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Abstract

The extraction of a single high-quality image from a set of low-
resolution images is an important problem which arises in fields
such as remote sensing, surveillance, medical imaging and the ex-
traction of still images from video. Typical approaches are based
on the use of cross-correlation to register the images followed by
the inversion of the transformation from the unknown high reso-
lution image to the observed low resolution images, using regular-
ization to resolve the ill-posed nature of the inversion process. In
this paper we develop a Bayesian treatment of the super-resolution
problem in which the likelihood function for the image registra-
tion parameters is based on a marginalization over the unknown
high-resolution image. This approach allows us to estimate the
unknown point spread function, and is rendered tractable through
the introduction of a Gaussian process prior over images. Results
indicate a significant improvement over techniques based on MAP
(maximum a-posteriori) point optimization of the high resolution
image and associated registration parameters.

1 Introduction

The task in super-resolution is to combine a set of low resolution images of the
same scene in order to obtain a single image of higher resolution. Provided the
individual low resolution images have sub-pixel displacements relative to each other,
it is possible to extract high frequency details of the scene well beyond the Nyquist
limit of the individual source images.

Ideally the low resolution images would differ only through small (sub-pixel) trans-
lations, and would be otherwise identical. In practice, the transformations may be
more substantial and involve rotations or more complex geometric distortions. In
addition the scene itself may change, for instance if the source images are succes-
sive frames in a video sequence. Here we focus attention on static scenes in which
the transformations relating the source images correspond to translations and rota-
tions, such as can be obtained by taking several images in succession using a hand
held digital camera. Our approach is readily extended to more general projective
transformations if desired. Larger changes in camera position or orientation can be



handled using techniques of robust feature matching, constrained by the epipolar
geometry, but such sophistication is unnecessary in the present context.

Most previous approaches, for example [1, 2, 3], perform an initial registration of
the low resolution images with respect to each other, and then keep this registration
fixed. They then formulate probabilistic models of the image generation process,
and use maximum likelihood to determine the pixel intensities in the high resolution
image. A more convincing approach [4] is to determine simultaneously both the low
resolution image registration parameters and the pixel values of the high resolution
image, again through maximum likelihood.

An obvious difficulty of these techniques is that if the high resolution image has too
few pixels then not all of the available high frequency information is extracted from
the observed images, whereas if it has too many pixels the maximum likelihood
solution becomes ill conditioned. This is typically resolved by the introduction of
penalty terms to regularize the maximum likelihood solution, where the regular-
ization coefficients may be set by cross-validation. The regularization terms are
often motivated in terms of a prior distribution over the high resolution image,
in which case the solution can be interpreted as a MAP (maximum a-posteriori)
optimization.

Baker and Kanade [5] have tried to improve the performance of super-resolution
algorithms by developing domain-specific image priors, applicable to faces or text
for example, which are learned from data. In this case the algorithm is effectively
hallucinating perceptually plausible high frequency features. Here we focus on gen-
eral purpose algorithms applicable to any natural image, for which the prior encodes
only high level information such as the correlation of nearby pixels.

The key development in this paper, which distinguishes it from previous approaches,
is the use of Bayesian, rather than simply MAP, techniques by marginalizing over
the unknown high resolution image in order to determine the low resolution image
registration parameters. Our formulation also allows the choice of continuous values
for the up-sampling process, as well the shift and rotation parameters governing the
image registration.

The generative process by which the high resolution image is smoothed to obtain a
low resolution image is described by a point spread function (PSF). It has often been
assumed that the point spread function is known in advance, which is unrealistic.
Some authors [3] have estimated the PSF in advance using only the low resolution
image data, and then kept this estimate fixed while extracting the high resolution
image. A key advantage of our Bayesian marginalization is that it allows us to
determine the point spread function alongside both the registration parameters and
the high resolution image in a single, coherent inference framework.

As we show later, if we attempt to determine the PSF as well as the registration
parameters and the high resolution image by joint optimization, we obtain highly bi-
ased (over-fitted) results. By marginalizing over the unknown high resolution image
we are able to determine the PSF and the registration parameters accurately, and
thereby reconstruct the high resolution image with subjectively very good quality.

2 Bayesian Super-resolution

Suppose we are given K low-resolution intensity images (the extension to 3-colour
images is straightforward). We shall find it convenient notationally to represent
the images as vectors y(®) of length M, where k = 1,..., K, obtained by raster
scanning the pixels of the images. Each image is shifted and rotated relative to a



reference image which we shall arbitrarily take to be y!). The shifts are described
by 2-dimensional vectors sg, and the rotations are described by angles 6.

The goal is to infer the underlying scene from which the low resolution images are
generated. We represent this scene by a single high-resolution image, which we
again denote by a raster-scan vector x whose length is N > M.

Our approach is based on a generative model for the observed low resolution images,
comprising a prior over the high resolution image together with an observation
model describing the process by which a low resolution image is obtained from the
high resolution one.

It should be emphasized that the real scene which we are trying to infer has ef-
fectively an infinite resolution, and that its description as a pixellated image is a
computational artefact. In particular if we take the number N of pixels in this image
to be large the inference algorithm should remain well behaved. This is not the case
with maximum likelihood approaches in which the value of N must be limited to
avoid ill-conditioning. In our approach, if N is large the correlation of neighbouring
pixels is determined primarily by the prior, and the value of N is limited only by
the computational cost of working with large numbers of high resolution pixels.

We represent the prior over the high resolution image by a Gaussian process

p(x) = N(x|0,Z,) (1)
where the covariance matrix Z, is chosen to be of the form
. vi — v;l?
Zx(Z:]):AeXp{_“riz]“}' (2)

Here v; denotes the spatial position in the 2-dimensional image space of pixel ¢, the
coefficient A measures the ‘strength’ of the prior, and r defines the correlation length
scale. Since we take Z, to be a fixed matrix, it is straightforward to use a different
functional form for Z, if desired. It should be noted that in our image representation
the pixel intensity values lie in the range (—0.5,0.5), and so in principle a Gaussian
process prior is inappropriate!. In practice we have found that this causes little
difficulty, and in Section 4 we discuss how a more appropriate distribution could be
used.

The low resolution images are assumed to be generated from the high resolution
image by first applying a shift and a rotation, then convolving with some point
spread function, and finally downsampling to the lower resolution. This is expressed
through the transformation equation

v = Wkx 1 ) 3)

where €*) is a vector of independent Gaussian random variables e; ~ N(0,371),
with zero mean and precision (inverse variance) [, representing noise terms in-
tended to model the camera noise as well as to capture any discrepancy between
our generative model and the observed data.

The transformation matrix W) in (3) is given by a point spread function which
captures the down-sampling process and which we again take to have a ‘Gaussian’
form

Wi =wiP S wi (4)

!Note that the established work we have referenced, where a Gaussian prior or quadratic
regularlizer is utilised, also overlooks the bounded nature of the pixel space.



with

— v — u{?||?
Wi = exp {—TJ (5)

where j = 1,...M and i = 1,..., N. Here y represents the ‘width’ of the point
spread function, and we shall treat v as an unknown parameter to be determined
from the data. Note that our approach generalizes readily to any other form of
point spread function, possibly containing several unknown parameters, provided it
is differentiable with respect to those parameters.

In (5) the vector ug-k) is the centre of the PSF and is dependent on the shift and
rotation of the low resolution image. We choose a parameterization in which the
centre of rotation coincides with the centre v of the image, so that

' =R (v; —9) + 7+ (6)
where R(® is the rotation matrix

(k) _ cosfy, sindy
R™ = < —sinf;, cosOy > (M)

We can now write down the likelihood function in the form

BA\M? 8
p(y(k)|X,Sk,0k,7) = <%> exp {—EHYW - W(k)XHQ} . (8)

Assuming the images are generated independently from the model, we can then
write the posterior distribution over the high resolution image in the form

p(x) [T, p(y™® |x, 51, 61, 7)
p({y® }{sk, 0k}, 7) ’

p(X|{y(k),Sk,9k},’)/) = (9)

=N, %), (10)
with
K —1
»=|2z,'+8 (Z W(k)TW(’“)ﬂ , (11)
k=
N 1
p=pB% (Z W(k)Ty('“)> : (12)
k=1

Thus the posterior distribution over the high resolution image is again a Gaussian
process.

If we knew the registration parameters {sy, 0y}, as well as the PSF width parameter
v, then we could simply take the mean p (which is also the maximum) of the
posterior distribution to be our super-resolved image. However, the registration
parameters are unknown. Previous approaches have either performed a preliminary
registration of the low resolution images against each other and then fixed the
registration while determining the high resolution image, or else have maximized
the posterior distribution (9) jointly with respect to the high resolution image x and
the registration parameters (which we refer to as the ‘M AP’ approach). Neither
approach takes account of the uncertainty in determining the high resolution image
and the consequential effects on the optimization of the registration parameters.



Here we adopt a Bayesian approach by marginalizing out the unknown high res-
olution image. This gives the marginal likelihood function for the low resolution
images in the form

p(y{sk, 0k}, v) = N(0,Zy) (13)
where
Z,=B"'"T+WZ,W", (14)

and y and W are the vector and matrix of stacked y*) and W) respectively. Using
some standard matrix manipulations we can rewrite the marginal likelihood in the
form

K
1 —
gyl (51,00}, ) = =3 | 53 Iy = WO + 47z
k=1
+log|Z,| —log |X| — KMlogf| . (15)

We now wish to optimize this marginal likelihood with respect to the parameters
{sk,0r},7, and to do this we have compared two approaches. The first is to use
the expectation-maximization (EM) algorithm. In the E-step we evaluate the pos-
terior distribution over the high resolution image given by (10). In the M-step
we maximize the expectation over x of the log of the complete data likelihood
p(y, x|{sk, 0k}, y) obtained from the product of the prior (1) and the likelihood (8).
This maximization is done using the scaled conjugate gradients algorithm (SCG)
[6]. The second approach is to maximize the marginal likelihood (15) directly using
SCG. Empirically we find that direct optimization is faster than EM, and so has
been used to obtain the results reported in this paper.

Since in (15) we must compute X, which is N x N, in practice we optimize the
shift, rotation and PSF width parameters based on an appropriately-sized subset
of the image only. The complete high resolution image is then found as the mode
of the full posterior distribution, obtained iteratively by maximizing the numerator
in (9), again using SCG optimization.

3 Results

In order to evaluate our approach we first apply it to a set of low resolution images
synthetically down-sampled (by a linear scaling of 4 to 1, or 16 pixels to 1) from a
known high-resolution image as follows. For each image we wish to generate we first
apply a shift drawn from a uniform distribution over the interval (—2,2) in units
of high resolution pixels (larger shifts could in principle be reduced to this level
by pre-registering the low resolution images against each other) and then apply a
rotation drawn uniformly over the interval (—4,4) in units of degrees. Finally we
determine the value at each pixel of the low resolution image by convolution of the
original image with the point spread function (centred on the low resolution pixel),
with width parameter v = 2.0. From a high-resolution image of 384 x 256 we chose
to use a set of 16 images of resolution 96 x 64.

In order to limit the computational cost we use patches from the centre of the low
resolution image of size 9 x 9 in order to determine the values of the shift, rotation
and PSF width parameters. We set the resolution of the super-resolved image to
have 16 times as many pixels as the low resolution images which, allowing for shifts
and the support of the point spread function, gives N = 50 x 50. The Gaussian
process prior is chosen to have width parameter » = 1.0, variance parameter A =



0.04, and the noise process is given a standard deviation of 0.05. Note that these
values can be set sensibly a priori and need not be tuned to the data.

The scaled conjugate gradient optimization is initialised by setting the shift and
rotation parameters equal to zero, while the PSF width + is initialized to 4.0 since
this is the upsampling factor we have chosen between low resolution and super-
resolved images. We first optimize only the shifts, then we optimize both shifts
and rotations, and finally we optimize shifts, rotations and PSF width, in each case
running until a suitable convergence tolerance is reached.

In Figure 1(a) we show the original image, together with an example low resolution
image in Figure 1(b). Figure 1(c) shows the super-resolved image obtained using our
Bayesian approach. We see that the super-resolved image is of dramatically better
quality than the low resolution images from which it is inferred. The converged
value for the PSF width parameter is v = 1.94, close to the true value 2.0.

Original image Low-resolution image (1 of 16)

4x Super-resolved image (Bayesian) 4x Super-resolved image (MAP)

Figure 1: Example using synthetically generated data showing (top left) the
original image, (top right) an example low resolution image and (bottom left)
the inferred super-resolved image. Also shown, in (bottom right), is a com-
parison super-resolved image obtained by joint optimization with respect to
the super-resolved image and the parameters, demonstrating the significanly
poorer result.

Notice that there are some small edge effects in the super-resolved image arising from
the fact that these pixels only receive evidence from a subset of the low resolution
images due to the image shifts. Thus pixels near the edge of the high resolution
image are determined primarily by the prior.



For comparison we show, in Figure 1(d), the corresponding super-resolved image
obtained by performing a MAP optimization with respect to the high resolution
image. This is of significantly poorer quality than that obtained from our Bayesian
approach. The converged value for the PSF width in this case is v = 0.43 indicating
severe over-fitting.

In Figure 2 we show plots of the true and estimated values for the shift and rotation
parameters using our Bayesian approach and also using MAP optimization. Again
we see the severe over-fitting resulting from joint optimization, and the significantly
better results obtained from the Bayesian approach.
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Figure 2: (a) Plots of the true shifts for the synthetic data, together with the
estimated values obtained by optimization of the marginal likelihood in our
Bayesian framework and for comparison the corresponding estimates obtained
by joint optimization with respect to registration parameters and the high
resolution image. (b) Comparison of the errors in determining the rotation
parameters for both Bayesian and MAP approaches.

Finally, we apply our technique to a set of images obtained by taking 16 frames using
a hand held digital camera in ‘multi-shot’ mode (press and hold the shutter release)
which takes about 12 seconds. An example image, together with the super-resolved
image obtained using our Bayesian algorithm, is shown in Figure 3.

4 Discussion

In this paper we have proposed a new approach to the problem of image super-
resolution, based on a marginalization over the unknown high resolution image using
a Gaussian process prior. Our results demonstrate a worthwhile improvement over
previous approaches based on MAP estimation, including the ability to estimate
parameters of the point spread function.

One potential application our technique is the extraction of high resolution images
from video sequences. In this case it will be necessary to take account of motion
blur, as well as the registration, for example by tracking moving objects through
the successive frames [7].



(a) Low-resolution image (1 of 16) (b) 4x Super-resolved image (Bayesian)

Figure 3: Application to real data showing in (a) one of the 16 captured in
succession usind a hand held camera of a doorway with nearby printed sign.
Image (b) shows the final image obtained from our Bayesian super-resolution
algorithm.

Finally, having seen the advantages of marginalizing with respect to the high reso-
lution image, we can extend this approach to a fully Bayesian one based on Markov
chain Monte Carlo sampling over all unknown parameters in the model. Since our
model is differentiable with respect to these parameters, this can be done efficiently
using the hybrid Monte Carlo algorithm. This approach would allow the use of
a prior distribution over high resolution pixel intensities which was confined to a
bounded interval, instead of the Gaussian assumed in this paper. Whether the addi-
tional improvements in performance will justify the extra computational complexity
remains to be seen.
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