Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

January 20, 2011

Today:

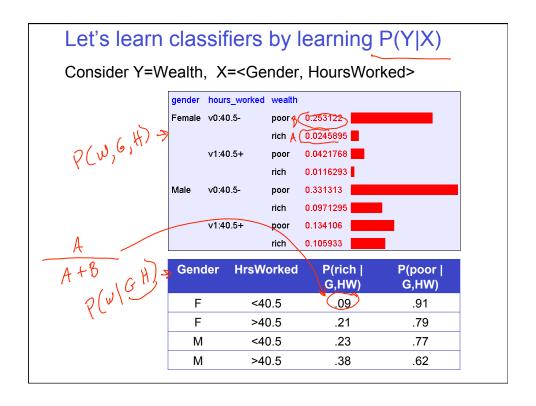
- Bayes Classifiers
- Naïve Bayes
- Gaussian Naïve Bayes

Readings:

Mitchell:

"Naïve Bayes and Logistic Regression"

(available on class website)



Suppose $X = \langle X_1, ... X_n \rangle$ Where X_i and Y are boolean RV's

Gender

F

M

M

To estimate $P(Y|X_1, X_2, ... X_n)$

If we have $30 \, X_i$'s instead of 2? $2 \, \sim \, |\beta_i|_{ion}$

Bayes Rule

$$P(Y|X) = P(X|Y)P(Y)$$

$$P(X|X) = P(X|Y)P(Y)$$

Which is shorthand for:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}$$

Equivalently:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{\sum_k P(X = x_j | Y = y_k) P(Y = y_k)}$$

Can we reduce params using Bayes Rule?

Suppose X =1,... X_n> where X_i and Y are boolean RV's
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Naïve Bayes

Naïve Bayes assumes

$$P(X_1 ... X_n | Y) = \prod_i P(X_i | Y)$$

i.e., that X_i and X_j are conditionally independent given Y, for all i≠j

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write

$$P(X|Y,Z) = P(X|Z)$$

E.g.,

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

$$= P(X_1|Y)P(X_2|Y)$$
Chain We P(X_1|Y)P(X_2|Y) Cond. Indep.

in general:
$$P(X_1|Y) = \prod_i P(X_i|Y)$$

How many parameters to describe $P(X_i|Y)$

How many parameters to describe $P(X_1...X_n|Y)$? P(Y)?

- Without conditional indep assumption? 2(2¹-1)+1
- With conditional indep assumption?

Naïve Bayes in a Nutshell

Bayes rule:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) P(X_1 ... X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 ... X_n | Y = y_j)}.$$

Assuming conditional independence among
$$X_i$$
's:
$$P(Y = y_k | X_1 ... X_n) = P(Y = y_k) \prod_i P(X_i | Y = y_k) \prod_i P(X_i | Y = y_j) \prod_i P(X_i | Y = y_j)$$

So, classification rule for $X^{new} = \langle X_1, ..., X_n \rangle$ is:

$$Y^{new} \leftarrow \arg\max_{y_k} \underbrace{P(Y=y_k) \prod_i P(X_i^{new}|Y=y_k)}_{\text{ }}$$

Naïve Bayes Algorithm – discrete X_i

Train Naïve Bayes (examples)

for each* value
$$y_k$$
 estimate $\pi_k = P(Y = y_k)$ for each* value x_{ij} of each attribute X_i

estimate
$$\theta_{ijk} = P(X_i = x_{ij}|Y = y_k)$$

• Classify
$$(X^{new})$$

$$Y^{new} \leftarrow \arg\max_{y_k} P(Y = y_k) \prod_{i} P(X^{new}_i | Y = y_k)$$

$$Y^{new} \leftarrow \arg\max_{y_k} \pi_k \prod_{i} \theta_{ijk}$$

probabilities must sum to 1, so need estimate only n-1 of these...

Estimating Parameters: Y, X_i discrete-valued

Maximum likelihood estimates (MLE's):

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$

Number of items in dataset D for which $Y=y_k$

Example: Live in Sq Hill? P(S|G,D,M)

80, 8

- S=1 iff live in Squirrel Hill
- D=1 iff Drive to CMU
- G=1 iff shop at SH Giant Eagle
- M=1 iff Rachel Maddow fan

What probability parameters must we estimate?

Example: Live in Sq Hill? P(S|G,D,M)• S=1 iff live in Squirrel Hill • G=1 iff shop at SH Giant Eagle • M=1 iff Rachel Maddow fan • M=1 iff Rachel Maddow fan

Naïve Bayes: Subtlety #1

If unlucky, our MLE estimate for $P(X_i | Y)$ might be zero. (e.g., X_i = Birthday_Is_January_30_1990)

Why worry about just one parameter out of many?

What can be done to avoid this?

Estimating Parameters

• Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data $\mathcal D$

$$\hat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

 Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg \max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Estimating Parameters: Y, X_i discrete-valued

Maximum likelihood estimates:

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D(Y = y_{k})}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_{i} = x_{ij}|Y = y_{k}) = \frac{\#D\{X_{i} = x_{ij} \land Y = y_{k}\}}{\#D\{Y = y_{k}\}}$$

MAP estimates (Beta, Dirichlet priors):

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\} + \alpha_k}{|D| + \sum_m \alpha_m}$$
 Only difference: "imaginary" examples
$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\} + \alpha_k'}{\#D\{Y = y_k\} + \sum_m \alpha_m'}$$

Estimating Parameters

 Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data \mathcal{D}

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

 Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg \max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Conjugate priors

• $P(\theta)$ and $P(\theta \mid D)$ have the same form

Eg. 1 Coin flip problem

Likelihood is ~ Binomial

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

If prior is Beta distribution,
$$P(\theta) = \underbrace{\frac{\theta^{\beta_H - 1}(1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)}}_{\text{Beta}(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

For Binomial, conjugate prior is Beta distribution.

[A. Singh]

Conjugate priors

- $P(\theta)$ and $P(\theta \mid D)$ have the same form
- Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is ~ Multinomial($\theta = \{\theta_1, \theta_2, ..., \theta_k\}$)

$$P(\mathcal{D} \mid \theta) = \theta_{1}^{\alpha_{1}} \theta_{2}^{\alpha_{2}} \dots \theta_{k}^{\alpha_{k}}$$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\prod_{i=1}^{k} \theta_i^{\beta_i - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \text{Dirichlet}(\beta_1 + \alpha_1, \dots, \beta_k + \alpha_k)$$

For Multinomial, conjugate prior is Dirichlet distribution.

[A. Singh]

Naïve Bayes: Subtlety #2

Often the X_i are not really conditionally independent

- We use Naïve Bayes in many cases anyway, and it often works pretty well
 - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated P(Y|X)?
 - Special case: what if we add two copies: $X_i = X_k$

Special case: what if we add two copies: $X_i = X_k$

Learning to classify text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?
- Classify which web pages are student home pages?

How shall we represent text documents for Naïve Bayes?

Baseline: Bag of Words Approach

Learning to classify document: P(Y|X) the "Bag of Words" model

- · Y discrete valued. e.g., Spam or not
- $X = \langle X_1, X_2, ... X_n \rangle = document$
- X_i is a random variable describing the word at position i in the document
- possible values for X_i: any word w_k in English
- Document = bag of words: the vector of counts for all w_k's
- This vector of counts follows a ?? distribution

Naïve Bayes Algorithm – discrete X_i

· Train Naïve Bayes (examples)

for each value
$$y_k$$
 estimate $\pi_k \equiv P(Y=y_k)$ for each value x_{ij} of each attribute X_i estimate $\theta_{ijk} \equiv P(X_i=x_{ij}|Y=y_k)$

prob that word x_{ij} appears in position i, given $Y=y_k$

• Classify (Xnew)

$$\begin{split} Y^{new} \leftarrow \arg\max_{y_k} & P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k) \\ Y^{new} \leftarrow \arg\max_{y_k} & \pi_k \prod_i \theta_{ijk} \end{split}$$

* Additional assumption: word probabilities are position independent

$$\theta_{ijk} = \theta_{mjk}$$
 for $i \neq m$

MAP estimates for bag of words

Map estimate for multinomial

$$\theta_{i} = \frac{\alpha_{i} + \beta_{i} - 1}{\sum_{m=1}^{k} \alpha_{m} + \sum_{m=1}^{k} (\beta_{m} - 1)}$$

 $\theta_{aardvark} = P(X_i = \text{aardvark}) = \frac{\text{\# observed 'aardvark'} + \text{\# hallucinated 'aardvark'} - 1}{\text{\# observed words } + \text{\# hallucinated words} - k}$

What β 's should we choose?

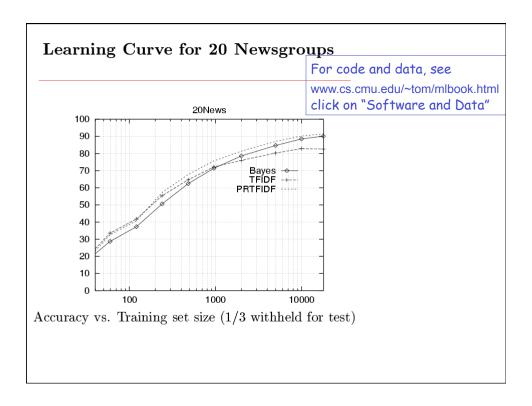
Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball
comp.windows.x rec.sport.hockey

alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast
talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classification accuracy

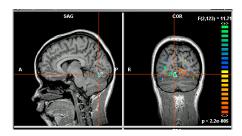


What if we have continuous X_i ?

Eg., image classification: X_i is ith pixel

What if we have continuous X_i ?

image classification: X_i is ith pixel, Y = mental state



Still have:

Still nave:
$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

Just need to decide how to represent $P(X_i | Y)$

What if we have continuous X_i ?

Eg., image classification: X_i is ith pixel

Gaussian Naïve Bayes (GNB): assume

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$$

Sometimes assume σ_{ik}

- is independent of Y (i.e., σ_i),
- or independent of X_i (i.e., σ_k)
- or both (i.e., σ)

Gaussian Naïve Bayes Algorithm – continuous X_i (but still discrete Y)

- Train Naïve Bayes (examples) for each value y_k estimate* $\pi_k \equiv P(Y=y_k)$ for each attribute X_i estimate class conditional mean μ_{ik} , variance σ_{ik}
- Classify (X^{new}) $Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$ $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i Normal(X_i^{new}, \mu_{ik}, \sigma_{ik})$

^{*} probabilities must sum to 1, so need estimate only n-1 parameters...

Estimating Parameters: Y discrete, X_i continuous

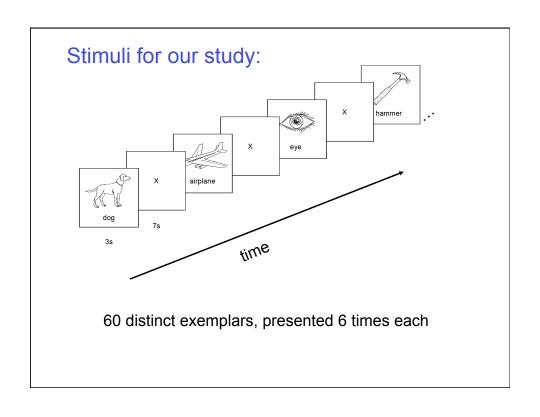
jth training example

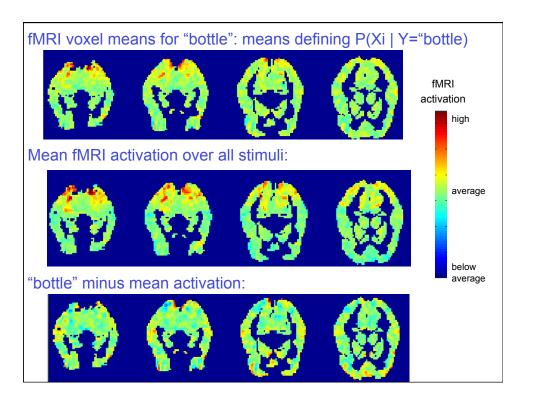
$$\widehat{\mu}_{ik} = \frac{1}{\sum_{j} \delta(Y^j = y_k)} \sum_{j} X_i^j \delta(Y^j = y_k)$$
 ith feature kth class
$$\delta(\mathbf{z}) = 1 \text{ if } \mathbf{z} \text{ true,}$$
 else 0

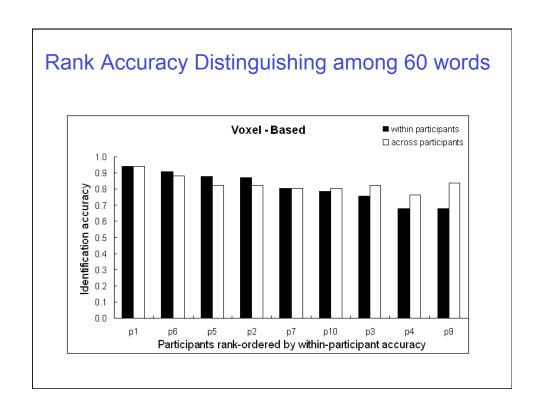
$$\hat{\sigma}_{ik}^2 = \frac{1}{\sum_j \delta(Y^j = y_k)} \sum_j (X_i^j - \hat{\mu}_{ik})^2 \delta(Y^j = y_k)$$

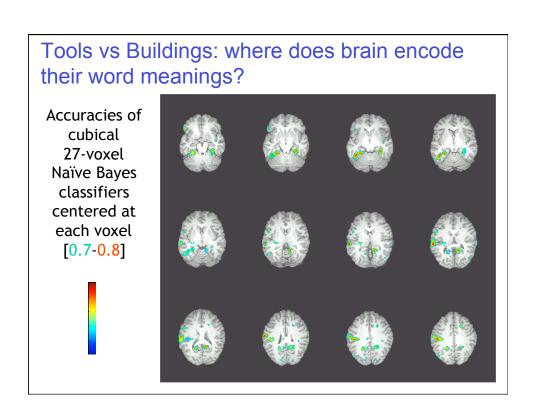
GNB Example: Classify a person's cognitive activity, based on brain image

- are they reading a sentence or viewing a picture?
- reading the word "Hammer" or "Apartment"
- viewing a vertical or horizontal line?
- answering the question, or getting confused?









What you should know:

- · Training and using classifiers based on Bayes rule
- Conditional independence
 - What it is
 - Why it's important
- Naïve Bayes
 - What it is
 - Why we use it so much
 - Training using MLE, MAP estimates
 - Discrete variables and continuous (Gaussian)

Questions:

- What error will the classifier achieve if Naïve Bayes assumption is satisfied and we have infinite training data?
- Can you use Naïve Bayes for a combination of discrete and real-valued X_i?
- How can we extend Naïve Bayes if just 2 of the n X_i are dependent?
- What does the decision surface of a Naïve Bayes classifier look like?

