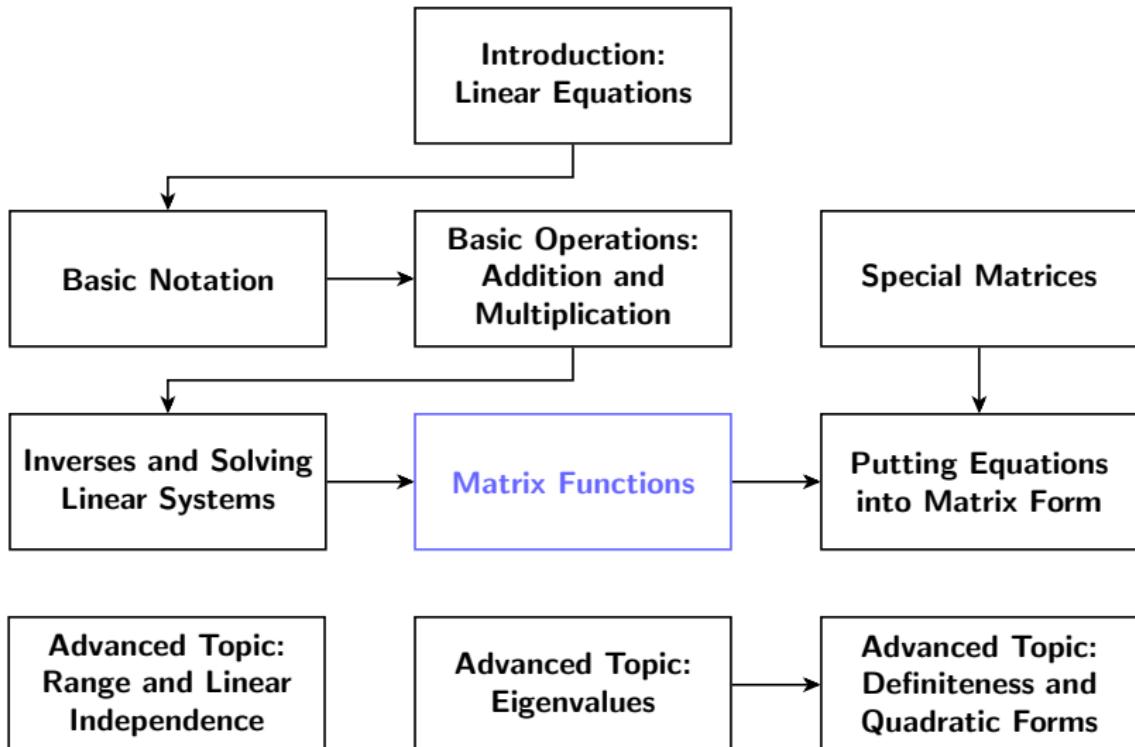


Linear Algebra Review



Notation for Functions

- $f(x) = x^2, f : \mathbb{R} \rightarrow \mathbb{R}$
- Function with matrix inputs/outputs

$$f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p \times q}$$

Some Examples

- Transpose: $f(A) = A^T$

$$f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{n \times m}$$

- Inverse: $f(A) = A^{-1}$

$$f : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$$

- Multiplication: $f(x) = Ax$ for $A \in \mathbb{R}^{m \times n}$

$$f : \mathbb{R}^n \rightarrow \mathbb{R}^m$$

The Trace

- $\text{tr} : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$

$$\text{tr } A = \sum_{i=1}^n A_{ii}$$

- Some properties

- $\text{tr } A = \text{tr } A^T, A \in \mathbb{R}^{n \times n}$
 - $\text{tr}(A + B) = \text{tr } A + \text{tr } B, A, B \in \mathbb{R}^{n \times n}$
 - $\text{tr } AB = \text{tr } BA, A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times m}$

Norms

- A vector norm is any function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with
 1. $f(x) \geq 0$ and $f(x) = 0 \Leftrightarrow x = 0$
 2. $f(ax) = |a|f(x)$ for $a \in \mathbb{R}$
 3. $f(x + y) \leq f(x) + f(y)$

- ℓ_2 norm

$$\|x\|_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$$

- ℓ_1 norm

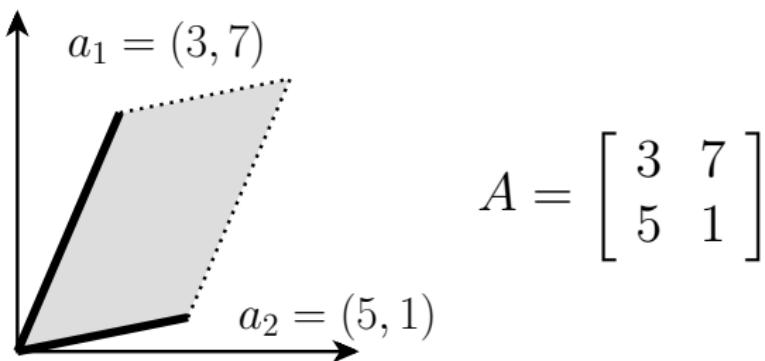
$$\|x\|_1 = \sum_{i=1}^n |x_i|$$

- ℓ_∞ norm

$$\|x\|_\infty = \max_{i=1, \dots, n} |x_i|$$

Determinant

- $\det : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ (sometimes denoted $|\cdot|$)



- $|\det A|$ is the area of the parallelogram

- Can be formally defined by three properties
 1. Determinant of identity is one: $\det I = 1$
 2. Multiplying a row by scalar $t \in \mathbb{R}$ scales determinant:

$$\det \begin{bmatrix} \text{---} & ta_1^T & \text{---} \\ \text{---} & a_2^T & \text{---} \\ \vdots & & \\ \text{---} & a_n^T & \text{---} \end{bmatrix} = t \det A$$

3. Swapping rows negates determinant:

$$\det \begin{bmatrix} \text{---} & a_2^T & \text{---} \\ \text{---} & a_1^T & \text{---} \\ \vdots & & \\ \text{---} & a_n^T & \text{---} \end{bmatrix} = - \det A$$

- Important properties

- $\det A = \det A^T$
- $\det AB = \det A \det B$
- $\det A = 0 \Leftrightarrow A$ singular (non-invertible)
- $\det A^{-1} = 1/\det A$