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1. We can write A as

A =

d∑
i=1

ℓi ·
wi

ℓi
· eTi ,

where ei is the i-th unit vector with all entries 0 except for the i-th entry being 1.

2. Since the row vectors of A are orthonormal, we have that AAT = I. For square matrix A,
this implies that AT = A−1. Since A−1A = I, we have ATA = I, which implies that the
column vectors of A are also orthonormal.

When A is not a square matrix (when A ∈ Rm×n where m < n), the statement is not true.
The following matrix is a counterexample,

A =

[
1 0 0
0 1 0

]
.

3. (a) Since A has rank n, ATA also has rank n (full rank). Therefore ATA is a positive definite
matrix, and (ATA)1/2, (ATA)−1/2, (ATA)−1 exist. Now, note that

∥Ax− b∥2 =(Ax− b)T (Ax− b)

=xT (ATA)x− 2bTAx+ bT b

=((ATA)1/2x)T ((ATA)1/2x)− 2((ATA)−1/2AT b)T ((ATA)1/2x) + ∥b∥2

=∥(ATA)1/2x− (ATA)−1/2AT b∥2 − ∥(ATA)−1/2AT b∥2 + ∥b∥2.

The second term above is a constant (independent of x), while the first term is always
nonnegative, and it is 0 only when x = (ATA)−1AT b. Therefore, x = (ATA)−1AT b is
the unique minimizer of ∥Ax − b∥2 (as well as ∥Ax − b∥), and the minimum value is
(∥b∥2 − ∥(ATA)−1/2AT b∥2) (

√
∥b∥2 − ∥(ATA)−1/2AT b∥2 correspondingly).

(b) Fix an x, let x =
∑r

i=1 αivi+x⊥ where x⊥ ⊥ vi for all i. We also let b =
∑r

i=1 βiui+ b⊥

where b⊥ ⊥ ui for all i. Now we have

∥Ax− b∥2 =

∥∥∥∥∥
r∑

i=1

(σiαi − βi)ui + b⊥

∥∥∥∥∥
2

=

r∑
i=1

(σiαi − βi)
2 + ∥b⊥∥2 ≥ ∥b⊥∥2.

Where the equality is achieved when αi =
βi

σi
= ⟨b,ui⟩

σi
for all i. Therefore,

x∗ =
r∑

i=1

βivi =
r∑

i=1

⟨b, ui⟩
σi

vi

minimizes ∥Ax− b∥2 (which also minimizes ∥Ax− b∥).

4. (a) The n singular values are λ1, λ2, · · · , λn.



(b) “If” part: since M is real symmetric, we can assume v1, v2, · · · , vn is a set of orthonormal
eigenvectors. The corresponding eigenvalue λi = vTi Mvi ≥ 0 for all i. Therefore M is
p.s.d. by definition.

“Only if” part: if M is p.s.d., then we can write M =
∑n

i=1 λiviv
T
i where v1, v2, · · · , vn

is a set of orthonormal eigenvectors and λi ≥ 0 for all i. Now, for any x ∈ Rn, xTMx =∑n
i=1 λi(v

T
i x)

2 ≥ 0.

(c) For all x ∈ Rn, xTVMV Tx = (V Tx)M(V Tx) ≥ 0 (by part(b)). Therefore, VMV T is
p.s.d. (by part(b) again).

(d) WriteA = UΣV T in its singular value decomposition form. ThereforeA = UV TV ΣV T =
WP where we define W = UV T and P = V ΣV T . Observe that W TW = V UTUV T = I,
WW T = UV TV UT = I and P is p.s.d. by part (c).

5. (a) Note that for all x ∈ Rn,

xTLx =
∑

(i,j)∈E

(xi − xj)
2 ≥ 0.

Therefore L is p.s.d. .

(b) Let x = (1, 1, 1, · · · , x)T . We see that Lx = 0. Therefore the smallest eigenvalue of L is
0 (since all the eigenvalues are nonnegative).

(c) For all unit vector x,

xTLx =
∑

(i,j)∈E

(xi − xj)
2 ≤

∑
(i,j)∈E

2(x2i + x2j ) = 2d
∑
i

x2i = 2d.

Therefore the largest eigenvalue (which is ∥L∥2, since L is p.s.d.) is at most 2d.


