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1. (a) σ(u(S)v(S) + u(T )v(T ) + u(U)v(U)).

(b) Since ‖u‖2 = ‖v‖2 = 1, we have ‖u‖1, ‖v‖1 ≤
√
n. Therefore, there are at most 2

√
n/δ

possibilities for each of u(S), v(S), u(T ), v(T ), u(U), v(U). Therefore, there are at most
(2
√
n/δ)6 possible f(S, T, U) vectors needed for the purpose of approximation.

(c) We maintain a list Li of f(S, T, U) vectors for the first i vertices. We start from L0 =
{(0, 0, 0, 0, 0, 0)}, and at each of the n iterations, we derive Li from Li−1, where 1 ≤ i ≤ n.
For each element (a, b, c, d, e, f, g) ∈ Li−1, we consider the new vectors (a + ui, b +
vi, c, d, e, f), (a, b, c + ui, d + vi, e, f), (a, b, c, d, e + ui, d + vi) (corresponding to adding
vertex i to S, T, U). Round the three new vectors to the nearest multiple of δ′ (which
will be chosen later), and add them to Li.
Finally, Ln is the desired set of approximation vectors.

Now that at each iteration, we might introduce a δ′ additive error. There might be a nδ′

additive error in the final approximation vectors. Therefore, we need to set δ′ = δ/n,
and the list size is upper bounded by (2

√
n/δ′)6 = O(n1.5/δ)6.

(d) We use the natural extension of the dynamic programming described above, getting a list
of at most O(n1.5/δ)6k approximating vectors (at precision δ). By choosing k = O(1/ε),
the additive error introduced in the SVD step can be upper bounded by εn2/2. The rest
of the error is upper bounded by (for every partition S, T, U)∣∣∣ k∑
t=1

σt(ut(S)vt(S) + ut(T )vt(T ) + ut(U)vt(U))

−
k∑
t=1

σt((ut(S) + δt,1)(v
′
t(S) + δt,2) + (ut(T ) + δt,3)(v

′
t(T ) + δt,4) + (ut(U) + δt,5)(vt(U) + δt,6))

∣∣∣,
where |δt,j | ≤ δ are the error terms. The value above is upper bounded by

k∑
t=1

σt

(
|ut(S)vt(S)− (ut(S) + δt,1)(vt(S) + δt,2)|

+ |ut(T )vt(T )− (ut(T ) + δt,3)(vt(T ) + δt,4)|+ |ut(U)vt(U)− (ut(U) + δt,5)(vt(U) + δt,6))|
)

=
k∑
t=1

σt

(
|δt,1vt(S) + δt,2ut(S) + δt,1δt,2|

+ |δt,3vt(T ) + δt,4ut(T ) + δt,3δt,4|+ |δt,5vt(U) + δt,6ut(U) + δt,5δt,6|
)

≤
k∑
t=1

σt
(
δ(|ut(S)|+ |vt(S)|+ |ut(T )|+ |vt(T )|+ |ut(U)|+ |vt(U)|) + 3δ2

)
≤

k∑
t=1

σt
(
δ · 2
√
n+ 3δ2

)
(since ‖u‖1, ‖v‖1 ≤

√
n)

≤
k∑
t=1

σt · 3
√
nδ (for large enough n)



≤kσ1 · 3
√
nδ

≤kn2 · 3
√
nδ.

Therefore, we can upper bound this value by εn2/2 by choosing δ = ε/(6k
√
n) =

Ω(ε2/
√
n). This would give an algorithm with εn2 additive error which runs in time

nO(1) ·O(n1.5/δ)6k = (n/ε)O(1/ε).

2. The probability that at least one of the xi’s is one is

1−
n∏
i=1

(1− Pr[xi = 1]) ≤ 1− (1− (1− ε)/l)l ≈ 1− 1/e1−ε,

for large enough l.

Now back to our problem of estimating the number of distinct elements. Suppose we want
a (1 + ε) approximation and there are l distinct elements. To get an estimation within
l(1 ± ε) for the min-hash method, at least one of the l elements should be mapped to the
first 1/(l(1− ε)) fraction of the hash buckets (which happens with probability 1/(l(1− ε)) ≈
(1 + ε)/l). Even when the hash function is l-wise independent (i.e., the l elements are hashed
in a fully independent way), by the exercise above, the probability that at least one of the l
elements mapped to the first 1/(l(1− ε)) fraction of the hash buckets is at most 1− 1/e1+ε.
Therefore, with constant probability, we are not able to get a (1 + ε) approximation.

3. (a) The different fs’s might cancel each other due to difference in their signs.

(b) By solving the equation ∫ x

t=0
2 · 1

π
· dt

1 + t2
=

1

2
,

we get the median value of |Λ| is x = 1.

(c) Let z1, z2 be the value such that

Pr[Z ≤ z1] = 1/2− ε,Pr[Z ≤ z2] = 1/2 + ε.

Now, we only need to prove that,

Pr[z1 ≤M ≤ z2] ≥ 1− δ.

We are going to show that Pr[z1 ≤ M ] ≥ 1− δ/2. Similarly, we can show that Pr[M ≤
z2] ≥ 1− δ/2. By a union bound, we prove the desired statement.

To prove Pr[z1 ≤M ] ≥ 1− δ/2, we note that

Pr[z1 ≤M ] ≥ Pr[more than half of si’s are no less than z1].

Since each si is an independent sample of Z and therefore is no less than z1 with prob-
ability 1/2 + ε (by the definition of z1). By a Chernoff bound, we know that as long as
k = C log(1/δ)/ε2 for some large enough C, we have

Pr[more than half of si’s are no less than z1] ≥ 1− δ/2,

which implies that Pr[z1 ≤M ] ≥ 1− δ/2.



(d) We are going to show that ∫ 1

1−10ε
2 · 1

π
· dx

1 + x2
> ε,∫ 1+10ε

1
2 · 1

π
· dx

1 + x2
> ε,

which would imply the desired statement.

Note that for x ∈ [1−10ε, 1 + 10ε] and small enough ε, we have 2 · 1π ·
1

1+x2
≥ 2

π ·
1
3 ≥ 1/6.

Therefore, ∫ 1

1−10ε
2 · 1

π
· dx

1 + x2
≥
∫ 1

1−10ε

dx

6
=

10

6
· ε > ε,

and ∫ 1+10ε

1
2 · 1

π
· dx

1 + x2
≥
∫ 1+10ε

1

dx

6
=

10

6
· ε > ε.

(e) Let k = C log(1/δ)/ε2 as defined in part (c). Take ks independent samples of Λ :

{X(t)
i }i≤s,t≤k. Now we keep k running sums St =

∑s
i=1 aiX

(t)
i , and return the value

median(|S1|, |S2|, · · · , |Sk|).
Note that the algorithm runs in sub-linear space: only keeps k = C log(1/δ)/ε2 values
(if not considering the samples from Λ).

Now we are going to analyze the performance of the algorithm. Observe that each Si is
independently distributed as

∑s
i=1 |ai|Λ. By part (c), we know that for an independent

Λ, with probability at least 1− δ, we have

1/2− ε ≤ Pr

[(
s∑
i=1

|ai|

)
|Λ| ≤ median(|S1|, |S2|, · · · , |Sk|)

]
≤ 1/2 + ε.

Now, by part (c), we know that (1 − 10ε) (
∑s

i=1 |ai|) ≤ median(|S1|, |S2|, · · · , |Sk|) ≤
(1+10ε) (

∑s
i=1 |ai|). I.e., the algorithm gives a (1+O(ε)) approximation with probability

at least 1− δ.

4. (a) For (i1, i2) 6= (j1, j2), we have〈
v(i1,i2), v(j1,j2)

〉
=
∑
a∈C

(−1)ai1+ai2+aj1+aj2 .

Note that by 4-wise independence of C, this value is 0 as long as there is an element (from
[n]) which appears exactly once in i1, i2, j1, j2, while this is true for (i1, i2) 6= (j1, j2) and
i1 < i2, j1 < j2.

(b) For any set of coefficients {α(i1,i2)}1≤i1<i2≤n, we have

‖
∑
i1,i2

α(i1,i2)v(i1,i2)‖2 =
∑
i1,i2

(
α(i1,i2)

)2
‖v(i1,i2))‖2 = n ·

∑
i1,i2

(
α(i1,i2)

)2
,

where the first equality is because of part (a). Therefore, if
∑

i1,i2
α(i1,i2)v(i1,i2) = 0, we

have α(i1,i2) = 0 for all 1 ≤ i1 < i2 ≤ n. This means that the vectors {vi1,i2}1≤i1<i2≤n
are linearly independent over reals.

(c) Since the vectors {vi1,i2}1≤i1<i2≤n are |C|-dimensional vectors. There can be at most
|C| of them. Therefore, we have

(
n
2

)
≤ |C|, i.e. |C| = Ω(n2).


