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1 Introduction

In the verificationist definition of the logical connectives via their introduc-
tion rules we have briefly justified the elimination rules. In this section we
study the balance between introduction and elimination rules more closely.
In order to show that the two are in harmony we establish two properties:
local soundness and local completeness.
Local soundness shows that the elimination rules are not too strong: no
matter how we apply elimination rules to the result of an introduction we
cannot gain any new information. We demonstrate this by showing that we
can find a more direct proof of the conclusion of an elimination than one
that first introduces and then eliminates the connective in question. This is
witnessed by a local reduction of the given introduction and the subsequent
elimination.
Local completeness shows that the elimination rules are not too weak:
there is always a way to apply elimination rules so that we can reconsti-
tute a proof of the original proposition from the results by applying intro-
duction rules. This is witnessed by a local expansion of an arbitrary given
derivation into one that introduces the primary connective.

Connectives whose introduction and elimination rules are in harmony
in the sense that they are locally sound and complete are properly defined
from the verificationist perspective. If not, the proposed connective should
be viewed with suspicion. Another criterion we would like to apply uni-
formly is that both introduction and elimination rules do not refer to other
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propositional constants or connectives (besides the one we are trying to de-
fine), which could create a dangerous dependency of the various connec-
tives on each other. As we present correct definitions we will occasionally
also give some counterexamples to illustrate the consequences of violating
the principles behind the patterns of valid inference.

In the discussion of each individual connective below we use the nota-
tion

D
A true =⇒R

D′

A true

for the local reduction of a deductionD to another deductionD′ of the same
judgment A true. In fact, =⇒R can itself be a higher level judgment relating
two proofs, D and D′, although we will not directly exploit this point of
view. Similarly,

D
A true =⇒E

D′

A true

is the notation of the local expansion of D to D′.

Conjunction. We start with local soundness. Since there are two elimina-
tion rules and one introduction, it turns out we have two cases to consider.
In either case, we can easily reduce.

D
A true

E
B true

A ∧B true
∧I

A true
∧EL =⇒R

D
A true

D
A true

E
B true

A ∧B true
∧I

B true
∧ER =⇒R

E
B true

Local completeness requires us to apply eliminations to an arbitrary
proof of A ∧B true in such a way that we can reconstitute a proof of A ∧B
from the results.

D
A ∧B true =⇒E

D
A ∧B true

A true
∧EL

D
A ∧B true

B true
∧ER

A ∧B true
∧I
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As an example where local completeness might fail, consider the case
where we “forget” the right elimination rule for conjunction. The remain-
ing rule is still locally sound, but not locally complete because we cannot
extract a proof of B from the assumption A ∧ B. Now, for example, we
cannot prove (A ∧B)⊃(B ∧A) even though this should clearly be true.

Substitution Principle. We need the defining property for hypothetical
judgments before we can discuss implication. Intuitively, we can always
substitute a deduction of A true for any use of a hypothesis A true. In
order to avoid ambiguity, we make sure assumptions are labelled and we
substitute for all uses of an assumption with a given label. Note that we
can only substitute for assumptions that are not discharged in the subproof
we are considering. The substitution principle then reads as follows:

If

A true
u

E
B true

is a hypothetical proof of B true under the undischarged hy-
pothesis A true labelled u, and

D
A true

is a proof of A true then

D
A true

u

E
B true

is our notation for substituting D for all uses of the hypothesis
labelled u in E . This deduction, also sometime written as [D/u]E
no longer depends on u.

Implication. To witness local soundness, we reduce an implication intro-
duction followed by an elimination using the substitution operation.

A true
u

E
B true

A⊃B true
⊃Iu D

A true
B true

⊃E =⇒R

D
A true

u

E
B true
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The conditions on the substitution operation is satisfied, because u is intro-
duced at the ⊃Iu inference and therefore not discharged in E .

Local completeness is witnessed by the following expansion.

D
A⊃B true =⇒E

D
A⊃B true A true

u

B true
⊃E

A⊃B true
⊃Iu

Here u must be chosen fresh: it only labels the new hypothesis A true which
is used only once.

Disjunction. For disjunction we also employ the substitution principle
because the two cases we consider in the elimination rule introduce hy-
potheses. Also, in order to show local soundness we have two possibilities
for the introduction rule, in both situations followed by the only elimina-
tion rule.

D
A true

A ∨B true
∨IL

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w =⇒R

D
A true

u

E
C true

D
B true

A ∨B true
∨IR

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w =⇒R

D
B true

w

F
C true

An example of a rule that would not be locally sound is

A ∨B true
A true

∨EL?

and, indeed, we would not be able to reduce

B true
A ∨B true

∨IR

A true
∨EL?
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In fact we can now derive a contradiction from no assumption, which means
the whole system is incorrect.

> true
>I

⊥ ∨> true
∨IR

⊥ true
∨EL?

Local completeness of disjunction distinguishes cases on the known A∨
B true, using A ∨B true as the conclusion.

D
A ∨B true =⇒E

D
A ∨B true

A true
u

A ∨B true
∨IL

B true
w

A ∨B true
∨IR

A ∨B true
∨Eu,w

Visually, this looks somewhat different from the local expansions for con-
junction or implication. It looks like the elimination rule is applied last,
rather than first. Mostly, this is due to the notation of natural deduction:
the above represents the step from using the knowledge of A ∨ B true and
eliminating it to obtain the hypotheses A true and B true in the two cases.

Truth. The local constant > has only an introduction rule, but no elimi-
nation rule. Consequently, there are no cases to check for local soundness:
any introduction followed by any elimination can be reduced.

However, local completeness still yields a local expansion: Any proof
of > true can be trivially converted to one by >I .

D
> true =⇒E > true

>I

Falsehood. As for truth, there is no local reduction because local sound-
ness is trivially satisfied since we have no introduction rule.

Local completeness is slightly tricky. Literally, we have to show that
there is a way to apply an elimination rule to any proof of ⊥ true so that
we can reintroduce a proof of ⊥ true from the result. However, there will
be zero cases to consider, so we apply no introductions. Nevertheless, the
following is the right local expansion.

D
⊥ true =⇒E

D
⊥ true
⊥ true

⊥E
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Reasoning about situation when falsehood is true may seem vacuous, but
is common in practice because it corresponds to reaching a contradiction.
In intuitionistic reasoning, this occurs when we prove A⊃⊥which is often
abbreviated as ¬A. In classical reasoning it is even more frequent, due to
the rule of proof by contradiction.

2 Verifications

The verificationist point of view on the meaning of a proposition is that
it is determined by its verifications. Intuitively, a verification should be a
proof that only analyzes the constituents of a proposition. This restriction
of the space of all possible proofs is necessary so that the definition is well-
founded. For example, if in order to understand the meaning of A, we
would have to understand the meaning of B⊃A and B, the whole pro-
gram of understanding the meaning of the connectives by their proofs is
in jeopardy because B could be a proposition containing, say, A. But the
meaning of A would then in turn depend on the meaning of A, creating a
vicious cycle.

In this section we will make the structure of verifications more explicit.
We write A↑ for the judgment “A has a verification”. Naturally, this should
mean that A is true, and that the evidence for that has a special form. Even-
tually we will also establish the converse: if A is true than A has a verifica-
tion.

Conjunction is easy to understand. A verification of A ∧B should con-
sist of a verification of A and a verification of B.

A↑ B↑
A ∧B↑

∧I

We reuse here the names of the introduction rule, because this rule is strictly
analogous to the introduction rule for the truth of a conjunction.

Implication, however, introduces a new hypothesis which is not explic-
itly justified by an introduction rule but just a new label. For example, in
the proof

A ∧B true
u

A true
∧EL

(A ∧B)⊃A true
⊃Iu

the conjunction A ∧B is not justified by an introduction.
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The informal discussion of proof search strategies earlier, namely to use
introduction rules from the bottom up and elimination rules from the top
down contains the answer. We introduce a second judgment, A↓ which
means “A may be used”. A↓ should be the case when either A true is a
hypothesis, or A is deduced from a hypothesis via elimination rules. Our
local soundness arguments provide some evidence that we cannot deduce
anything incorrect in this manner.

We now go through the connectives in turn, defining verifications and
uses.

Conjunction. In summary of the discussion above, we obtain:

A↑ B↑
A ∧B↑

∧I
A ∧B↓

A↓
∧EL

A ∧B↓
B↓

∧ER

The left elimination rule can be read as: “If we can use A ∧ B we can use A”,
and similarly for the right elimination rule.

Implication. The introduction rule creates a new hypothesis, which we
may use in a proof. The assumption is therefore of the judgment A↓

A↓
u

...
B↑

A⊃B↑
⊃u

In order to use an implication A⊃B we require a verification of A. Just
requiring that A may be used would be too weak, as can be seen when
trying to prove ((A⊃A)⊃B)⊃B↑. It should also be clear from the fact
that we are not eliminating a connective from A.

A⊃B↓ A↑
B↓

⊃E

Disjunction. The verifications of a disjunction immediately follow from
their introduction rules.

A↑
A ∨B↑

∨IL

B↑
A ∨B↑

∨IR
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A disjunction is used in a proof by cases, called here ∨E. This intro-
duces two new hypotheses, and each of them may be used in the corre-
sponding subproof. Whenever we set up a hypothetical judgment we are
trying to find a verification of the conclusion, possibly with uses of hy-
potheses. So the conclusion of ∨E should be a verification.

A ∨B↓

A↓
u

...
C↑

B↓
w

...
C↑

C↑
∨Eu,w

Truth. The only verification of truth is the trival one.

>↑
>I

A hypothesis >↓ cannot be used because there is no elimination rule for >.

Falsehood. There is no verification of falsehood because we have no in-
troduction rule.

We can use falsehood, signifying a contradiction from our current hy-
potheses, to verify any conclusion. This is the zero-ary case of a disjunction.

⊥↓
C↑

⊥E

Atomic propositions. How do we construct a verification of an atomic
proposition P ? We cannot break down the structure of P because there is
none, so we can only proceed if we already know P is true. This can only
come from a hypothesis, so we have a rule that lets us use the knowledge
of an atomic proposition to construct a verification.

P↓
P↑

↓↑

This rule has a special status in that it represents a change in judgments
but is not tied to a particular local connective. We call this a judgmental rule
in order to distinguish it from the usual introduction and elimination rules
that characterize the connectives.
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Global soundness. Local soundness is an intrinsic property of each con-
nective, asserting that the elimination rules for it are not too strong given
the introduction rules. Global soundness is its counterpart for the whole
system of inference rules. It says that if an arbitrary proposition A has a
verification then we may use A without gaining any information. That is,
for arbitrary propositions A and C:

If A↑ and

A↓
...

C↑ then C↑.

We would want to prove this using a substitution principle, except that the
judgment A↑ and A↓ do not match. In the end, the arguments for local
soundness will help use carry out this proof later in this course.

Global completeness. Local completeness is also an intrinsic property of
each connective. It asserts that the elimination rules are not too weak, given
the introduction rule. Global completeness is its counterpart for the whole
system of inference rules. It says that if we may use A then we can construct
from this a verification of A. That is, for arbitrary propositions A:

A↓
...

A↑.

Global completeness follows from local completeness rather directly by in-
duction on the structure of A.

Global soundness and completeness are properties of whole deductive
systems. Their proof must be carried out in a mathematical metalanguage
which makes them a bit different than the formal proofs that we have done
so far within natural deduction. Of course, we would like them to be cor-
rect as well, which means they should follow the same principles of valid
inference that we have laid out so far.

There are two further properties we would like, relating truth, verifica-
tions, and uses. The first is that if A has a verification or A may be used,
then A is true. This is rather evident since we have just specialized the in-
troduction and elimination rules, except for the judgmental rule ↓↑. But
under the interpretation of verification and use as truth, this inference be-
comes redundant.

Significantly more difficult is the property that if A is true then A has
a verification. Since we justified the meaning of the connectives from their
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verifications, a failure of this property would be devastating to the verifi-
cationist program. Fortunately it holds and can be proved by exhibiting
a process of proof normalization that takes an arbitrary proof of A true and
constructs a verification of A.

All these properties in concert show that our rules are well constructed,
locally as well as globally. Experience with many other logical systems in-
dicates that this is not an isolated phenomenon: we can employ the verifi-
cationist point of view to give coherent sets of rules not just for constructive
logic, but for classical logic, temporal logic, spatial logic, modal logic, and
many other logics that are of interest in computer science. Taken together,
these constitute strong evidence that separating judgments from proposi-
tions and taking a verificationist point of view in the definition of the logical
connectives is indeed a proper and useful foundation for logic.

3 Derived Rules of Inference

One popular device for shortening derivations is to introduce derived rules
of inference. For example,

A⊃B true B⊃C true
A⊃C true

is a derived rule of inference. Its derivation is the following:

B⊃C true
A⊃B true A true

u

B true
⊃E

C true
⊃E

A⊃C true
⊃Iu

Note that this is simply a hypothetical deduction, using the premises of
the derived rule as assumptions. In other words, a derived rule of infer-
ence is nothing but an evident hypothetical judgment; its justification is a
hypothetical deduction.

We can freely use derived rules in proofs, since any occurrence of such
a rule can be expanded by replacing it with its justification.

4 Logical Equivalences

We now consider several classes of logical equivalences in order to develop
some intuitions regarding the truth of propositions. Each equivalence has
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the form A≡B, but we consider only the basic connectives and constants
(∧, ⊃, ∨, >, ⊥) in A and B. Later on we consider negation as a special case.
We use some standard conventions that allow us to omit some parentheses
while writing propositions. We use the following operator precedences

¬ > ∧ > ∨ > ⊃ > ≡

where ∧, ∨, and ⊃ are right associative. For example

¬A⊃A ∨ ¬¬A⊃⊥

stands for
(¬A)⊃((A ∨ (¬(¬A)))⊃⊥)

In ordinary mathematical usage, A≡B≡C stands for (A≡B)∧(B≡C); in
the formal language we do not allow iterated equivalences without explicit
parentheses in order to avoid confusion with propositions such as (A ≡
A) ≡ >.

Commutativity. Conjunction and disjunction are clearly commutative, while
implication is not.

(C1) A ∧B ≡ B ∧A true

(C2) A ∨B ≡ B ∨A true

(C3) A⊃B is not commutative

Idempotence. Conjunction and disjunction are idempotent, while self-
implication reduces to truth.

(I1) A ∧A ≡ A true

(I2) A ∨A ≡ A true

(I3) A⊃A ≡ > true

Interaction Laws. These involve two interacting connectives. In princi-
ple, there are left and right interaction laws, but because conjunction and
disjunction are commutative, some coincide and are not repeated here.

(L1) A ∧ (B ∧ C) ≡ (A ∧B) ∧ C true

(L2) A ∧ > ≡ A true
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(L3) A ∧ (B⊃C) do not interact

(L4) A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C) true

(L5) A ∧ ⊥ ≡ ⊥ true

(L6) A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) true

(L7) A ∨ > ≡ > true

(L8) A ∨ (B⊃C) do not interact

(L9) A ∨ (B ∨ C) ≡ (A ∨B) ∨ C true

(L10) A ∨ ⊥ ≡ A true

(L11) A⊃(B ∧ C) ≡ (A⊃B) ∧ (A⊃C) true

(L12) A⊃> ≡ > true

(L13) A⊃(B⊃C) ≡ (A ∧B)⊃C true

(L14) A⊃(B ∨ C) do not interact

(L15) A⊃⊥ do not interact

(L16) (A ∧B)⊃C ≡ A⊃(B⊃C) true

(L17) >⊃C ≡ C true

(L18) (A⊃B)⊃C do not interact

(L19) (A ∨B)⊃C ≡ (A⊃C) ∧ (B⊃C) true

(L20) ⊥⊃C ≡ > true
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