S_{k}\right|\right) \leq$ $(1+10 \epsilon)\left(\sum_{i=1}^{s}\left|a_{i}\right|\right)$. I.e., the algorithm gives a $(1+O(\epsilon))$ approximation with probability at least $1-\delta$.
4. (a) For $\left(i_{1}, i_{2}\right) \neq\left(j_{1}, j_{2}\right)$, we have

$$
\left\langle v^{\left(i_{1}, i_{2}\right)}, v^{\left(j_{1}, j_{2}\right)}\right\rangle=\sum_{a \in C}(-1)^{a_{i_{1}}+a_{i_{2}}+a_{j_{1}}+a_{j_{2}}} .
$$

Note that by 4 -wise independence of C, this value is 0 as long as there is an element (from $[n])$ which appears exactly once in $i_{1}, i_{2}, j_{1}, j_{2}$, while this is true for $\left(i_{1}, i_{2}\right) \neq\left(j_{1}, j_{2}\right)$ and $i_{1}<i_{2}, j_{1}<j_{2}$.
(b) For any set of coefficients $\left\{\alpha^{\left(i_{1}, i_{2}\right)}\right\}_{1 \leq i_{1}<i_{2} \leq n}$, we have

$$
\left\|\sum_{i_{1}, i_{2}} \alpha^{\left(i_{1}, i_{2}\right)} v^{\left(i_{1}, i_{2}\right)}\right\|^{2}=\sum_{i_{1}, i_{2}}\left(\alpha^{\left(i_{1}, i_{2}\right)}\right)^{2}\left\|v^{\left.\left(i_{1}, i_{2}\right)\right)}\right\|^{2}=n \cdot \sum_{i_{1}, i_{2}}\left(\alpha^{\left(i_{1}, i_{2}\right)}\right)^{2}
$$

where the first equality is because of part (a). Therefore, if $\sum_{i_{1}, i_{2}} \alpha^{\left(i_{1}, i_{2}\right)} v^{\left(i_{1}, i_{2}\right)}=\mathbf{0}$, we have $\alpha^{\left(i_{1}, i_{2}\right)}=0$ for all $1 \leq i_{1}<i_{2} \leq n$. This means that the vectors $\left\{v_{i_{1}, i_{2}}\right\}_{1 \leq i_{1}<i_{2} \leq n}$ are linearly independent over reals.
(c) Since the vectors $\left\{v_{i_{1}, i_{2}}\right\}_{1 \leq i_{1}<i_{2} \leq n}$ are $|C|$-dimensional vectors. There can be at most $|C|$ of them. Therefore, we have $\binom{n}{2} \leq|C|$, i.e. $|C|=\Omega\left(n^{2}\right)$.

