

Bayes Nets

D-Separation & Inference

Some slides taken from previous 10701 recitations

Bayesian Network Inference Example

The most common task we wish to solve using Bayesian networks is probabilistic inference.

		$P(C=F) \ P(C=T)$	
		0.5	0.5
C		$P(S=F) \ P(S=T)$	
F		0.5	0.5
T		0.9	0.1

Cloudy (C)

SprinklerOn (S)

Rain (R)

WetGrass (W)

Cloudy (C) influences SprinklerOn (S) and Rain (R).

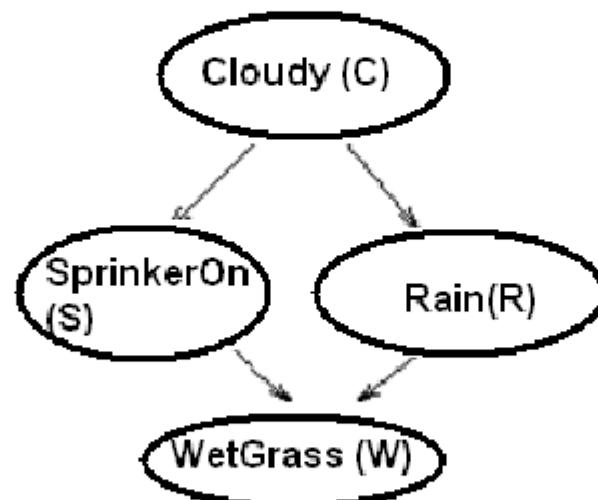
SprinklerOn (S) and Rain (R) both influence WetGrass (W).

		$P(R=F) \ P(R=T)$	
		0.8	0.2
C		$P(R=F) \ P(R=T)$	
F		0.8	0.2
T		0.2	0.8

		$P(W=F) \ P(W=T)$	
		1.0	0.0
S	R	$P(W=F) \ P(W=T)$	
F	F	1.0	0.0
T	F	0.1	0.9
F	T	0.1	0.9
T	T	0.01	0.99

BN Inference Example

- Observe that the grass is wet. What is the probability that the Sprinkler was on?



More Details

$$P(S=1 | W=1) = \frac{P(S=1, W=1)}{P(W)}$$

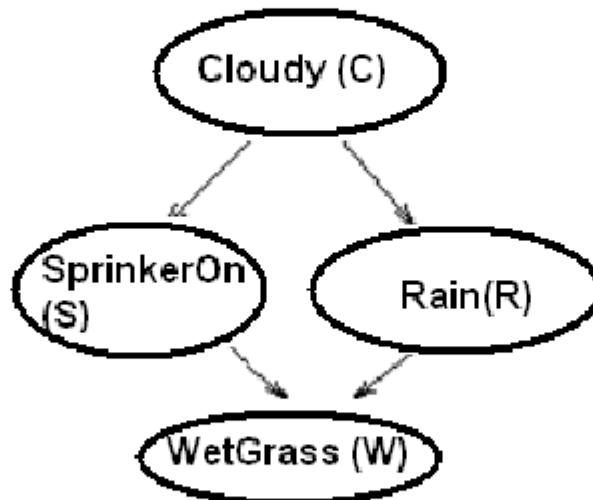
$$= \frac{\sum_{c,r} P(C=c, S=1, R=r, W=1)}{\sum_{c,r,s} P(C=c, S=s, R=r, W=1)}$$

$$= \frac{\sum_{c,r} P(C=c) P(S=1 | C=c) P(R=r | C=c) P(W=1 | S=1, R=r)}{\sum_{c,r,s} P(C=c) P(S=s | C=c) P(R=r | C=c) P(W=1 | S=s, R=r)}$$

$$= \frac{0.2781}{0.6471} = 0.43$$

Monte Carlo Sampling

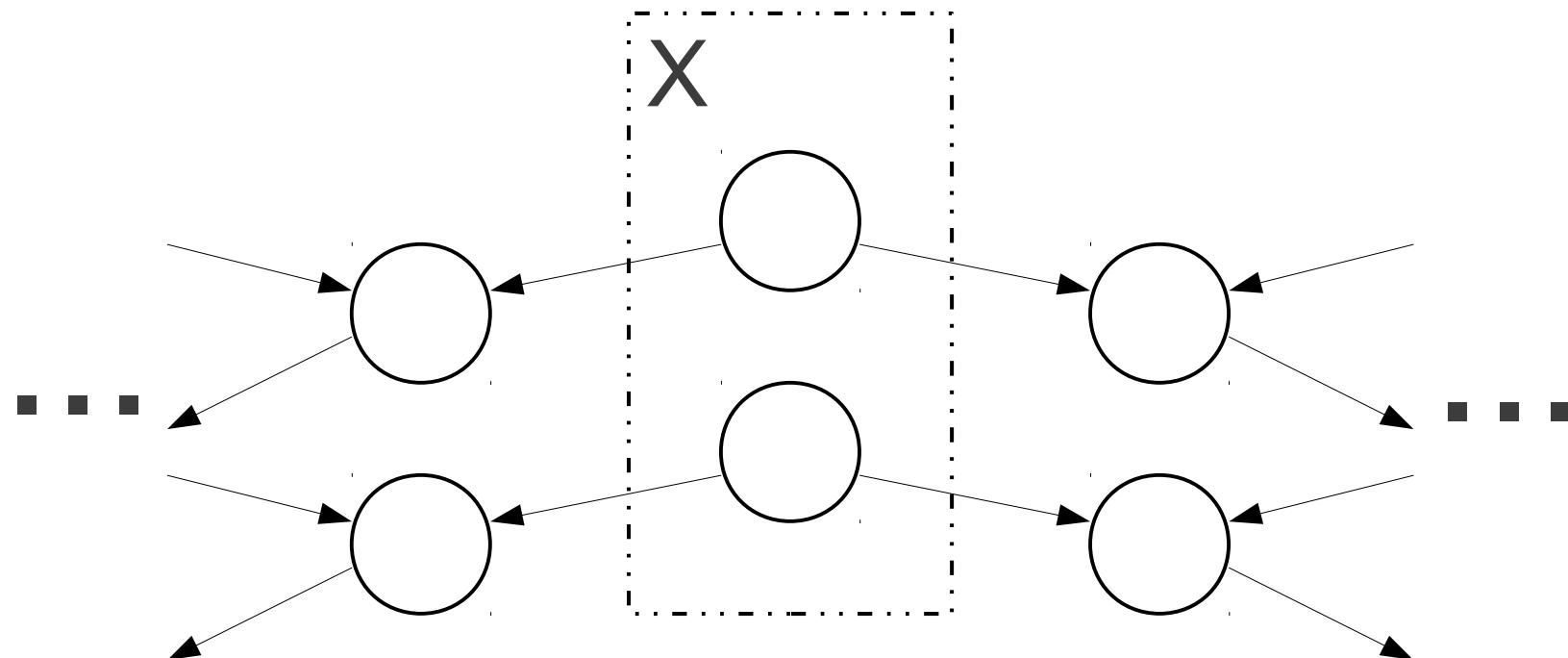
- What is the probability that the sprinkler was on given that the grass is wet?



- Sample C, then S, R, and finally W many times.
- Approximate $P(W)$, $P(S, W)$ via counting.

Why D-Separation?

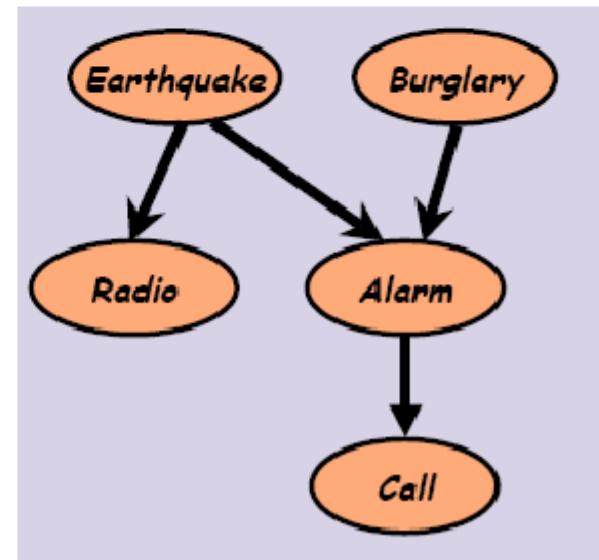
- Helps us understand the dependencies implied by a graph
- Helps us perform inference efficiently



Path

- Intuition: dependency must “flow” along paths in the graph.
- A path is a sequence of neighboring variables.

- Examples:

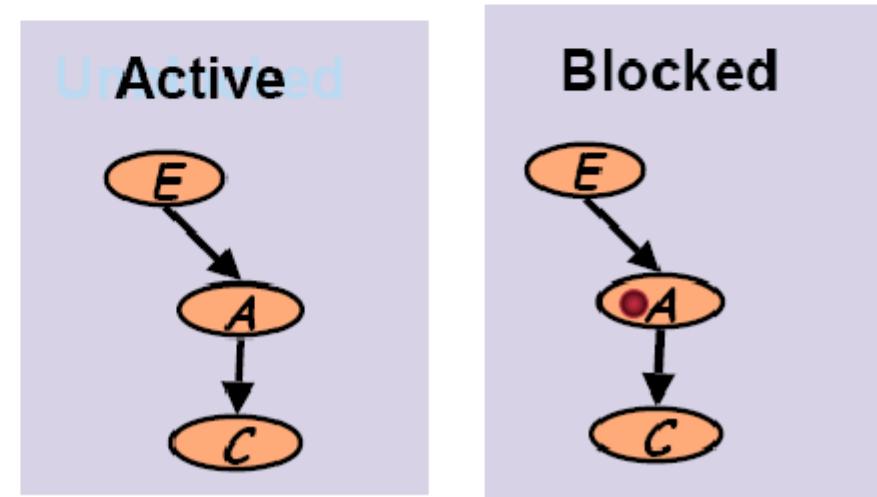
$$R \leftarrow E \rightarrow A \leftarrow B$$
$$C \leftarrow A \leftarrow E \rightarrow R$$


d-separation

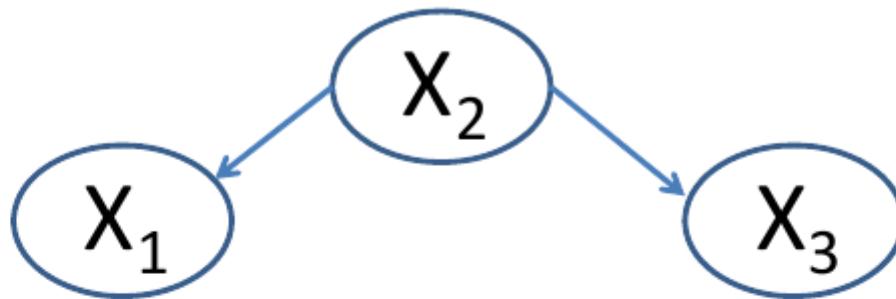
- **Definition:** If X_1 , X_2 and X_3 are three disjoint subsets of nodes in a DAG, then X_2 is said to d-separate X_1 from X_3 if **every undirected path** from X_1 to X_3 is blocked by X_2 . A path is blocked if it contains a **node Z** such that:
 - (1) Z has one incoming and one outgoing arrow and Z is in X_2 ; or
 - (2) Z has two outgoing arrows and Z is in X_2 ; or
 - (3) Z has two incoming arrows and neither Z nor any of its descendants is in X_2 .

A serial connection

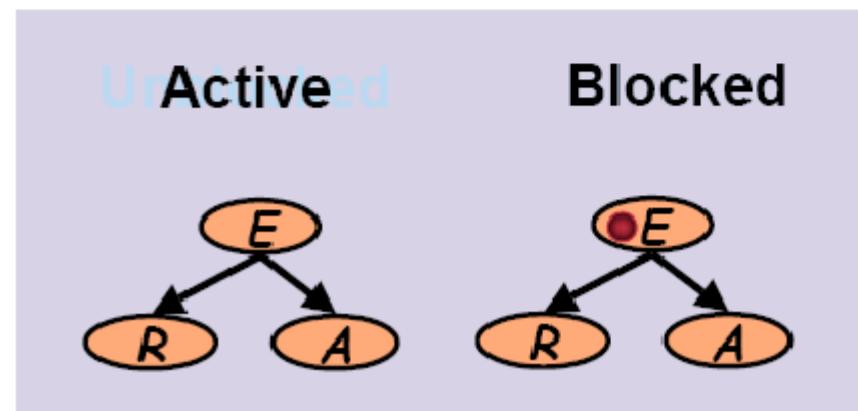
- In a serial connection from $X1$ to $X3$ via $X2$, *evidence from $X1$ to $X3$ is **blocked** only when we have hard evidence about $X2$.*
- Intermediate cause.



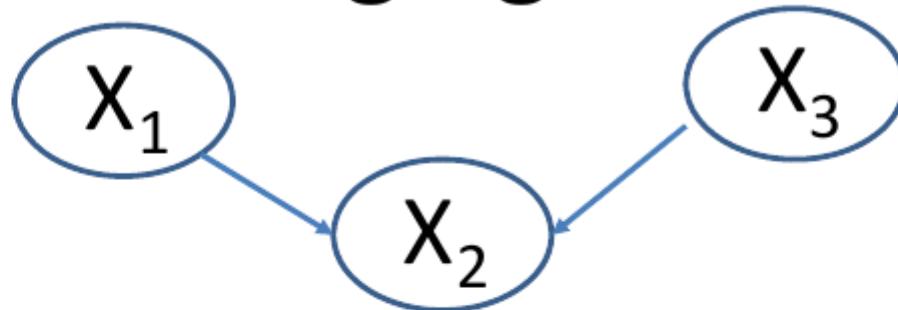
A diverging connection



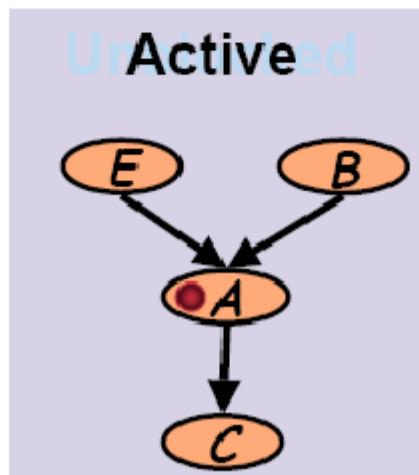
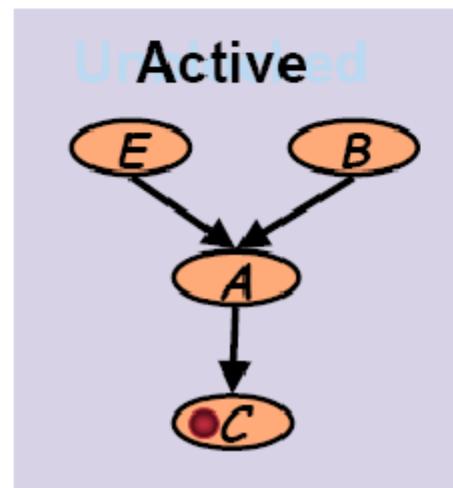
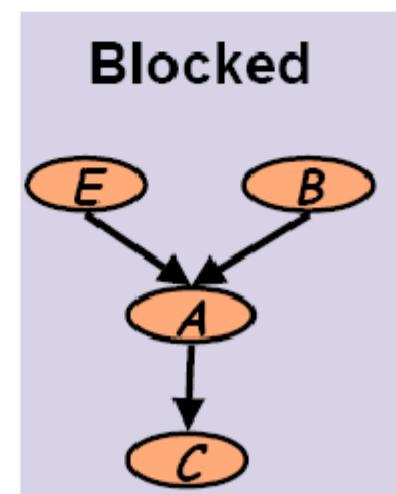
- In a diverging connection where X_1 and X_3 have the common parent X_2 , evidence from X_1 to X_3 is blocked only when we have hard evidence about X_2 .
- Common cause.



A Converging connection

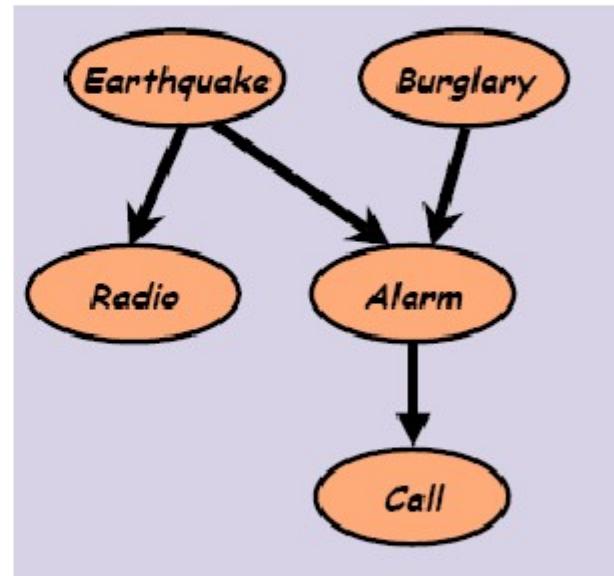


- In a converging connection where X_2 has parents X_1 and X_3 , any evidence about X_2 results in evidence transmitted between X_1 and X_3 .
- Common Effect.



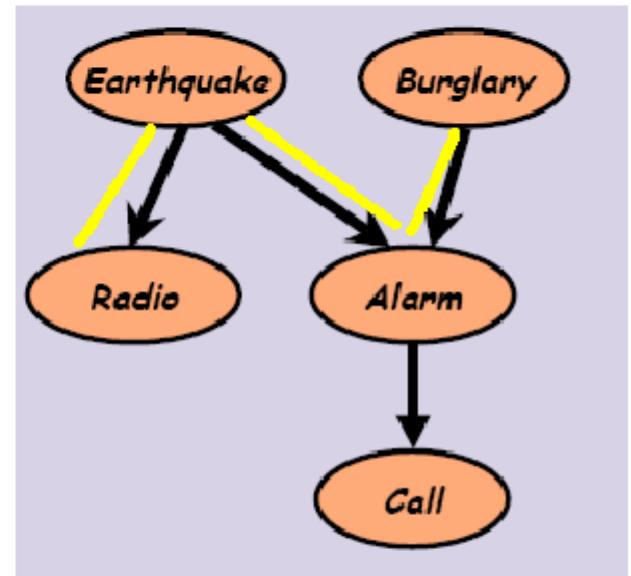
Example 1

- $d\text{-sep}(R, B)$?



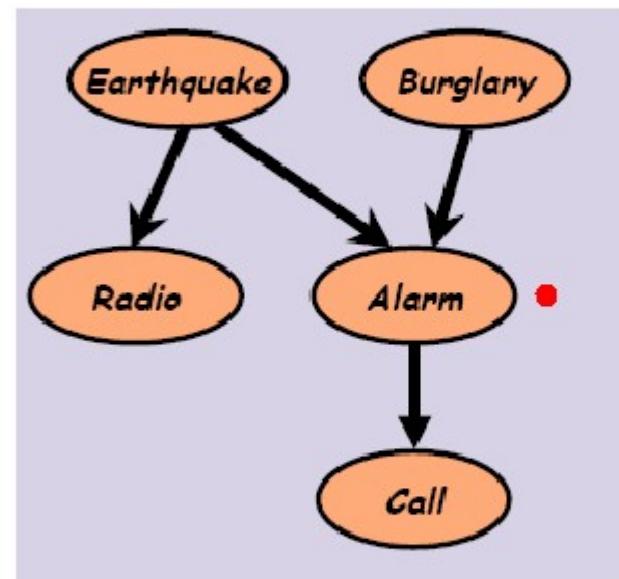
Example 1

- $d\text{-sep}(X_1, X_3 | X_2)$
- $d\text{-sep}(R, B) ?$
 - $X_1 = \{R\}$, $X_3 = \{B\}$, $X_2 = \{\}$
 - Find all the path between R, B
 - Check the node:
 - Earthquake.
(diverging, not in X_2). Not blocking.
 - Alarm
(Converging, A or C are not in X_2). Block!



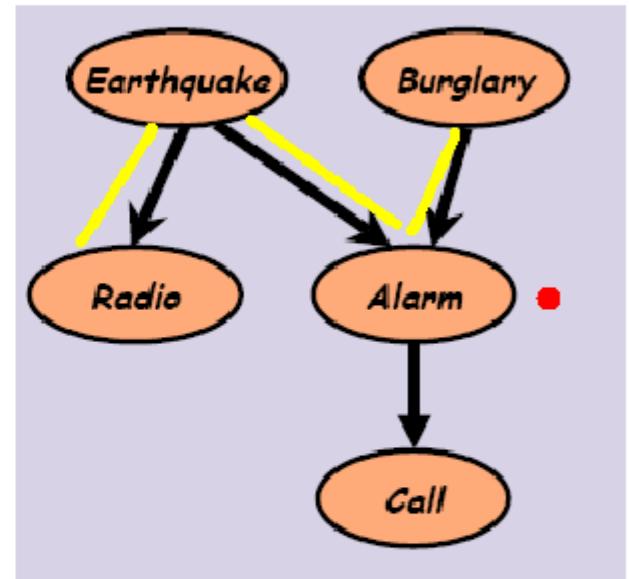
Example 2

- $d\text{-sep}(R, B | A) ?$



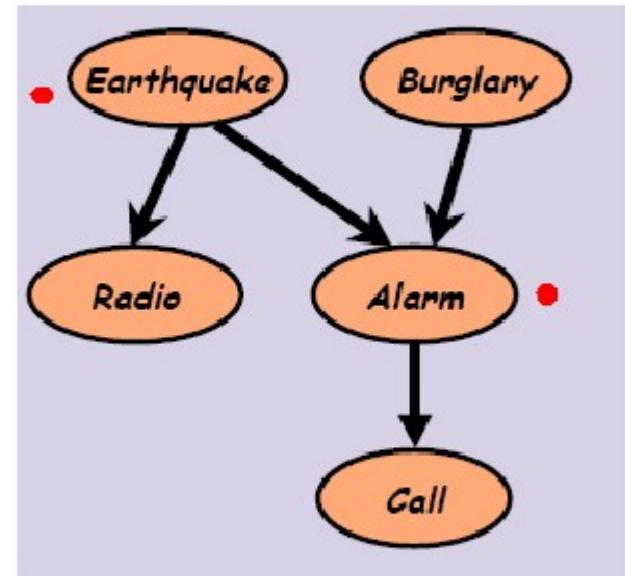
Example 2

- $d\text{-sep}(X_1, X_3 | X_2)$
- $d\text{-sep}(R, B | A)?$
 - $X_1 = \{R\}$, $X_3 = \{B\}$, $X_2 = \{A\}$
 - Find all the path between R, B
 - Check the node:
 - Earthquake.
(diverging, not in X_2). Not blocking.
 - Alarm
(Converging, A or C are **IN** X_2). Not blocking!



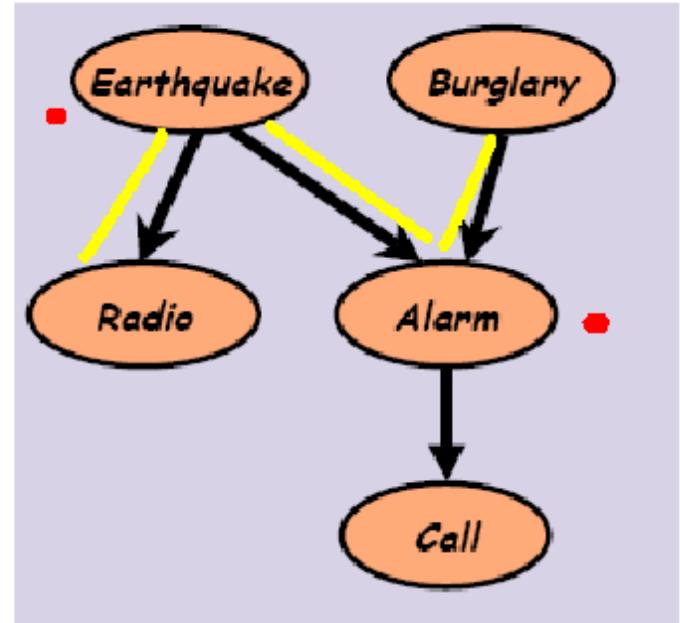
Example 3

- $d\text{-sep}(R, B | E, A) ?$



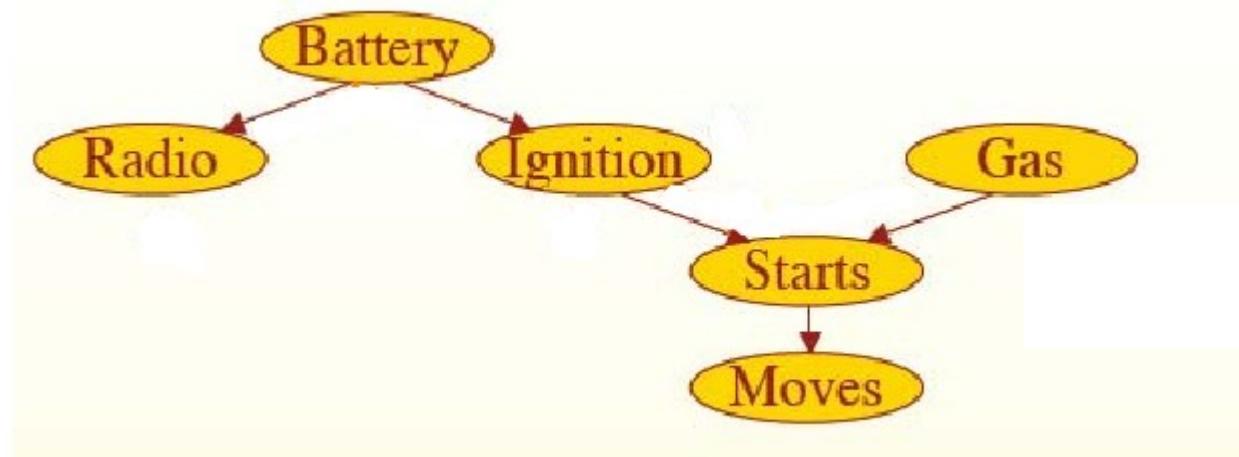
Example 3

- $d\text{-sep}(X_1, X_3 | X_2)$
- $d\text{-sep}(R, B | E, A) ?$
 - $X_1 = \{R\}$, $X_3 = \{B\}$, $X_2 = \{E, A\}$
 - Find all the path between R, B
 - Check the node:
 - Earthquake.
(diverging, **IN** X_2). Blocking!
 - Alarm
(Converging, A or C are **IN** X_2). Not blocking.



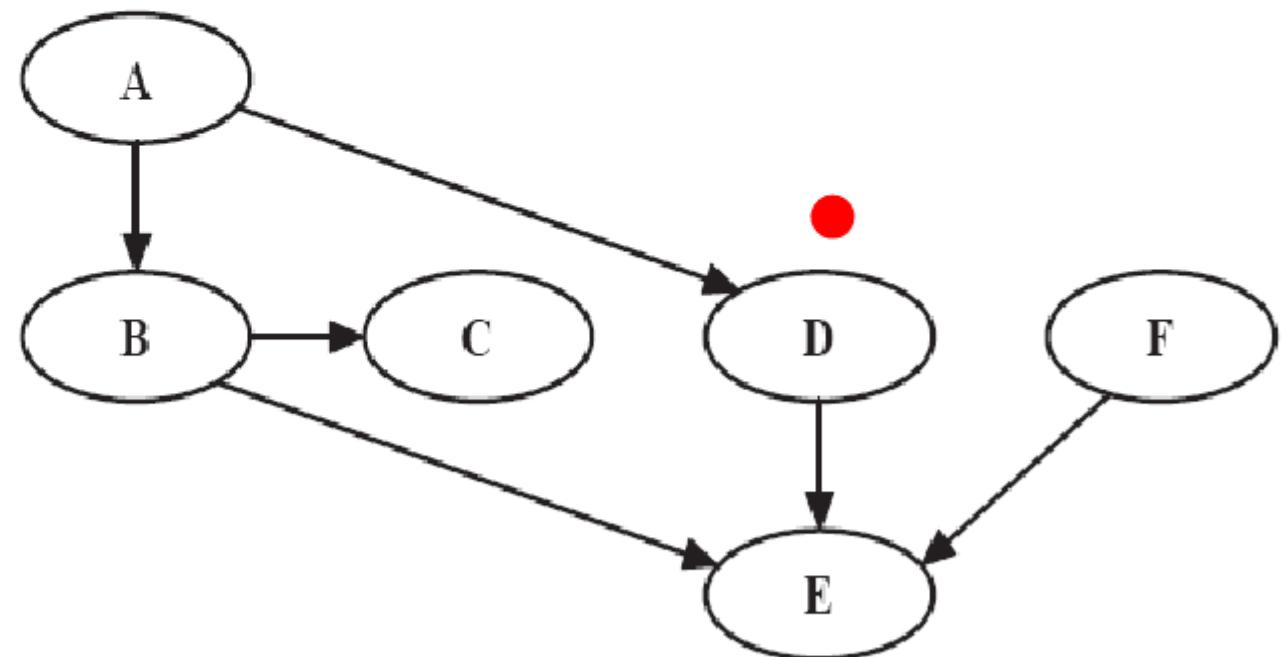
Example 4

- $d\text{-sep}(\text{Radio}, \text{Gas} | \text{Moves})?$



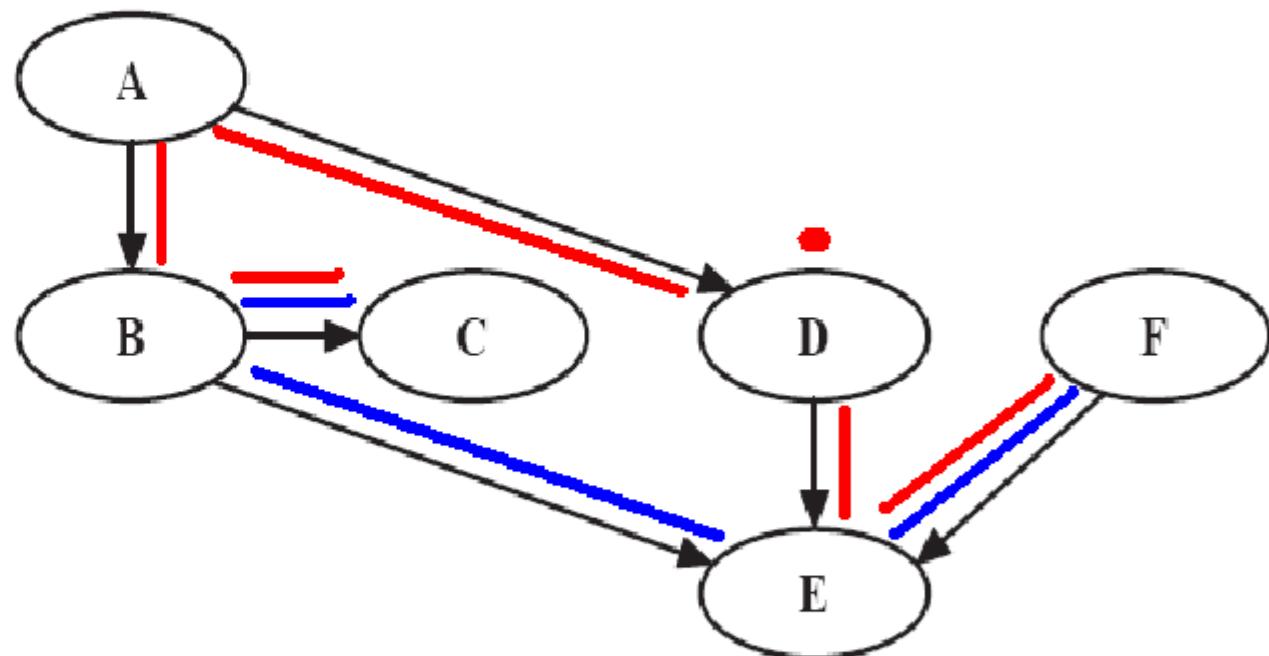
D-seperation: Multiple Paths

- $d\text{-sep}(\{C\}, \{F\} | \{D\})?$



D-seperation: Multiple Paths

- $d\text{-sep}(\{C\}, \{F\} | \{D\})?$

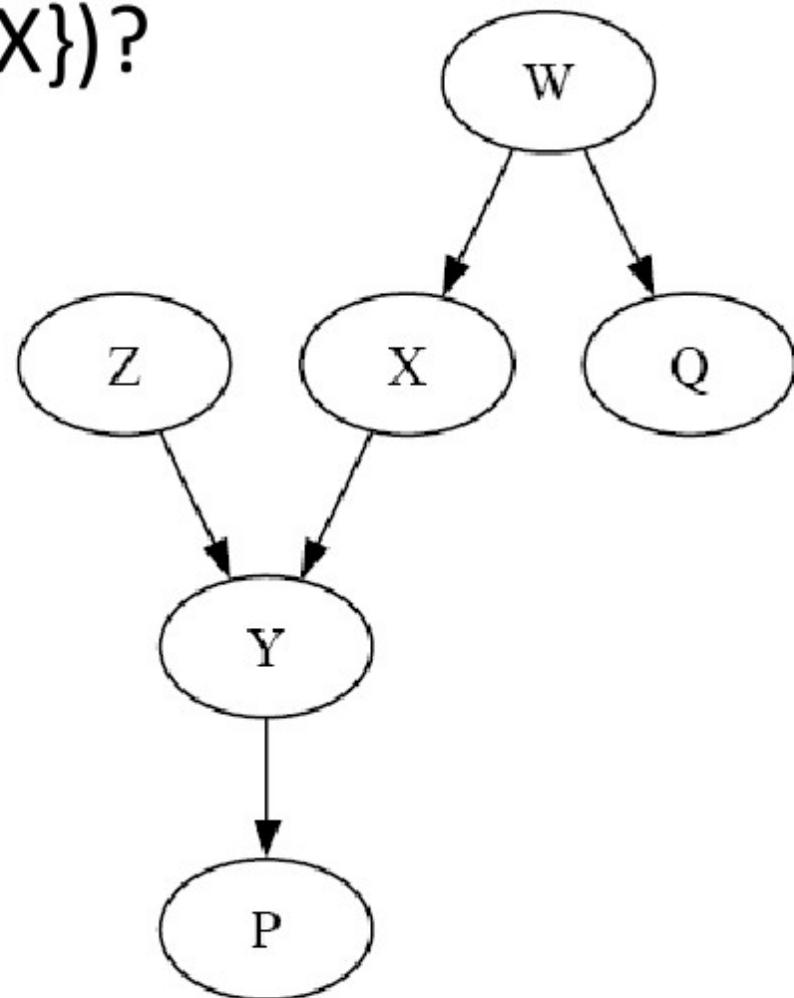


Red path is blocked
by D.

Blue path is blocked
by E not in evidence.

D-seperation on Sets

- $d\text{-sep}(\{Z, Y, P\}, \{W, Q\} \mid \{X\})?$



D-seperation on Sets

- $d\text{-sep}(\{Z, Y, P\}, \{W, Q\} | \{X\})?$ YES

Blue path is a closed sequential path since we condition on X.

