Problem Set 2 Solution By Yuan Zhou

1. We can write A as

$$
A=\sum_{i=1}^{d} \ell_{i} \cdot \frac{\boldsymbol{w}_{\boldsymbol{i}}}{\ell_{i}} \cdot \boldsymbol{e}_{\boldsymbol{i}}^{T}
$$

where $\boldsymbol{e}_{\boldsymbol{i}}$ is the i-th unit vector with all entries 0 except for the i-th entry being 1 .
2. Since the row vectors of A are orthonormal, we have that $A A^{T}=I$. For square matrix A, this implies that $A^{T}=A^{-1}$. Since $A^{-1} A=I$, we have $A^{T} A=I$, which implies that the column vectors of A are also orthonormal.
When A is not a square matrix (when $A \in \mathbb{R}^{m \times n}$ where $m<n$), the statement is not true. The following matrix is a counterexample,

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

3. (a) Since A has rank $n, A^{T} A$ also has rank n (full rank). Therefore $A^{T} A$ is a positive definite matrix, and $\left(A^{T} A\right)^{1 / 2},\left(A^{T} A\right)^{-1 / 2},\left(A^{T} A\right)^{-1}$ exist. Now, note that

$$
\begin{aligned}
\|A x-b\|^{2} & =(A x-b)^{T}(A x-b) \\
& =x^{T}\left(A^{T} A\right) x-2 b^{T} A x+b^{T} b \\
& =\left(\left(A^{T} A\right)^{1 / 2} x\right)^{T}\left(\left(A^{T} A\right)^{1 / 2} x\right)-2\left(\left(A^{T} A\right)^{-1 / 2} A^{T} b\right)^{T}\left(\left(A^{T} A\right)^{1 / 2} x\right)+\|b\|^{2} \\
& =\left\|\left(A^{T} A\right)^{1 / 2} x-\left(A^{T} A\right)^{-1 / 2} A^{T} b\right\|^{2}-\left\|\left(A^{T} A\right)^{-1 / 2} A^{T} b\right\|^{2}+\|b\|^{2} .
\end{aligned}
$$

The second term above is a constant (independent of x), while the first term is always nonnegative, and it is 0 only when $x=\left(A^{T} A\right)^{-1} A^{T} b$. Therefore, $x=\left(A^{T} A\right)^{-1} A^{T} b$ is the unique minimizer of $\|A x-b\|^{2}$ (as well as $\|A x-b\|$), and the minimum value is $\left(\|b\|^{2}-\left\|\left(A^{T} A\right)^{-1 / 2} A^{T} b\right\|^{2}\right)\left(\sqrt{\|b\|^{2}-\left\|\left(A^{T} A\right)^{-1 / 2} A^{T} b\right\|^{2}}\right.$ correspondingly).
(b) Fix an x, let $x=\sum_{i=1}^{r} \alpha_{i} v_{i}+x^{\perp}$ where $x^{\perp} \perp v_{i}$ for all i. We also let $b=\sum_{i=1}^{r} \beta_{i} u_{i}+b^{\perp}$ where $b^{\perp} \perp u_{i}$ for all i. Now we have

$$
\|A x-b\|^{2}=\left\|\sum_{i=1}^{r}\left(\sigma_{i} \alpha_{i}-\beta_{i}\right) u_{i}+b^{\perp}\right\|^{2}=\sum_{i=1}^{r}\left(\sigma_{i} \alpha_{i}-\beta_{i}\right)^{2}+\left\|b^{\perp}\right\|^{2} \geq\left\|b^{\perp}\right\|^{2}
$$

Where the equality is achieved when $\alpha_{i}=\frac{\beta_{i}}{\sigma_{i}}=\frac{\left\langle b, u_{i}\right\rangle}{\sigma_{i}}$ for all i. Therefore,

$$
x^{*}=\sum_{i=1}^{r} \beta_{i} v_{i}=\sum_{i=1}^{r} \frac{\left\langle b, u_{i}\right\rangle}{\sigma_{i}} v_{i}
$$

minimizes $\|A x-b\|^{2}$ (which also minimizes $\|A x-b\|$).
4. (a) The n singular values are $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$.
(b) "If" part: since M is real symmetric, we can assume $v_{1}, v_{2}, \cdots, v_{n}$ is a set of orthonormal eigenvectors. The corresponding eigenvalue $\lambda_{i}=v_{i}^{T} M v_{i} \geq 0$ for all i. Therefore M is p.s.d. by definition.
"Only if" part: if M is p.s.d., then we can write $M=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}$ where $v_{1}, v_{2}, \cdots, v_{n}$ is a set of orthonormal eigenvectors and $\lambda_{i} \geq 0$ for all i. Now, for any $x \in \mathbb{R}^{n}, x^{T} M x=$ $\sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{T} x\right)^{2} \geq 0$.
(c) For all $x \in \mathbb{R}^{n}, x^{T} V M V^{T} x=\left(V^{T} x\right) M\left(V^{T} x\right) \geq 0$ (by part(b)). Therefore, $V M V^{T}$ is p.s.d. (by part(b) again).
(d) Write $A=U \Sigma V^{T}$ in its singular value decomposition form. Therefore $A=U V^{T} V \Sigma V^{T}=$ $W P$ where we define $W=U V^{T}$ and $P=V \Sigma V^{T}$. Observe that $W^{T} W=V U^{T} U V^{T}=I$, $W W^{T}=U V^{T} V U^{T}=I$ and P is p.s.d. by part (c).
5. (a) Note that for all $x \in \mathbb{R}^{n}$,

$$
x^{T} L x=\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} \geq 0
$$

Therefore L is p.s.d. .
(b) Let $x=(1,1,1, \cdots, x)^{T}$. We see that $L x=\mathbf{0}$. Therefore the smallest eigenvalue of L is 0 (since all the eigenvalues are nonnegative).
(c) For all unit vector x,

$$
x^{T} L x=\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} \leq \sum_{(i, j) \in E} 2\left(x_{i}^{2}+x_{j}^{2}\right)=2 d \sum_{i} x_{i}^{2}=2 d
$$

Therefore the largest eigenvalue (which is $\|L\|_{2}$, since L is p.s.d.) is at most $2 d$.

