
A Simple Proof of Call-by-Value Standardization

Karl Crary

Carnegie Mellon University

Abstract

We give a simple proof of the Standardization Theorem for
call-by-value based on Takahashi’s method of parallel reduc-
tion. The proof is formalized in Twelf.

1 Introduction

Contextual equivalence, written M ∼= M ′, can be defined as
the statement for all contexts C, C[M ] halts if and only if
C[M ′] halts. Equivalently, we may define contextual equiva-
lence as the largest adequate congruence, where we say that
a relation R is adequate when M R M ′ implies that M
halts if and only if M ′ halts. Our purpose is to show that,
in the call-by-value lambda calculus, contextual equivalence
respects evaluation. Moreover, we wish to do so directly,
that is, without first proving that contextual equivalence
coincides with some other equivalence.

Let us write (small-step, call-by-value) evaluation as
M 7→ M ′, and define reduction (M −→ M ′) as the com-
patible closure of evaluation. We wish to show that reduc-
tion is adequate. It then follows that contextual equivalence
respects evaluation. Using the former definition, let C be ar-
bitrary and suppose M 7→ M ′. Then C[M ] −→ C[M ′], and
by adequacy of reduction, C[M ] halts iff C[M ′] halts. Using
the latter definition, it is easy to show that the reflexive,
transitive closure1 of reduction is an adequate congruence,
and is therefore contained in contextual equivalence.

The adequacy of reduction follows from the Standard-
ization Theorem [2, 1], which says that any multi-step re-
duction can be carried out by a sequence whose redices are
selected in a standard order. In a call-by-name setting,
standard order is simply left-to-right (in the fully paren-
thesized representation). Standard reductions always begin
with evaluation steps and continue with internal reductions,
so it follows that if M −→∗ λx.N , then there exists N ′ such
that M 7→∗ λx.N ′. From that, and confluence of reduction,
it is easy to show that reduction is adequate.

Plotkin [5] adapts the Standardization Theorem to the
call-by-value setting. In call-by-value, standard order is
more delicate to define, since function applications can be
contracted only after their arguments have been evaluated,
but the essence is the same: standard reduction begins with
evaluation steps, and then continues with internal reduc-
tions selected in standard order. As in call-by-name, it fol-
lows that if M −→∗ V for a value V , then there exists a
value V ′ such that M 7→∗ V ′, as desired.

Paolini and Ronchi Della Rocca [3] further generalize the
Standardization Theorem to their λV-calculus, which is pa-
rameterized over a set V of terms that may be taken as

1For any relation R, we write its reflexive, transitive closure as
R∗.

values

x value λx.M value MN nonvalue

evaluation

M 7→ N

MN 7→M ′N

M value N 7→ N ′

MN 7→MN ′

N value

(λx.M)N 7→ [N/x]M

parallel reduction

M =⇒M
M =⇒ N

λx.M =⇒ λx.N

M =⇒M ′ N =⇒ N ′

MN =⇒M ′N ′

N value M =⇒M ′ N =⇒ N ′

(λx.M)N =⇒ [N ′/x]M ′

internal parallel reduction

M
int

=⇒M

M =⇒ N

λx.M
int

=⇒ λx.N

M nonvalue M
int

=⇒M ′ N =⇒ N ′

MN
int

=⇒M ′N ′

M
int

=⇒M ′ N
int

=⇒ N ′

MN
int

=⇒M ′N ′

Figure 1: Definitions

inputs to functions. In the λV-calculus, call-by-value may
be obtained by choosing V to be the set of values, and call-
by-name by choosing V to be the set of all terms.

Takahashi [6] gives a particularly elegant proof of the
Standardization Theorem for call-by-name using parallel re-
duction. In this paper, we adapt Takahashi’s method to
call-by-value. All the proofs are formalized in Twelf [4]; the
code is available on-line at:

www.cs.cmu.edu/~crary/papers/2009/standard.elf

2 Bifurcation

Several definitions are given in Figure 1. Values, evaluation
(M 7→ N), and parallel reduction (M =⇒ N) are standard.



We have no use for ordinary reduction apart from its reflex-
ive, transitive closure, which coincides with the reflexive,
transitive closure of parallel reduction. Therefore we omit
the definition of ordinary reduction.

Internal parallel reduction (M
int

=⇒ N) is parallel reduc-
tion that does not contract the active redex. Thus, internal
parallel reduction omits the beta rule. Also, since this is a
call-by-value setting, an internal parallel reduction of MN
cannot contract the active redex in N unless M is a nonva-
lue.

The key technical definition is strong parallel reduction
(M V N). We say that M strongly reduces to N if M =⇒
N and also M 7→∗ P int

=⇒ N , for some P . Note that strong
parallel reduction is reflexive.

We require two well-known properties of parallel reduc-
tion:

Lemma 1 (Parallel Reduction)

1. If M =⇒ M ′ and N =⇒ N ′ then [N/x]M =⇒
[N ′/x]M ′.

2. If M =⇒∗ P and M =⇒∗ Q then there exists N such
that P =⇒∗ N and Q =⇒∗ N .

Our main lemma shows that parallel reduction coincides
with strong parallel reduction. By definition, strong par-
allel reduction implies parallel reduction, so we need only
to show the other direction. First we establish four lemmas
governing strong parallel reduction:

Lemma 2 If M VM ′ and N =⇒ N ′ and M ′ is a nonvalue
then MN VM ′N ′.

Proof

Certainly MN =⇒ M ′N ′. Suppose M = M0 7→ · · · 7→
Mm

int
=⇒ M ′. Then MN = M0N 7→ · · · 7→ MmN . Since

Mm =⇒ M ′, Mm is a nonvalue. Therefore, MmN
int

=⇒
M ′N ′. �

Lemma 3 If M VM ′ and N V N ′ then MN VM ′N ′.

Proof

Certainly MN =⇒ M ′N ′. If M ′ is a nonvalue then the
result follows from Lemma 2. Therefore assume M ′ is
a value. Suppose M = M0 7→ · · · 7→ Mm

int
=⇒ M ′ and

suppose N = N0 7→ · · · 7→ Nn
int

=⇒ N ′. Observe that
Mm is a value. Then MN = M0N0 7→ · · · 7→ MmN0 7→
· · · 7→MmNn

int
=⇒M ′N ′. �

Lemma 4 If M
int

=⇒ M ′ and N V N ′ and N is a value
then [N/x]M V [N ′/x]M ′.

Proof

By Lemma 1, [N/x]M =⇒ [N ′/x]M ′. We proceed by
induction on M .

Case 1: SupposeM = x. ThenM ′ = x. So [N/x]M =
N V N ′ = [N ′/x]M ′.

Case 2: Suppose M = y where x 6= y. Then M ′ = y.
So [N/x]M = y = [N ′/x]M ′.

Case 3: Suppose M = λy.P . Then M ′ = λy.P ′

with P =⇒ P ′. By Lemma 1, [N/x]P =⇒ [N ′/x]P ′.

Therefore λy.[N/x]P
int

=⇒ λy.[N ′/x]P ′, so λy.[N/x]P V
λy.[N ′/x]P ′.

Case 4: Suppose M = PQ where P is a value. Then

M ′ = P ′Q′ with P
int

=⇒ P ′ and Q
int

=⇒ Q′. By induc-
tion, [N/x]P V [N ′/x]P ′ and [N/x]Q V [N ′/x]Q′. By
Lemma 3, [N/x]M V [N ′/x]M ′.

Case 5: Suppose M = PQ where P is a nonvalue.

Then M ′ = P ′Q′ with P
int

=⇒ P ′ and Q =⇒ Q′. By
induction, [N/x]P V [N ′/x]P ′. Also, by Lemma 1,
[N/x]Q =⇒ [N ′/x]Q′. Finally, P ′ is a nonvalue and
so [N ′/x]P ′ is a nonvalue. By Lemma 2, [N/x]M V
[N ′/x]M ′. �

Lemma 5 If M VM ′ and N V N ′ and N is a value then
[N/x]M V [N ′/x]M ′.

Proof

By Lemma 1, [N/x]M =⇒ [N ′/x]M ′. Suppose M =

M0 7→ · · · 7→ Mm
int

=⇒ M ′. Then [N/x]M = [N/x]M0 7→
· · · 7→ [N/x]Mm. By Lemma 4, [N/x]Mm V [N ′/x]M ′.
Therefore [N/x]M V [N ′/x]M ′. �

Now we are ready to prove the main lemma.

Lemma 6 (Main Lemma) If M =⇒ M ′ then M 7→∗ N
and N

int
=⇒M ′.

Proof

We prove that M =⇒M ′ implies M VM ′, by induction
on the derivation of M =⇒ M ′. The result follows im-
mediately by the definition of strong parallel reduction.

Case 1: Suppose M = M ′. Then M VM ′.

Case 2: Suppose M = λx.N and M ′ = λx.N ′ and

N =⇒ N ′. Then M
int

=⇒M ′, so M VM ′.

Case 3: SupposeM = NP andM ′ = N ′P ′ andN =⇒
N ′ and P =⇒ P ′. By induction, N V N ′ and P V P ′.
By Lemma 3, M VM ′.

Case 4: Suppose M = (λx.N)P and M ′ = [P ′/x]N ′

and N =⇒ N ′ and P =⇒ P ′ and P is a value. By
induction, N V N ′ and P V P ′. By Lemma 5,
[P/x]N V [P ′/x]N ′. Since M 7→ P [N/x] V M ′,
M VM ′. �

Next we show that internal parallel reduction can be shifted
after evaluation:

Lemma 7 (Postponement) If M
int

=⇒ N and N 7→ P
then M 7→ N ′ and N ′ =⇒ P .

Proof

By induction on M .

Case 1: Suppose M = x. Then N = x which contra-
dicts N 7→ P .

Case 2: Suppose M = λx.M ′. Then N = λx.N ′

which contradicts N 7→ P .

Case 3: Suppose M = M1M2 and M1 is a nonvalue.

Then N = N1N2 and M1
int

=⇒ N1 and M2 =⇒ N2. Also,
since N1 is a nonvalue and N1N2 7→ P , P = P1N2 where
N1 7→ P1. By induction, M1 7→ N ′1 =⇒ P1. Then M 7→
N ′1M2 =⇒ P .

2



Case 4: Suppose M = M1M2 and M1 is a value and

M2 is a nonvalue. Then N = N1N2 and M1
int

=⇒ N1

and M2
int

=⇒ N2. Also, since N1 is a value and N2 is a
nonvalue and N1N2 7→ P , P = N1P2 where N2 7→ P2.
By induction, M2 7→ N ′2 =⇒ P2. Then M 7→ M1N

′
2 =⇒

P .

Case 5: Suppose M = M1M2 and M1 and M2 are

values. Then N = N1N2 and M1
int

=⇒ N1 and M2
int

=⇒
N2. Since N1, and N2 are values and N1N2 7→ P , N1 has
the form λx.N ′ and P = [N2/x]N ′. Then M1 = λx.M ′

and M ′ =⇒ N ′. By Lemma 1, [M2/x]M ′ =⇒ [N2/x]N ′.
Then M 7→ [M2/x]M ′ =⇒ P . �

Corollary 8 If M
int

=⇒ N and N 7→ P then M 7→∗ N ′ and

N ′
int

=⇒ P .

Proof

Immediate by Lemmas 7 and 6. �

Now we obtain our first main result: any parallel reduc-
tion sequence can be bifurcated into an evaluation sequence
followed by an internal parallel reduction sequence.

Lemma 9 (Bifurcation) If M =⇒∗ N then M 7→∗ P and

P
int

=⇒∗ N .

Proof

By induction on the length of M =⇒∗ N . When M = N
the result is trivial. Therefore, suppose M =⇒ Q =⇒∗

N . By induction, Q 7→∗ R and R
int

=⇒∗ N . By Lemma 6,

M 7→∗ S int
=⇒ Q. By Corollary 8 and induction on the

length of Q 7→∗ R, we have S 7→∗ Q′ int
=⇒ R. Therefore

M 7→∗ S 7→∗ Q′ int
=⇒ R

int
=⇒∗ N , so let P = Q′. �

3 Adequacy and Standardization

We can use bifurcation to prove our results of interest. First
is the result that motivated this work, the adequacy of re-
duction:

Theorem 10 (Adequacy of Reduction) If M =⇒∗ N
then M halts if and only if N halts.

Proof

Suppose N 7→∗ P for some value P . Then M =⇒∗ P .

By Lemma 9, M 7→∗ P ′ int
=⇒∗ P . Since P is a value, so

is P ′. Thus M halts.

Conversely, suppose M 7→∗ P for some value P . Then
M =⇒∗ P . By Lemma 1, there exists Q such that

N =⇒∗ Q and P =⇒∗ Q. By Lemma 9, N 7→∗ Q′ int
=⇒∗

Q. Since P is a value, so is Q, and then so is Q′. Thus
N halts. �

Note that the bifurcation lemma was sufficient to prove ad-
equacy of reduction. We did not require the full Standard-
ization Theorem.

However, the bifurcation lemma does suffice to prove the
Standardization Theorem without much additional work, so
we will complete it. First we define standard reduction, bor-
rowing from Plotkin [5]. A standard reduction begins with
zero or more evaluation steps, then continues with internal
reductions that are selected in standard order.

Definition 11 A standard reduction is a sequence of terms
defined as follows:

1. M is a standard reduction.

2. If M0 7→M1 and M1, . . . ,Mm is a standard reduction,
then M0,M1, . . . ,Mm is a standard reduction.

3. If M1, . . . ,Mm is a standard reduction, then
λx.M1, . . . , λx.Mm is a standard reduction.

4. If M1, . . .Mm and N1, . . . , Nn are standard reductions,
then M1N1, . . . ,MmN1, . . .Mm, Nn is a standard re-
duction.

We can now prove the theorem by a simple induction.

Theorem 12 (Standardization) If M =⇒∗ N then there
exists a standard reduction from M to N .

Proof

By induction on N . By Lemma 9, M = M0 7→ · · · 7→
Mm

int
=⇒∗ N . We proceed by cases on N .

Case 1: Suppose N = x. Then Mm = x. So M =
M0, . . . ,Mm = N is a standard reduction.

Case 2: Suppose N = λx.Q. Then Mm =
λx.P and P =⇒∗ Q. By induction, there ex-
ists a standard reduction P=P0, . . . , Pp=Q. So
M=M0, . . . ,Mm=λx.P0, . . . , λx.Pp=N is a standard re-
duction.

Case 3: Suppose N = RS. Then Mm = PQ
and P =⇒∗ R and Q =⇒∗ S. By in-
duction, there exist standard reductions
P=P0, . . . , Pp=R and Q=Q0, . . . , Qq=S. So
M=M0, . . . ,Mm=P0Q0, . . . , PpQ0, . . . PpQq=N is a
standard reduction. �

References

[1] H. P. Barendregt. The Lambda Calculus: Its Syntax and
Semantics. Elsevier, 1984.

[2] H. B. Curry and R. Feys. Combinatory Logic, Vol. I.
North-Holland, 1958.

[3] Luca Paolini and Simona Ronchi Della Rocca. Paramet-
ric parameter passing lambda-calculus. Information and
Computation, 189(1):87–106, 2004.

[4] Frank Pfenning and Carsten Schürmann. Twelf User’s
Guide, Version 1.4, 2002. Available electronically at
http://www.cs.cmu.edu/~twelf.

[5] Gordon D. Plotkin. Call-by-name, call-by-value, and the
lambda calculus. Theoretical Computer Science, 1:125–
159, 1975.

[6] Masako Takahashi. Parallel reductions in lambda-
calculus. Information and Computation, 118:120–127,
1995.

A Simple Proof of Call-by-Value Standardization, version 1,
February 2010.

3


