

Machine Learning 10-701

Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University

March 17, 2011

Today:

- Semi-supervised learning
- Co-Training
- Never ending learning

Recommended reading: (see class website)

- Carlson et al., 2010
- Blum & Mitchell 1998

When can Unlabeled Data Help Learn $f: X \rightarrow Y$?

Consider problem setting:

- Set X of instances drawn from unknown distribution $P(X)$
- Wish to learn target function $f: X \rightarrow Y$ (or, $P(Y|X)$)
- Given a set H of possible hypotheses for f

Given:

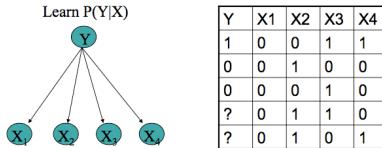
- i.i.d. labeled examples $L = \{\langle x_1, y_1 \rangle \dots \langle x_m, y_m \rangle\}$
- i.i.d. unlabeled examples $U = \{x_{m+1}, \dots, x_{m+n}\}$

Wish to find hypothesis with lowest true error:

$$\hat{f} \leftarrow \arg \min_{h \in H} \Pr_{x \in P(X)} [h(x) \neq f(x)]$$

When can Unlabeled Data Help Learn $f: X \rightarrow Y$?

- EM



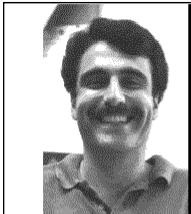
- Metric regularization
 - [Schuurmans & Soutey, MLJ 2002]
 - use unlabeled data to detect (and avoid) overfitting
- CoTraining, Multiview learning, CoRegularization

CoTraining

- In some settings, available data features are redundant and we can train two classifiers based on disjoint features
- In this case, the two classifiers should agree on the classification for each unlabeled example
- Therefore, we can use the unlabeled data to constrain joint training of both classifiers

Redundantly Sufficient Features

Professor Faloutsos



my advisor

U.S. mail address:
Department of Computer Science
University of Maryland
College Park, MD 20742
(97-99: on leave at CMU)
Office: 3227 A.V. Williams Bldg
Phone: (301) 405-2695
Fax: (301) 405-6707
Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of [Computer Science](#). (97-98: on leave at CMU)
Join Appointment: [Institute for Systems Research](#) (ISR).
Academic Degrees: Ph.D. and M.Sc. ([University of Toronto](#)), B.Sc. ([Nat. Tech. U. Ath](#)

Research Interests:

- Query by content in multimedia databases;
- Fractals for clustering and spatial access methods;
- Data mining;

Professor Faloutsos

my advisor

Redundantly Sufficient Features

Redundantly Sufficient Features

U.S. mail address:
Department of Computer Science
University of Maryland
College Park, MD 20742
[\(97-99: on leave at CMU\)](#)
Office: 3227 A.V. Williams Bldg
Phone: (301) 405-2695
Fax: (301) 405-6707
Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of [Computer Science](#). [\(97-98: on leave at CMU\)](#)
Join Appointment: [Institute for Systems Research](#) (ISR).
Academic Degrees: Ph.D. and M.Sc. ([University of Toronto](#)); B.Sc. ([Nat. Tech. U. Ath](#)

Research Interests:

- Query by content in multimedia databases;
- Fractals for clustering and spatial access methods;
- Data mining;

Redundantly Sufficient Features

Professor Faloutsos

my advisor

U.S. mail address:
Department of Computer Science
University of Maryland
College Park, MD 20742
[\(97-99: on leave at CMU\)](#)
Office: 3227 A.V. Williams Bldg
Phone: (301) 405-2695
Fax: (301) 405-6707
Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of [Computer Science](#). [\(97-98: on leave at CMU\)](#)
Join Appointment: [Institute for Systems Research](#) (ISR).
Academic Degrees: Ph.D. and M.Sc. ([University of Toronto](#)); B.Sc. ([Nat. Tech. U. Ath](#)

Research Interests:

- Query by content in multimedia databases;
- Fractals for clustering and spatial access methods;
- Data mining;

CoTraining Algorithm #1

[Blum&Mitchell, 1998]

Given: labeled data L,

unlabeled data U

Loop:

Train g_1 (hyperlink classifier) using L

Train g_2 (page classifier) using L

Allow g_1 to label p positive, n negative exams from U

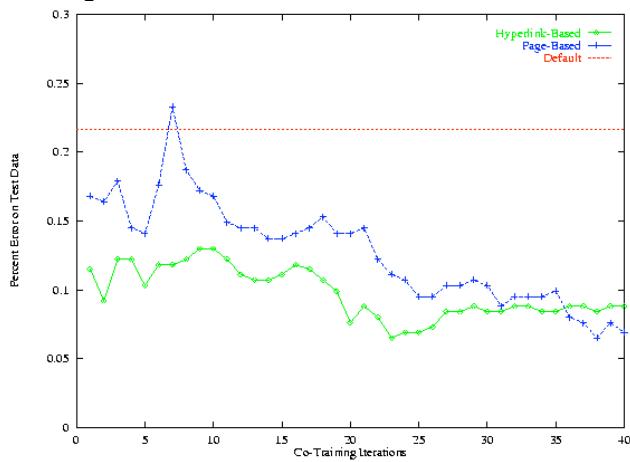
Allow g_2 to label p positive, n negative exams from U

Add these self-labeled examples to L

CoTraining: Experimental Results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: cotraining 5.0%

Typical run:



CoTraining setting:

- wish to learn $f: X \rightarrow Y$, given L and U drawn from $P(X)$
- features describing X can be partitioned ($X = X_1 \times X_2$)
such that f can be computed from either X_1 or X_2
 $(\exists g_1, g_2)(\forall x \in X) \ g_1(x_1) = f(x) = g_2(x_2)$

One result [Blum&Mitchell 1998]:

- If
 - X_1 and X_2 are conditionally independent given Y
 - f is PAC learnable from noisy *labeled* data
- Then
 - f is PAC learnable from weak initial classifier plus polynomial number of *unlabeled* examples

Classifier with
accuracy > 0.5

Can Unlabeled Data Help Estimate True Error?

Consider two functions making *independent errors*

$$P(\text{disagree}) = P(g_1 \text{ right}, g_2 \text{ wrong}) + P(g_2 \text{ right}, g_1 \text{ wrong})$$

e.g., If true error of g_1 is 0.1, true error of g_2 is 0.1, what is $P(\text{disagree})$?

PAC Generalization Bounds on CoTraining

[Dasgupta et al., NIPS 2001]

This theorem assumes X_1 and X_2 are conditionally independent given Y

Theorem 1 *With probability at least $1 - \delta$ over the choice of the sample S , we have that for all h_1 and h_2 , if $\gamma_i(h_1, h_2, \delta) > 0$ for $1 \leq i \leq k$ then (a) f is a permutation and (b) for all $1 \leq i \leq k$,*

$$P(h_1 \neq i \mid f(y) = i, h_1 \neq \perp) \leq \frac{\widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \perp) + \epsilon_i(h_1, h_2, \delta)}{\gamma_i(h_1, h_2, \delta)}.$$

The theorem states, in essence, that if the sample size is large, and h_1 and h_2 largely agree on the unlabeled data, then $\widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \perp)$ is a good estimate of the error rate $P(h_1 \neq i \mid f(y) = i, h_1 \neq \perp)$.

PAC Generalization Bounds on CoTraining

[Dasgupta et al., NIPS 2001]

This theorem assumes X_1 and X_2 are conditionally independent given Y

Theorem 1 *With probability at least $1 - \delta$ over the choice of the sample S , we have that for all h_1 and h_2 , if $\gamma_i(h_1, h_2, \delta) > 0$ for $1 \leq i \leq k$ then (a) f is a permutation and (b) for all $1 \leq i \leq k$,*

$$P(h_1 \neq i \mid f(y) = i, h_1 \neq \perp) \leq \frac{\widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \perp) + \epsilon_i(h_1, h_2, \delta)}{\gamma_i(h_1, h_2, \delta)}.$$

The theorem states, in essence, that if the sample size is large, and h_1 and h_2 largely agree on the unlabeled data, then $\widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \perp)$ is a good estimate of the error rate $P(h_1 \neq i \mid f(y) = i, h_1 \neq \perp)$.

$$\gamma_i(h_1, h_2, \delta) = \widehat{P}(h_1 = i \mid h_2 = i, h_1 \neq \perp) - \widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \perp) - 2\epsilon_i(h_1, h_2, \delta)$$

$$\epsilon_i(h_1, h_2, \delta) = \sqrt{\frac{(\ln 2)(|h_1| + |h_2|) + \ln \frac{2k}{\delta}}{2|S(h_2 = i, h_1 \neq \perp)|}}$$

Co Regularization

- Let's build our assumption that g_1 and g_2 must agree directly into the objective we're optimizing
- e.g.,

$$\begin{aligned}\langle \theta_1, \theta_2 \rangle \leftarrow \arg \min_{\langle \theta_1, \theta_2 \rangle} & \sum_{x^l \in L} (y^l - g_1(x^l; \theta_1))^2 \\ & + \sum_{x^l \in L} (y^l - g_2(x^l; \theta_2))^2 \\ & + \sum_{x^u \in U} (g_1(x^u; \theta_1) - g_2(x^u; \theta_2))^2\end{aligned}$$

CoTraining Summary

- Unlabeled data improves supervised learning when example features are redundantly sufficient
 - Family of algorithms that train multiple classifiers
- Theoretical results
 - If X_1, X_2 conditionally independent given Y , Then
 - PAC learnable from weak initial classifier plus unlabeled data
 - disagreement between $g_1(x_1)$ and $g_2(x_2)$ bounds final classifier error
- Many real-world problems of this type
 - Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99]
 - Web page classification [Blum, Mitchell 98]
 - Word sense disambiguation [Yarowsky 95]
 - Speech recognition [de Sa, Ballard 98]
 - Visual classification of cars [Levin, Viola, Freund 03]

Further Reading

- Semi-Supervised Learning, O. Chapelle, B. Sholkopf, and A. Zien (eds.), MIT Press, 2006. ([excellent book](#))
- EM for Naïve Bayes classifiers: K.Nigam, et al., 2000. "Text Classification from Labeled and Unlabeled Documents using EM", *Machine Learning*, 39, pp.103—134.
- CoTraining: A. Blum and T. Mitchell, 1998. "Combining Labeled and Unlabeled Data with Co-Training," *Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT-98)*.
- S. Dasgupta, et al., "PAC Generalization Bounds for Co-training", *NIPS 2001*
- Model selection: D. Schuurmans and F. Southey, 2002. "Metric-Based methods for Adaptive Model Selection and Regularization," *Machine Learning*, 48, 51—84.