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Machine Learning 10-701

Tom M. Mitchell

Machine Learning Department

Carnegie Mellon University

February 15, 2011

Today:

• Graphical models

• Inference

• Conditional independence 
and D-separation

• Learning from fully labeled 
data

Readings:

Required:

• Bishop chapter 8, through 8.2

Bayesian Networks Definition

A Bayes network represents the joint probability distribution 

over a collection of random variables

A Bayes network is a directed acyclic graph and a set of 

CPD’s

• Each node denotes a random variable

• Edges denote dependencies

• CPD for each node Xi defines P(Xi | Pa(Xi))

• The joint distribution over all variables is defined as

Pa(X) = immediate parents of X in the graph
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Inference in Bayes Nets

• In general, intractable (NP-complete)

• For certain cases, tractable

– Assigning probability to fully observed set of variables

– Or if just one variable unobserved

– Or for singly connected graphs (ie., no undirected loops)

• Belief propagation

• For multiply connected graphs
• Junction tree

• Sometimes use Monte Carlo methods

– Generate many samples according to the Bayes Net 

distribution, then count up the results

• Variational methods for tractable approximate 

solutions

Example

• Bird flu and Allegies both cause Sinus problems

• Sinus problems cause Headaches and runny Nose
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Prob. of joint assignment: easy 

• Suppose we are interested in joint

assignment <F=f,A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?

let’s use p(a,b) as shorthand for p(A=a, B=b)

Prob. of marginals: not so easy 

• How do we calculate P(N=n) ?

let’s use p(a,b) as shorthand for p(A=a, B=b)
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Generating a sample from 

joint distribution: easy 

How can we generate random samples

drawn according to P(F,A,S,H,N)?

let’s use p(a,b) as shorthand for p(A=a, B=b)

Generating a sample from 

joint distribution: easy 

Note we can estimate marginals

like P(N=n) by generating many samples

from joint distribution, by summing the probability mass 

for which N=n

Similarly, for anything else we care about 

P(F=1|H=1, N=0)

 weak but general method for estimating any

probability term…

let’s use p(a,b) as shorthand for p(A=a, B=b)
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Prob. of marginals: not so easy 
But sometimes the structure of the network allows us to be 

clever  avoid exponential work

eg., chain    A DB C E

Prob. of marginals: not so easy 
But sometimes the structure of the network allows us to be 

clever  avoid exponential work

eg., chain    A DB C E
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Inference in Bayes Nets

• In general, intractable (NP-complete)

• For certain cases, tractable

– Assigning probability to fully observed set of variables

– Or if just one variable unobserved

– Or for singly connected graphs (ie., no undirected loops)

• Variable elimination

• Belief propagation

• For multiply connected graphs
• Junction tree

• Sometimes use Monte Carlo methods

– Generate many samples according to the Bayes Net 

distribution, then count up the results

• Variational methods for tractable approximate 

solutions

Conditional Independence, Revisited

• We said:

– Each node is conditionally independent of its non-descendents, 

given its immediate parents.

• Does this rule give us all of the conditional independence 

relations implied by the Bayes network?

– No!

– E.g., X1 and X4 are conditionally indep given {X2, X3}

– But X1 and X4 not conditionally indep given X3

– For this, we need to understand D-separation … X1

X4 X2

X3
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Inference in Bayes Nets

• In general, intractable (NP-complete)

• For certain cases, tractable

– Assigning probability to fully observed set of variables

– Or if just one variable unobserved

– Or for singly connected graphs (ie., no undirected loops)

• Variable elimination

• Belief propagation

• For multiply connected graphs
• Junction tree

• Sometimes use Monte Carlo methods

– Generate many samples according to the Bayes Net 

distribution, then count up the results

• Variational methods for tractable approximate 

solutions

Conditional Independence, Revisited

• We said:

– Each node is conditionally independent of its non-descendents, 

given its immediate parents.

• Does this rule give us all of the conditional independence 

relations implied by the Bayes network?

– No!

– E.g., X1 and X4 are conditionally indep given {X2, X3}

– But X1 and X4 not conditionally indep given X3

– For this, we need to understand D-separation X1

X4 X2

X3
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prove A cond indep of B given C?

ie., p(a,b|c) = p(a|c) p(b|c)

Easy Network 1: Head to Tail 
A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)

prove A cond indep of B given C?     ie., p(a,b|c) = p(a|c) p(b|c)

Easy Network 2: Tail to Tail 
A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)
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prove A cond indep of B given C?     ie., p(a,b|c) = p(a|c) p(b|c)

Easy Network 3: Head to Head
A

C

B

let’s use p(a,b) as shorthand for p(A=a, B=b)

prove A cond indep of B given C?    NO!

Summary:

• p(a,b)=p(a)p(b)

• p(a,b|c) NotEqual p(a|c)p(b|c)

Explaining away.

e.g.,

• A=earthquake

• B=breakIn

• C=motionAlarm

Easy Network 3: Head to Head A

C

B
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X and Y are conditionally independent given Z,     

if and only if X and Y are D-separated by Z.

Suppose we have three sets of random variables: X, Y and Z

X and Y are D-separated by Z (and therefore conditionally indep, given 

Z) iff every path from any variable in X to any variable in Y is blocked

A path from variable A to variable B is blocked if it includes a node 

such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node 

and this node is in Z 

2.the arrows meet head-to-head at the node, and neither the node, nor 

any of its descendants, is in Z

[Bishop, 8.2.2]

X and Y are D-separated by Z (and therefore conditionally indep, given 

Z) iff every path from any variable in X to any variable in Y is blocked

A path from variable A to variable B is blocked if it includes a node 

such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node 

and this node is in Z

2.the arrows meet head-to-head at the node, and neither the node, nor 

any of its descendants, is in Z

X1 indep of X3 given X2?

X3 indep of X1 given X2?

X4 indep of X1 given X2?

X1

X4 X2

X3
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X and Y are D-separated by Z (and therefore conditionally indep, given Z) iff

every path from any variable in X to any variable in Y is blocked by Z

A path from variable A to variable B is blocked by Z if it includes a node such 

that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this 

node is in Z

2.the arrows meet head-to-head at the node, and neither the node, nor any of 

its descendants, is in Z

X4 indep of X1 given X3?

X4 indep of X1 given {X3, X2}?

X4 indep of X1 given {}?

X1

X4 X2

X3

X and Y are D-separated by Z (and therefore conditionally indep, given 

Z) iff every path from any variable in X to any variable in Y is blocked

A path from variable A to variable B is blocked if it includes a node 

such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node 

and this node is in Z

2.the arrows meet head-to-head at the node, and neither the node, nor 

any of its descendants, is in Z

a indep of b given c?

a indep of b given f ?
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Markov Blanket

from [Bishop, 8.2]

How Can We Train a Bayes Net
1. when graph is given, and each 

training example gives value of 

every RV?

Easy: use data to obtain MLE or MAP 

estimates of θ for each CPD

P( Xi | Pa(Xi); θ)

e.g. like training the CPD’s of a naïve 

Bayes classifier 

2. when graph unknown or some 

RV’s unobserved?

this is more difficult…   later…
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Learning in Bayes Nets

• Four categories of learning problems

– Graph structure may be known/unknown

– Variable values may be observed/unobserved

• Easy case: learn parameters for known graph 

structure, using fully observed data

• Gruesome case: learn graph and parameters, from 

partly unobserved data

• More on these in next lectures

What You Should Know

• Bayes nets are convenient representation for 

encoding dependencies / conditional independence

• BN = Graph plus parameters of CPD’s

– Defines joint distribution over variables

– Can calculate everything else from that

– Though inference may be intractable

• Reading conditional independence relations from the 

graph

– Each node is cond indep of non-descendents, given only its 

parents

– D-separation

– ‘Explaining away’


