Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

April 26, 2011

Today:

* Learning of control policies
* Markov Decision Processes
» Temporal difference learning
* Q/learning

Readings:
* Mitchell, chapter 13

* Kaelbling, et al., Reinforcement
Learning: A Survey

Thanks to Aarti Singh for several slides
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Reinforcement Learning
[Sutton and Barto 1981; Samuel 1957; ...]

V*(S) = E[rt + y I‘t+1 + ert+2 + ]
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Reinforcement Learning: Backgammon

[Tessauro, 1995]

Learning task:
+ chose move at arbitrary board states

Training signal:
+ final win or loss

Training:
+ played 300,000 games against itself

Algorithm:
+ reinforcement learning + neural network

Result:
» World-class Backgammon player
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Outline

* Learning control strategies
— Credit assignment and delayed reward
— Discounted rewards

Markov Decision Processes
— Solving a known MDP

* Online learning of control strategies
— When next-state function is known: value function V*(s)

— When next-state function unknown: learning Q’(s,a)

* Role in modeling reward learning in animals

,,,,,,,,,, Tom Mitchell, April 2011




Jows?

o7k

Reinforcement Learning Problem

Agent
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Environment
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Goal: Learn to choose actions that maximize

2 -
XYL YTt where 0 <7 <!
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Markov Decision Process = Reinforcement Learning Setting

G

Agent

Sm[e/‘/ksward \cnou

[ Environment |

Set of states S 0 o 2

Set of actions A ! ! :

At each time, agent observes state s, € S, then chooses action 13 € A

Then receives reward r,, and state changes to s,

Markov assumption: P(s,.; | s;, @, S, @y, --.) = P(Syeq | Sy, @

Also assume reward Markov: P(r,|s,, a; S, @15---) = P(r| Sy, @)
\

—_—

The task: learn a policy «t: S > A for choosing actions that maximizes
Elre + 41+ 7m0 +.] 0<y<1

for every possit&starting staQe S‘b Q(ﬁf | s .”D
ovet PV 91
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@mhq“\/ Obsevved
HMM, Markov Process, Markov Decision Process

HiMM

HMM, Markov Process, Markov Decision Process
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Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and

» Learn control policy wt: S>A that maximizesi A B[]
from every states €S =0

Example: Robot grid world, deterministic reward r(s,a)

T
MEaE

(immediate reward)
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Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results and

» Learn control policy wt: S>A that maximizes Z F E[r]
from every state s € S t=0

Yikes!!

* Function to be learned is m: S>A

» But training examples are not of the form <s, a>
* They are instead of the form < <s,a>, r >
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Value Function for each Policy sl (O

» Given apolicy n: S 2> A, define = f;

(0.¢] . .
VT —F t assuming action sequence chosen
(s) [EO il according to x, starting at state s

« Then we want the optimal policy " where G:SVA
7 = arg max VT (s), (Vs)

* For any MDP, such a policy exists!
« We'll abbreviate V*'(s) as V*
* Note if we have V*(s) and P(s.,4|s.,a), we can compute
(s) P — 5| >
M@ S acgmy = | CSJC‘ S|oesk \/(5
ack S ARAS SJ
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Value Function — what are the V7(s) values?
Vs) = E[Y v'ri]
N t=0

5”??05‘& _- 15 s\/\O\AJI/\ \07/ Cl‘f(‘-itj Q_C‘F/DVl —p\rowl chL
5(/(7?05( b/ - O? state

PAS c@\lc&» O
@*O A_@ 10@ £0

- <l

0 -0 (00 0

{ ‘C\{ b(\

r(s,a) (immediate reward)
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Value Function — what are the V*(s) values?
VT(s) = E[Y ~'rl
t=0

Vs

VD g0 e g0 22 O

H-H—=

AN gl e i

0

r(s,a) (immediate reward)
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. 100 0 Immediate rewards r(s,a)
:; 5 (Q State values V*(s)
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r(s,a) (immediate reward) values

T T G 90 & 100 _>o (a
A /S Y W '
I 'y Ly |
T T 81 o 90 & 100
One optimal policy V*(s) values
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Recursive definition for V*(S)

e assuming actions are

— t
V*(s) = E[ E v'rt] chosen according to the
t=0 optimal policy, *

V*(s1) = Elr(s1,a1)]+Er(s2, a)l4+Ely2r(s3,a3)]+. . ]

V*(s1) = Elr(s1,a1)] + 7Eg, s 0, [V (52)]

V*(s) = Blr(s, 7" ()4 7By po () [V ()]
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Value lteration for learning V* : assumes P(S,,4|S;, A) known

Initialize V(s) arbitrarily .y +“ CB
Loop until policy good enough . O,Q aYéj )f v
ot
oop forsin S (ﬁ‘}\ ov"S(
Loop forain A Jf 1//
. @«—lr(s,a) + v Z P(s'|s,a)V (s
s'es
V(s) «— max Q(s,a)
End loop 0
0 100II
End loop ;l ({)
0

0 0
V(s) converges to V*(s) oH OH 1 oo*

Dynamic programming :‘: ﬂ:




Value lteration

Interestingly, value iteration works even if we randomly
traverse the environment instead of looping through
each state and action methodically

» but we must still visit each state infinitely often on an
infinite run

» For details: [Bertsekas 1989]
* Implications: online learning as agent randomly roams

If max (over states) difference between two successive
value function estimates is less than ¢, then the value of
the greedy policy differs from the optimal policy by no

more than 267/(1 _ 7)
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So far: learning optimal policy when we
know P(s, | S, @.4)

What if we don’t?
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Q learning

Define new function, closely related to V*

V*(s) = Elr(s,7°(5))] + 7 Eviae(o)!

If agent knows Q(s,a), it can choose optimal action
without knowing P(s,,4|s,a) !

7*(s) = arg max Q(s,a) V*(s) = max Q(s, a)

And, it can learn Q without knowing P(s,,,|s;,a)

Immediate rewards r(s,a) i c{)
Ao Ao A
State values V*(s) AN IEA S
ol Ol
State-action values Q*(s,a) T T
V*(s) = E[r(s,7"(s))] + WESI\S,w*(S)[V*(S/)] r(s,a) (immediate reward) values
—
90 100, 90
. —— - G o - G
Bellman equation. - 90 a— 100 [ :)
q H
81 90 1 - _
<5 * g; 81 <:4: 100
Q(s,a) values V*(s) values
— \_—/
Consider first the case where T TG /
P(s’| s,a) is deterministic f
—— —f—
One optimal policy
ML
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Training Rule to Learn Q

Note @ and V* closely related:

Which allows us to write

recursively as S@k fu) ’ SH(

Q(st, = r(sna

e G

Nice! Let Q denote learner’s current approximation
to Q. Consider training rule

Q(s,a) « r+ymaxQ(s',d)

where s’ is the state resulting from applying action
a in state s
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Q Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) + 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

e Update the table entry for Q(s,a) as follows:

Q(s,a) 7 +ymaxQ(s', )

o5+ s
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Updating Q

o
< ] =
+o_

Als

2y

5\

\J

|81 :_’ |81
a right
——
initial state: S, O next state: S,

— 0+ 0.9 max{63,81,100}
(o

notice if rewards non-negative, then

(VS, a, n) Qn+1(87 a’) Z Qfl(87 a’)

and .
(Vs,a,n) 0<Qn(s,a) <Q(s,a)
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( Q L:onverges to@ Consider case of deterministic
rld where see™each (s, a) visited infinitely often.
—
Proof: Define a full interval to be an interval during

which each (s, a) is visited. During each full
interval the largest error in @ table is reduced by

factor OMW

Let Qn be table after g__updates7 and A, be the
maximum error in @Q,; that is I

An An s,a)— s, a
<}%@@ )~ QUs.0)

For any table entry Q,l(s, a) updated on iteration 9 \/,,’\\)(/
n+ 1, the error in the revised estimate Q,41(s,a) i &x&f

~ v

1Quii(s,a) — Q(s,a)| |(s',a'5 o Use general fact:

—p — S F | mp f1(a) — mpx fo(a)| <
T~ (7 maxQ(, @)

T myx (¢ o) - mpxa(eay T
7ma;X|Qn(@ a') —QHS’,a’ —
|Qn+1(s,a) — Q(s,a)| < vA,
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Nondeterministic Case

(@ learning generalizes to nondeterministic worlds
Alter training rule to
Qn(s,a) — (1—ay,)Qn_1(s, a)+an[r+rrte,1x Qu_1(s,d)]

where
1

1+ visits,(s,a)

a‘ll

Can still prove convergence of Q to @ [Watkins and
Dayan, 1992]
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Temporal Difference Learning

@ learning: reduce discrepancy between successive
() estimates

One step time difference:
QW (s, ar) =1+ max Q(3t+17a)
Why not two steps?
QP (sy,ar) =11+ yreg1 + 2 mgmx@(sprg, a)
Orn?

Q(n)(St, at) = re+yrite -+’y("_1)rt+n_1+7" mﬂaxQ(an, a)

Blend all of these:
Q)\(Staat) = (1-)) [Q(l)(Sn ar) + /\Q(Q)(Sn ar) + /\QQ(3)(3taat)




Temporal Difference Learning

Q*(st,ar) = (1-X) [Q(l)(st, ar) + AQ¥ (s, ) + N2Q¥) (54, ay)

Equivalent expression:
QNsryar) =7+ (1=X) max Q(s1, az)
+A Q\(st41, ar41)]
TD(A) algorithm uses above training rule
e Sometimes converges faster than ) learning

e converges for learning V* for any 0 < A <1
(Dayan, 1992)

e Tesauro’s TD-Gammon uses this algorithm
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MDP’s and RL: What You Should Know

» Learning to choose optimal actions A
* From delayed reward
» By learning evaluation functions like V(S), Q(S,A)

Key ideas:
+ If next state function S; x A, > S,,4 is known

— can use dynamic programming to learn V(S)

— once learned, choose action A, that maximizes V(S,,,)
+ If next state function S, x A; > S,,; unknown

- learn Q(S,A) = E[V(S;4)]

— tolearn, sample S, x A, > S, in actual world

— once learned, choose action A, that maximizes Q(S,A,)

,,,,,,,,,, Tom Mitchell, April 2011
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MDPs and Reinforcement Learning: Further Issues

What strategy for choosing actions will optimize
— learning rate? (explore uninvestigated states)
— obtained reward? (exploit what you know so far)

Patrtially observable Markov Decision Processes
— state is not fully observable
— maintain probability distribution over possible states you’re in

Convergence guarantee with function approximators?
— our proof assumed a tabular representation for Q, V

— some types of function approximators still converge (e.g., nearest
neighbor) [Gordon, 1999]

» Correspondence to human learning?
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