Reinforcement Learning

Some slides taken from previous 10701 recitations/lectures



A (Fully Deterministic) World
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A policy is a mapping from State => Action. Normally denoted as mt(x)=a
“What action do | make if | find myself in a particular place?”

Possible Questions.

1. If | am in state X. What is the value of following a particular policy?
2: What is the best policy?



== 1
1l 1l Focse
! ! |
—= —_

Set of states S

Set of actions A

At each time, agent observes state s, € S, then chooses action a, € A
Then receives reward r,, and state changes to s,

Markov assumption: P(s. | S, @y Si1, @1y ---) = P(Seq | S @)

Also assume reward Markov: P(r,| s, a;, Sy, 8p.1,.--) = P(r | s @)



Long Term Reward

Total Reward: Reward is discounted by the time | obtained it
t
valuezz yr,;y=0.8

4

Start here ‘_5
—> —

< 50
A‘ A‘ PI=1OOI

! ! L




Long Term Reward

Total Reward: Reward is discounted by the time | obtained it
t
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We can Reuse Computation!



Value of a Policy if | run for O time steps
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Value of a Policy if | run for 1 time step
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Value of a Policy if | run for 2 time steps
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Value of a Policy if | run for 3 time steps
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Non-deterministic World
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Non-deterministic World
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Non-deterministic World
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Non-deterministic World
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Value Iteration

Viti(z) = R(z,m(x) + v 32, P(@'|z,a = n(x))Vi(a')
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Immediate reward of following policy  Discounted future reward




Find BEST Policy

Ask the question in a slightly different way.
What is the Value of the Best Policy?

Viti(z) = \R(l’» 7T(flf)’) + \7 2 Pz, 0 = 7T(-fl?))Vt(ﬂf’)l
! Y

Immediate reward of following policy  Discounted future reward

V*(x) = maxa/\R(:c, a’) + ”Y\Zx/ P(z'|x,a = a’)V*(x;)
! Y

Immediate reward of following policy Discounted future reward




Find BEST Policy

What is the Value of the Best Policy?

V*(x) = maxa/\R(aj, a’} +~>. . P(@|z,a = a")V*(2')
\ l
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Immediate reward of following policy Discounted future reward

m(z) = argmazry R(x,a") +v>__, P(2'|z,a = a")V*(2')

The optimal policy is optimal at every state!



Policy Learning Example
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Policy Learning Example




Policy Learning Example
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Backgammon

Learning task:
« chose move at arbitrary board states

Training signal:
* final win or loss

Training:
« played 300,000 games against itself

Algorithm:
* reinforcement learning + neural network

Result: SOmEthlng IS
« World-class Backgammon player WIO ng he re. ..



Backgammon

Dealing with huge state spaces

Estimate V*(x) instead of [1(x)
Approximate V*(x) using a neural net

V*(z) = maxy R(z,a')+v).  P(a'|z,a =a")V*(2')
\ I

0 except when you win or lose |

Can be estimated from our current network
In this case, P(x'|x,a=a') is 0 or 1 for all x'

Since V* is a neural net, we can't 'set' the value V*(x)
Instead, use target V*(x) as a training example for the NN

Can't visit every state, so instead play games against yourself
to visit the most likely ones.



Unknown World
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Do not know the transitions.
Do not know the probabilities.
Do not know the rewards.

Only know a state when
we actually get there!

Possible Questions.
1: | am in state X. What is the value of following a particular policy?
2: What is the best policy?



Value of Policy

If | know the rewards:
Vith(z) = R(x,m(x)) +v >, P@'|x,a = w(x))Vi(2)

If | do not know the rewards:
Vit (x)=a(r 4y (Vi(x, )+ (1—a) Vi (x,)



Learning a Policy: Q Learning

Define Q which estimates both values and rewards:
Q(s,a) =r(s,a) +yV7(d(s,a))

Where (s, a) is the result of taking action a in state s



Learning a Policy: Q Learning

?

Estimate Q the same way we estimated V

Vi (x)=ar 4y (Ve () +H(1T—a) Vi(x,)

0" (x, a)=alr,+y(max, 0'(x,,,a"))+(1-x)0'(x,, a,)



Q Learning Example
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Q Learning Example
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Q Learning Example
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Q converges to Q. Consider case of deterministic
world where see each (s, a) visited infinitely often.

Proof: Define a full interval to be an interval during
which each (s, a) is visited. During each full
interval the largest error in Q table is reduced by
factor of ~

Let QAH be table after n updates, and A, be the
maximum error in ),,; that is

n — H}%X |Qn(37a) o Q(S,G”

For any table entry Q. (s, a) updated on iteration
n + 1, the error in the revised estimate @,.1(s, a) is

Quir(s,0) = Q(s,a)| = [(r+7maxQu(s,a))
~(r +ymax Q(s',a))|

< ymax |Qu(s, ') — Q(s, d')|
< ymax |@n(3”aa*f) —Q(s",d)|
Qui1(s,a) — Q(s,a)] < A,

Use general fact:

| max f1(a) — max fr(a)| <

. max | fi(a) — fa(a)|
v|lmax Q,(s',a’) — max Q(s’,aV
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