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Today:

Naive Bayes — Big Picture
Logistic regression
Gradient ascent

Gene_rative — discriminative
classifiers

Readings:

Required:
Mitchell: “Naive Bayes and
Logistic Regression”

(see class website)

Optional
Ng and Jordan paper (class
website)

Gaussian Naive Bayes — Big Picture
Consider boolean Y, continuous X; . Assume% P(Y=1 )=0.5):P6/:O)
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What is the minimum possible error?

Best case:
» conditional independence assumption is satistied
+ we know P(Y), P(X]Y) perfectly (e.g., infinite training data)
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Logistic Regression

ldea:
» Naive Bayes allows computing P(Y|X) by
learning P(Y) and P(X]|Y)

« Why not learn P(Y|X) directly?




o+ P(fu”ﬂ)
 Consider learning f: X 2 Y, where
+ X is a vector of real-valued features, < X, ... X, >
Y is boolean
» assume all X; are conditionally independent given Y
» model P(X | Y = y) as Gaussian N(w(o)= vt o7,
« model P(Y) as Bernoulli (i)

» What does that imply about the form of P(Y|X)?
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Derive form for P(Y|X) for continuous X;
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Very convenient!

1
P(Y = 11X =< X1,..Xp >) =
( | < X1 ) 1+ exp(wg + X; wiXil
implies

POY = 0|X =< X1,..Xn >) = —P(wot £v35)
I+ exp (w, + 2w XN
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Very convenient!

1
1+ exp(wo + > w; X;)

P(Y =1|1X =< Xq,..Xn>) =

implies
exp(wo + X3 wiX;)
1+ exp(wo + 32 wi X;)

P(Y = 0|X =< Xq,...Xn >) =

implies
P(Y =0|X)
————~ =exp(wg + > w;X;)
POT=110 : zl: . linear
/ classification
implies P(Y = 0/X) rule!
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P(Y = 0|X)
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Logistic regression more generally

 Logistic regression when Y not boolean (but
still discrete-valued).

* Now y E{Yy, ... yg} : learn R-1 sets of weights

exp(wyo + X7 wi;i X;)

< P(Y = y,|X) =
for k<R POY= w0 1+ 2F exp(wio 4 iy wjiXy)

1
1+ Ef 1 eXp(w]O + ZZ 1 wj’LX’L)

for k=R P =ygl|X)=
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Training Logistic Regression: MCLE

- we have L training examples: {(x1, v1), .. (XL v}

* maximum likelihood estimate for parameters W
Wiyre = argmax P(< X1, V' > ... < X\ YP > W)

= arg maXH P(< XLY! > |[W)  obs datfy
w ) P |

* maximum conditional I|keI|hood estimate
a«gww (Y (Xﬂ W)




Training Logistic Regression: MCLE

« Choose parameters W=<w,, ... w,> to

maximize conditional likelihood of training data
1
14 exp(wo + > w; X;)

exp(wo + X; w; X;)
1 4 exp(wg + >; w; X;)

« Training data D = {(x',v1),...(x" v)}
« Data likelihood = []P(x',Y!w)
l
« Data conditional likelihood = [ P(Y!|x!,w)
l

where P(Y =0|X,W) =

P(Y = 1|X,W) =

_ ! !
WucLe = afng%XHP(Y W, X7)

Expressing Conditional Log Likelihood
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exp(wo + 3 w X;)
14 exp(wo + X; w; X;)

« P(Y = 1|1X,W) =
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Maximizing Conditional Log Likelihood

1
1+ exp(wo + 3 w; X;)

P(Y =0|X,W) =

exp(wo + 3; w; X;)
1+ exp(wo + X; wiX;)

P(Y = 1|X,W) =

(W) = In[[PYxLw)
l

= Y Y(wo + Y w; X — In(1 + exp(wo + > w; X}))
l 7 7

Good news: /(W) is concave function of W
Bad news: no closed-form solution to maximize (W)

Gradient Descent
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Training rule:
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Maximize Conditional Log Likelihood:
Gradient Ascent

(W) = In[[PYxLw)
l

= S Yi(wo + Y w; X — In(1 + exp(wo + > w;X1))
l 7 7

ol(W)

8wi

=Y xivt— Pyt =11x1, w))
l

Maximize Conditional Log Likelihood:
Gradient Ascent

(w) = I[Pl xtLw)
l

= Y Yi(wo + Y w; X — In(1 + exp(wo + > w; X1))
l 7 7

ol(W)
ow;

=Y xi(v' - Py = 11X, W)
l

Gradient ascent algorithm: iterate until change < ¢
For all i, repeat

w; —w;+n Y Xyt - P(Y! = 11x", W)
l




That’s all for M(C)LE. How about MAP?

One common approach is to define priors on W
— Normal distribution, zero mean, identity covariance
Helps avoid very large weights and overfitting
MAP estimate

W —argmax In P(W) [1 P! xtw)
l

let's assume Gaussian prior: W ~ N(0, o)

MLE vs MAP

* Maximum conditional likelihood estimate
W « arg max In HP(Yl|Xl, W)
l

wi —w; + Y X[V = P(Y! = 1|x", W)
l

« Maximum a posteriori estimate with prior W~N(0,oT)

W «— arg max In[P(W) HP(YZ|XZ, wW)]
!

w; — w; —nhw;+n Y XY = P(Y = 1|x", W)
l
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MAP estimates and Regularization
* Maximum a posteriori estimate with prior W~N(0,ol)

W« arg max In[P(W) J[PYYxtw)
l

w; — w; —nw; +1> X[ (Y - P(YT = 11X, W)
1 l

called a “regularization” term

* helps reduce overfitting, especially when training
data is sparse

* keep weights nearer to zero (if P(W) is zero mean
Gaussian prior), or whatever the prior suggests

« used very frequently in Logistic Regression

The Bottom Line

 Consider learning f: X 2 Y, where
+ X is a vector of real-valued features, < X, ... X, >
* Y is boolean
» assume all X; are conditionally independent given Y
* model P(X; | Y =y,) as Gaussian N(u;,0;)
* model P(Y) as Bernoulli ()

* Then P(Y|X) is of this form, and we can directly estimate W

1
PY =1[X =< X1,.. Xy >) = 1+ exp(wo + X; wi X;)

* Furthermore, same holds if the X; are boolean
* trying proving that to yourself

11



Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X 2 Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)

* Assume some functional form for P(X|Y), P(X)

+ Estimate parameters of P(X]|Y), P(X) directly from training data
+ Use Bayes rule to calculate P(Y|X= x;)

Discriminative classifiers (e.g., Logistic regression)

* Assume some functional form for P(Y|X)
+ Estimate parameters of P(Y|X) directly from training data

Use Naive Bayes or Logisitic Regression?

Consider
» Restrictiveness of modeling assumptions

» Rate of convergence (in amount of
training data) toward asymptotic
hypothesis
—i.e., the learning curve
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Naive Bayes vs Logistic Regression

Consider Y boolean, X, continuous, X=<X, ... X,>

Number of parameters to estimate:
* NB:

1
P(Y =0|X,W) =

1+ exp(wo + 2 wiX;)

* LR:
. P(Y =1|X,W) = exp(wo + X w; X;)

1 4 exp(wo + 3w X;)

Naive Bayes vs Logistic Regression

Consider Y boolean, X; continuous, X=<X, ... X,>

Number of parameters:
* NB: 4n +1
* LR: n+1

Estimation method:
* NB parameter estimates are uncoupled
* LR parameter estimates are coupled
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G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]
» Generative and Discriminative classifiers

« Asymptotic comparison (# training examples - infinity)
» when conditional independence assumptions correct

* GNB, LR produce identical classifiers

* when conditional independence assumptions incorrect
* LR is less biased — does not assume cond indep.

» therefore expected to outperform GNB when both
given infinite training data

Naive Bayes vs. Logistic Regression

» Generative and Discriminative classifiers

» Non-asymptotic analysis (see [Ng & Jordan, 2002] )

* convergence rate of parameter estimates — how many
training examples needed to assure good estimates?

* GNB order log n (where n = # of attributes in X)
* LR order n

GNB converges more quickly to its (perhaps less
accurate) asymptotic estimates

Informally: because LR’s parameter estimates are
coupled, but GNB’s are not
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Some experiments |\
from UCI data sets
[Ng & Jordan, 2002]
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learnin
repository. Plots are of generalization error vs. m (averaged over 1000 randon

train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

Summary: Naive Bayes and Logistic Regression

* Modeling assumptions
— Naive Bayes more biased (cond. indep)
— Both learn linear decision surfaces
. Convergence raté (n=number training examples)
— Naive Bayes ~ O(log n)
— Logistic regression ~O(n)
» Bottom line
— Naive Bayes converges faster to its (potentially too
restricted) final hypothesis
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What you should know:

Logistic regression

Functional form follows from Naive Bayes assumptions
* For Gaussian Naive Bayes assuming variance o;, = o;
» For discrete-valued Naive Bayes too

But trainin? procedure picks parameters without the
conditional independence assumption

MLE training: pick W to maximize P(Y | X, W)
MAP training: pick W to maximize P(W | X,Y)
* regularization: e.g., P(W) ~ N(0,0)
* helps reduce overfitting

Gradient ascent/descent

— General approach when closed-form solutions for MLE, MAP are
unavailable

Generative vs. Discriminative classifiers
— Bias vs. variance tradeoff
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