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January 27, 2011 

Today: 
•  Naïve Bayes – Big Picture 
•  Logistic regression 
•  Gradient ascent 
•  Generative – discriminative 

classifiers 

Readings: 

Required: 
•  Mitchell: “Naïve Bayes and 

Logistic Regression” 
     (see class website) 

Optional 
•  Ng and Jordan paper (class 

website) 

Gaussian Naïve Bayes – Big Picture 
Consider boolean Y, continuous Xi .   Assume P(Y=1)=0.5 
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What is the minimum possible error? 
Best case: 
•  conditional independence assumption is satistied 
•  we know P(Y), P(X|Y) perfectly (e.g., infinite training data) 

Logistic Regression 
Idea: 
•  Naïve Bayes allows computing P(Y|X) by 

learning P(Y) and P(X|Y) 

•  Why not learn P(Y|X) directly? 
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•  Consider learning f: X  Y, where 
•  X is a vector of real-valued features, < X1 … Xn > 
•  Y is boolean 
•  assume all Xi are conditionally independent given Y 
•  model P(Xi | Y = yk) as Gaussian N(µik,σi) 
•  model P(Y) as Bernoulli (π) 

•  What does that imply about the form of P(Y|X)? 

Derive form for P(Y|X) for continuous Xi  
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Very convenient! 

implies 

implies 

implies 

Very convenient! 

implies 

implies 

implies 

linear 
classification 

rule! 
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Logistic function 
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Logistic regression more generally

•  Logistic regression when Y not boolean (but 

still discrete-valued).  
•  Now y ∈ {y1 ... yR} : learn R-1 sets of weights 

 for k<R 

 for k=R 

Training Logistic Regression: MCLE 
•  we have L training examples: 

•  maximum likelihood estimate for parameters W 

•  maximum conditional likelihood estimate 
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Training Logistic Regression: MCLE 
•  Choose parameters W=<w0, ... wn> to 

maximize conditional likelihood of training data 

•  Training data D =  
•  Data likelihood =  
•  Data conditional likelihood =  

where 

Expressing Conditional Log Likelihood 
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Maximizing Conditional Log Likelihood 

Good news: l(W) is concave function of W

Bad news: no closed-form solution to maximize l(W)
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Maximize Conditional Log Likelihood:          
Gradient Ascent 

Maximize Conditional Log Likelihood:          
Gradient Ascent 

Gradient ascent algorithm: iterate until change < ε

   For all i, repeat 
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That’s all for M(C)LE.  How about MAP? 

•  One common approach is to define priors on W 
–  Normal distribution, zero mean, identity covariance 

•  Helps avoid very large weights and overfitting 
•  MAP estimate 

•  let’s assume Gaussian prior: W ~ N(0, σ) 

MLE vs MAP  
•  Maximum conditional likelihood estimate 

•  Maximum a posteriori estimate with prior W~N(0,σI) 
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MAP estimates and Regularization 
•  Maximum a posteriori estimate with prior W~N(0,σI) 

called a “regularization” term 
•  helps reduce overfitting, especially when training 
data is sparse 
•  keep weights nearer to zero (if P(W) is zero mean 
Gaussian prior), or whatever the prior suggests 
•  used very frequently in Logistic Regression 

•  Consider learning f: X  Y, where 
•  X is a vector of real-valued features, < X1 … Xn > 
•  Y is boolean 
•  assume all Xi are conditionally independent given Y 
•  model P(Xi | Y = yk) as Gaussian N(µik,σi) 
•  model P(Y) as Bernoulli (π) 

•  Then P(Y|X) is of this form, and we can directly estimate W 

•  Furthermore, same holds if the Xi are boolean 
•  trying proving that to yourself 

The Bottom Line 
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Generative vs. Discriminative Classifiers 

Training classifiers involves estimating f: X  Y, or P(Y|X) 

Generative classifiers (e.g., Naïve Bayes) 
•  Assume some functional form for P(X|Y), P(X) 
•  Estimate parameters of P(X|Y), P(X) directly from training data 
•  Use Bayes rule to calculate P(Y|X= xi) 

Discriminative classifiers (e.g., Logistic regression) 

•  Assume some functional form for P(Y|X) 
•  Estimate parameters of P(Y|X) directly from training data 

Use Naïve Bayes or Logisitic Regression? 

Consider 
•  Restrictiveness of modeling assumptions 

•  Rate of convergence (in amount of 
training data) toward asymptotic 
hypothesis  
–  i.e., the learning curve 
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Naïve Bayes vs Logistic Regression 
Consider Y boolean, Xi continuous, X=<X1 ... Xn> 

Number of parameters to estimate: 
•  NB:   

•  LR:   

Naïve Bayes vs Logistic Regression 
Consider Y boolean, Xi continuous, X=<X1 ... Xn> 

Number of parameters: 
•  NB: 4n +1 
•  LR: n+1 

Estimation method: 
•  NB parameter estimates are uncoupled 
•  LR parameter estimates are coupled 
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G.Naïve Bayes vs. Logistic Regression 
•  Generative and Discriminative classifiers 

•  Asymptotic comparison (# training examples  infinity) 

•  when conditional independence assumptions correct 

•  GNB, LR produce identical classifiers 

•  when conditional independence assumptions incorrect 

•  LR is less biased – does not assume cond indep. 

•  therefore expected to outperform GNB when both 
given infinite training data 

[Ng & Jordan, 2002] 

Naïve Bayes vs. Logistic Regression 
•  Generative and Discriminative classifiers 

•  Non-asymptotic analysis (see [Ng & Jordan, 2002] ) 
•  convergence rate of parameter estimates – how many 
training examples needed to assure good estimates? 

•  GNB order log n  (where n = # of attributes in X) 
•  LR order n 

GNB converges more quickly to its (perhaps less 
accurate) asymptotic estimates 

Informally: because LR’s parameter estimates are 
coupled, but GNB’s are not 
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Some experiments 
from UCI data sets 

[Ng & Jordan, 2002]  

Summary: Naïve Bayes and Logistic Regression 

•  Modeling assumptions 
–  Naïve Bayes more biased (cond. indep) 
–  Both learn linear decision surfaces 

•  Convergence rate (n=number training examples) 
–  Naïve Bayes ~ O(log n) 
–  Logistic regression ~O(n) 

•  Bottom line 
–  Naïve Bayes converges faster to its (potentially too 

restricted) final hypothesis 
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What you should know: 

•  Logistic regression 
–  Functional form follows from Naïve Bayes assumptions 

•  For Gaussian Naïve Bayes assuming variance σi,k = σi 
•  For discrete-valued Naïve Bayes too 

–  But training procedure picks parameters without the 
conditional independence assumption 

–  MLE training: pick W to maximize P(Y | X, W) 
–  MAP training: pick W to maximize P(W | X,Y) 

•  regularization:   e.g., P(W)  ~ N(0,σ) 
•  helps reduce overfitting  

•  Gradient ascent/descent 
–  General approach when closed-form solutions for MLE, MAP are 

unavailable 

•  Generative vs. Discriminative classifiers 
–  Bias vs. variance tradeoff 


