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Today: Readings:

+ Bayes Rule

+ Estimating parameters Probability review
* maximum likelihood » Bishop Ch. 1 thru 1.2.3
* max a posteriori » Bishop, Ch. 2 thru 2.2

* Andrew Moore’s online

many of these slides are derived i
from William Cohen, Andrew tutorial
Moore, Aarti Singh, Eric Xing,

Carlos Guestrin. - Thanks!
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Definition of Conditional Probability

Definition of Conditional Probability

M«p}'cs

Corollary: The Chain Rulel 5
P(A"B P(AIB) P(B)Y V(W

L:C AANB) = P(CIAA B)@(Aua) P(B)
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Independent Events {19 %

» Definition: two events A and B are
independent if | P(A * B)=P(A)*P(B

* Intuition: knowing A tells us nothing
about the value of B (and vice versa)

Bayes Rule

* let’s write 2 expressions forf P(A * B)

ANB

KB = RGN PCA)

P(»)
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N
7 P(BIA)* P(A) ,
P(A|B) =———— Bayes'rule
i P(B)

we call P(A) the “prior” TR
- Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine

and P(AlB) the “pOSterior” of chances. Philosophical Transactions of
-_— the Royal Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances,
but necessary to be solved in order to a sure foundation for all our
reasonings concerning past facts, and what is likely to be hereafter.. .
necessary to be consi by any th Id give a clear accoun h
strength of analogical or inductive reasoning...

Other Forms of Bayes Rule

PAB) - P(B| A)P(A)
P(B]A)P(A)+ P(B|~ A)P(~ 4) )=T(5)

P(B|ANX)P(AAX)
P(BAX)

/ P(AIB A X) =




Applying Bayes Rule

/
PAB) P(B1A)P(A)

N y: P(BIA)P(A)+ P(Bl~ A)P(~ A)

Ol covshe _
A =you have the flu, B = you1/ust coughed
— B

’}/
Assume: - P S 05 o
P=00s " T
P(B|A) = 0.80 % .06 To,2 95 .ot F7
PEI~A)=02 04 2

o ———
what is P(flu | cough) = P(A|B)? 25

what does all this have to do with
function approximation?
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The Joint Distribution

Example: Boolean
variables A, B, C

. . .. A B C Prob

Recipe for making a joint . 5 5 030
distribution of M variables: 0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

[A. Moore]

The Joint Distribution

Example: Boolean
variables A, B, C

Recipe for making a joint s\ ? :: :;’b
distribution of M variables: 0 0 1 0.05
0 1 0 0.10
1. Make a truth table listing all 0 ! ! 0.05
combinations of values of 1 - - -
your variables (if there are : : 5 o
M Boolean variables then 1 1 1 0.10

the table will have 2M rows).

[A. Moore]




The Joint Distribution

Example: Boolean
variables A, B, C

o
(@]

Prob

Recipe for making a joint

0.30

distribution of M variables:

0.05

0.10

1. Make a truth table listing all

0.05

0.05

combinations of values of

0.10

your variables (if there are

0.25

M Boolean variables then

HH»—‘HOOOO>

=|l=lO|lO|l=|~=|O| O
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0.10

the table will have 2Mrows).

2. For each combination of
values, say how probable it
is.

[A. Moore]

The Joint Distribution

Example: Boolean
variables A, B, C
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Prob

Recipe for making a joint

0.30

distribution of M variables:

0.05

0.10

0.05

1. Make a truth table listing all

0.05

combinations of values of

0.10

your variables (if there are

HHHHOOOO>

0.25

=|l=lOoO|lO|l~|~|lO|O
=lOoO|lRm|lO|lR|O|~=|O

M Boolean variables then

0.10

the table will have 2V rows).
2. For each combination of
values, say how probable it
is.
3. If you subscribe to the
axioms of probability, those
numbers must sum to 1.

[A. Moore]




gender hours_worked wealth

. [Female v0:40.5- poor  0.253122 |
USlng the rich  0.0245895 i

H v1:40.5+ poor 0.0421768 [l
Joint

rich  0.0116293 ||

Flale  v0:40.5- poor 0331313 |
rich  0.0971295 I

v1:40.5+ poor 0.13410¢6 [

| rich  0.105933 [
One you have the JD = 2 P(row)
you can ask for the ' rows matching £

probability of any logical
expression involving
your attribute

[A. Moore]

gender hours_worked wealth

. Female v0:40.5- poor 0253122 [N
USlng the rich  0.0245895 [}

J OI nt v1:40.5+ poor 0.0421768 [l
rich  0.0116293 ||
~frale  v0:40.5- oor_(0.331313

rich  0.0971295 |

e v1:40.5+ poor_( 0.134106 JNN
tich  0.105933 [N

P(Poor Male) = 0.4654 P(E)= ) P(row)

rows matching £

[A. Moore]




gender hours_worked wealth

A UFemale v0:40.5- < 0.253122

U Sl n g th e rich  0.0245895 i

J O| nt i v1:40.5+ poor ~0.0421768 Il
rich  0.0116293 ||

v frale  v0:40.5- 7 0.331313
rich  0.0971295 I

v v1:40.5+ oor”_0.134106_JNNNEN
rich  0.105933 [

P(Poor) = 0.7604 P(E)= Y P(tow)

rows matching £

[A. Moore]

gender hours_worked wealth

Inference o

rich  0.0245895 i

With the [ v1:40.5+ poor_: 0.0421768-

rich  0.0116293 ||

J0|nt /fae  voa0s- [ 0331313
rich  0.0971295

v1:40.5+ poor . 0.134106 _

rich  0.105933 |

P(row)

rows matching £, and £,

P(E NE,)
PEY

P(El |E2)=

="\

| P(Male | Poor) & 0.4654 / 0.7604 = 0,612
— =

[A. Moore]




Learning and
the Joint
Distribution

<
&

gender hours_worked wealth

Female v0:40.5-

Male

v1:40.5+

v0:40.5-

v1:40.5+

poor  0.253122) [

rich  0.0245895
poor 0.0421768 [l

rich  0.0116293 ||

poor 0331313 [N
rich  0.0971295 [

poor I

rich m@ I

Suppose we want to learn the function f: <G, H> > W

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

. 03y

e.g., P(W=rich | G = female, H = 40.5- ) = W<‘\

[A. Moore]

sounds like the solution to
learning F: X =2,

or P(Y | X).

Are we done?

Jo.
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Your first consulting job
" JEE
m A billionaire from the suburbs of Seattle asks
you a question:

He says: | have thumbtack, if | flip it, what's the
probability it will fall with the nail up?

You say: Please flip it a few times:

~ L L b

You say: The probability is: 7
He says: Why???
You say: Because...
[C. Guestrin]

Thumbtack — Binomial Distribution

"
m P(Heads) =0, P(Tails) = 1:9 D<T tai s ouTzevs

D: \'\/ Y (g d‘/ /> L heals okcon
TR, Ka Ky Xy Ay -
Wle)=6 - & (-6 () = [ (I-6)
Flips produce data set D with ay heads and aq tails
e Flips are independent, identically distributed 1’s and 0s (Bernoulli)

e ay and ag are counts that sum these outcomes (Binomial)

—_—

= P(aH; aTle) = GO‘H(]_ . O)QT

MLE = o vCD(9)

[C. Guestrin]
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Maximum Likelihood Estimation
" JEE

m Data: Observed set D of ay Heads and a5 Tails

m Hypothesis: Binomial distribution

m Learning 0 is an optimization problem
What's the objective function?

m MLE: Choose 6 that maximizes the ﬁ)robablllty of
observed data: dafn Lk

{ 00

A~

0 = arg meax

= arg méax

[C. Guestrin]

Maximum Likelihood Estimate for O
" B
6 = arg moax In P(D | 0)

= argmax [n@*H(1 — 9)T
g ms -0

m Set derivative to zero: |4 InP(D|0) =0

(6)

{

/\

_— O—

[C. Guestrin]
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" = Set derivative to zero:
0 = arg max In P(D | 0) do

P9 =0

/B_/_ = argmax N6 (1 —6)*" = D(ﬁng d O(T )H[FﬁB
d T
Ly gé)mQ + ol Dﬁ WW\
s ol 200N S
%&’j@“ + L) ——

oLy T
[C. Guestrin]
How many flips do | need?
" JEE
[ | é B ag
MLE — ag + ar
- 20C -, é = MLE
306 + 200
[C. Guestrin]
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Bayesian Learning
" JE

i
m Use Bayes rule:

m Or equivalently: _ gt P (vierrcey

MLE = acrer [é)

P(D | 0)P (0}

agng P(0 | D) =1
9 ﬂ

?‘OﬂQ

P(D) Not J.

PO |D) x P(D|0)P(0)

[C. Guestrin]

Beta prior distribution — P(6)

Beta(2,2) Beta(3,2) 8 Beta(30,20)
15 &
4
2 2
3 ’ =3
a &
2
a
of _ 0 _ ] 0
0 04 08 o 0.2 04 04 08
;\«mdgh— r\uuvg val parametnr valus

[C. Guestrin]
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Beta prior distribution — P(6)
oy = 80— 0fi
o B(ﬂH /BT)
m Likelihood fymrl?tion: @

m Posterior: 2P (0 | D) P(Q)
g

~ Beta(By, Br)

[C. Guestrin]

Posterior distribution

" JEE
u
m Prior: Beta(By, 57)
m Data: ay heads and a tails

m Posterior distribution:
P(0 | D) ~ Beta(By + am, Br + ar)

[C. Guestrin]
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Bota(30.20)

MAP for Beta distribution

" JEE

9,8[1+a11—1(1 _ 9)@1,4_01_1
B(8y + am, Br + ar)

rameter valve

~ Beta(By—+ay, Brtar)

P(0| D)=

m MAP: use most likely parameter:

6 = arg meaxP(G | D) =

m Beta prior equivalent to extra thumbtack flips
m As N — oo, prior is “forgotten”
m But, for small sample size, prior is important! [C. Guestrin]

Conjugate priors
* P(0) and P(6|D) have the same form

Eg. 1 Coin flip problem

Likelihood is ~ Binomial
P(D | 6) :feanu —_g)or |

If priBr is Beta dwlumﬁ
9Bn—1(1 — 9)Br—1
o) =27 =T L petaay, pr)

B(Bw,Br)

Then posteriogﬁg%a?&i?tribution
@ ~ Beta(By + ay, B + ar)

For Binomial, conjugate prior is Beta distribution.
[A. Singh]
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Conjugate priors
* P(6)and P(0|D) have the same form
Eg. 2 Dice roll problem (6 outcomes instead of 2)
Likelihood is ~ Multinomial(0 = {0,, 0,, ..., 0,})
P(D|0) =6071052...0,"
If prior is Dirichlet distribution,
[Mh, 0"
B(Bl)" . ,/Bk‘)

Then posterior is Dirichlet distribution

P(0|D) ~ Dirichlet(81 + a1, ..., B + ax)

P(0) = ~ Dirichlet(s31,...,8)

For Multinomial, conjugate prior is Dirichlet distribution.
[A. Singh]

Estimating Parameters

* Maximum Likelihood Estimate (MLE): choose
6 that maximizes probability of observed data D

~

0 = arg meax P(D|#)

* Maximum a Posteriori (MAP) estimate:
choose 0 that is most probable given prior
probability and the data

0 = arg m@ax P(6 | D)
P(D|0)P(0)
P(D)

= arg maax




Lejeune Dirichlet

Dirichlet distribution

number of heads in N flips of a two-sided coin
— follows a binomial distribution
— Beta is a good prior (conjugate prior for binomial)

Johann Peter Gustav Lejeune Dirichlet

. . . Born 13 February 1805
what it's not two-sided, but k-sided? Durn, Frnch Enoe
. i . . . Died 5 May 1859 (aged 54)
— follows a multinomial distribution Aosdence e e
— Dirichlet distribution is the conjugate prior natonalty i
ields Mathematician
Institutions University of Berlin
University of Breslau
University of Géttingen
1 K Alma mater University of Bonn
Q) — Doctoral advisor Simeon Poisson
P01, 02 -9%) = 553 I1e: v
(@) oo
) Rudolf Lipschitz
Carl Wilhelm Borchardt

Known for Dirichlet function
Dirichlet eta function

You should know

* Probability basics

random variables, events, sample space, conditional probs, ...
independence of random variables

Bayes rule

Joint probability distributions

calculating probabilities from the joint distribution

» Estimating parameters from data
maximum likelihood estimates

maximum a posteriori estimates
distributions — binomial, Beta, Dirichlet, ...
conjugate priors

18



Extra slides

Expected values

Given discrete random variable X, the expected value of
X, written E[X] is

E[X]=) zP(X =z)

TeX

We also can talk about the expected value of functions
of X

E[f(X)]=)_ f(@)P(X =)

TeEX

19



Covariance

Given two discrete r.v.’s X and Y, we define the
covariance of X and Y as

Cov(X,Y)=E[X — EX))(Y — E(Y))]

e.g., X=gender, Y=playsFootball
or X=gender, Y=leftHanded

Remember: E[X]| = ZmP(X =x)
reX

Example: Bernoulli model

Data:
e We observed Niid coin tossing: 0={1,0, 1, ..., 0}

Representation:
Binary r.v: x ={0.1}
Model: Py 176 orx=0 .
x)= = )=60"(1-6)""
0 forx=1 P(x)=6"1-06)
How to write the likelihood of a single observation x;?

P(x,)=6%(1-6)"

The likelihood of datasetD={x,, ..., x\}:

N N \ V‘\‘ %17.\
P(xy. %ty |0) = [ [ P(x, 10) =] (0¥ A-0)"") =6= (1-0)7  =o"=1-0)**
i=1 i=1
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