

Support Vector Machines

Kernel Methods

Why SVMs?

- Question: at what serial number did the new \$5 bill enter circulation?

Old

Old Old

Old

New New New

Serial No.

Why SVMs?

- Question: at what serial number did the new \$5 bill enter circulation?

- If we assume approximately uniformly-distributed observations, then the likelihood will be approximately uniform over $[\max(\text{Old}), \min(\text{New})]$
- Min expected squared-error is max margin

Why SVMs?

- Sometimes the boundaries of the classes are more “informative” than the overall distribution of the classes.

Why SVMs?

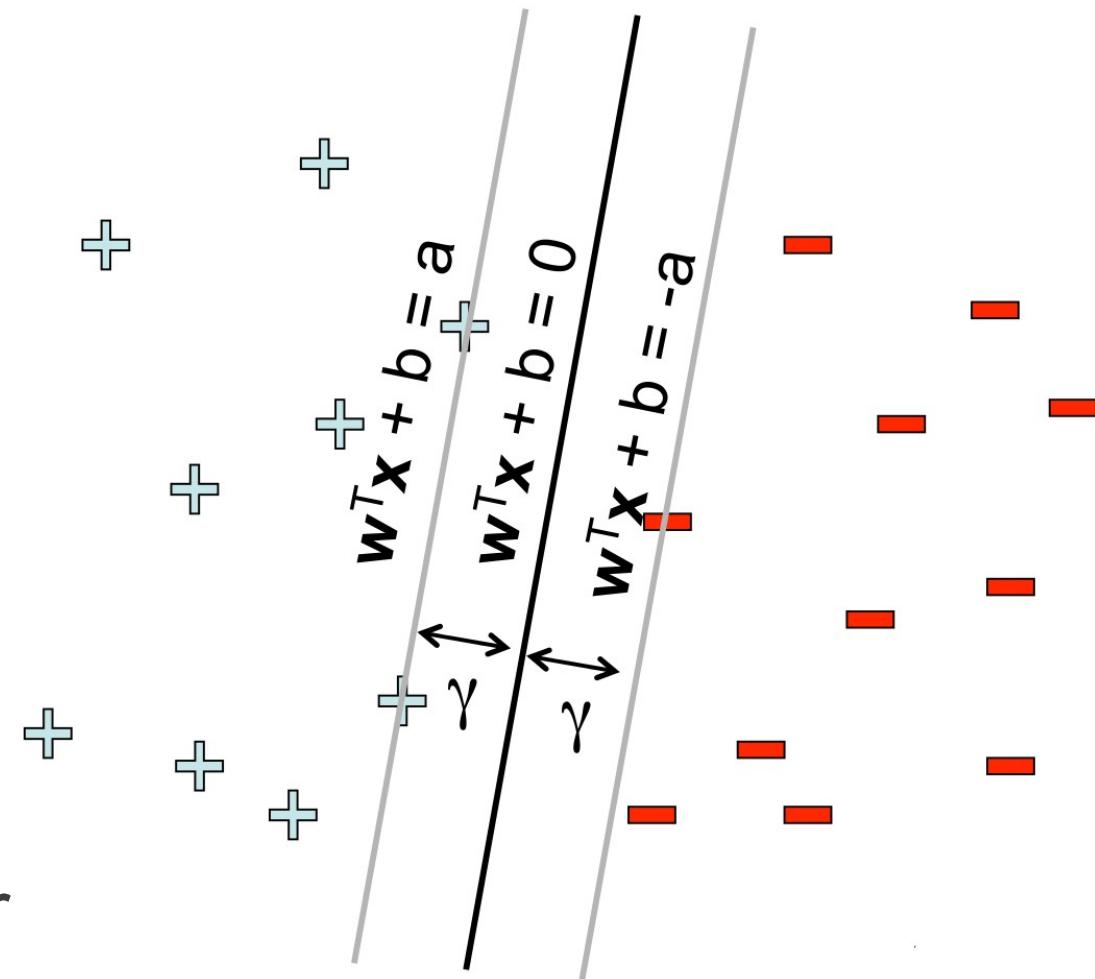
- Sometimes the boundaries of the classes are more “informative” than the overall distribution of the classes.
- SVMs are faster.

Hard-margin SVMs

- Enforce that all points are out of the margin:
$$(\mathbf{w}^T \mathbf{x}_j + b) y_j \geq a$$
- Then maximize margin:

$$\max_w \gamma = \frac{a}{\|\mathbf{w}\|}$$

- Here, a is the margin after points are projected onto \mathbf{w}
- solution is the same for any a

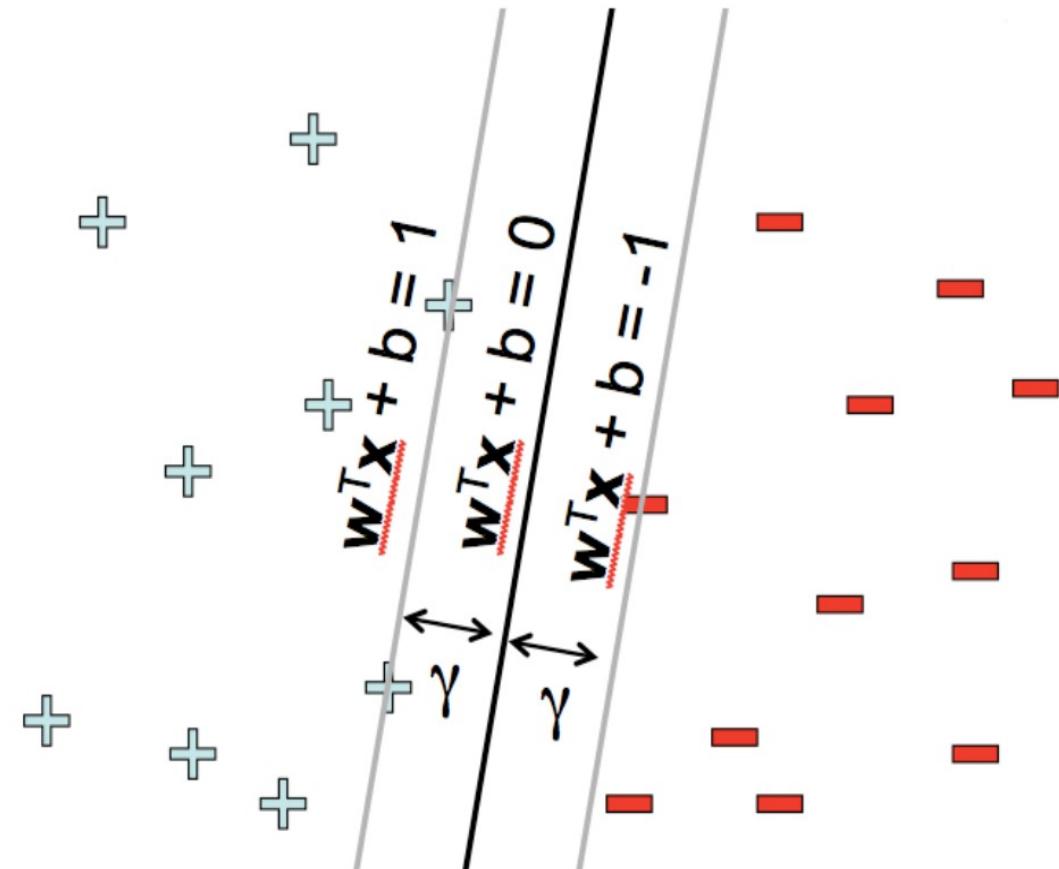


Hard-margin SVMs

- set $a=1$, rewrite:

$$\min_w \|w\|$$

$$(w^T x_j + b) y_j \geq 1$$

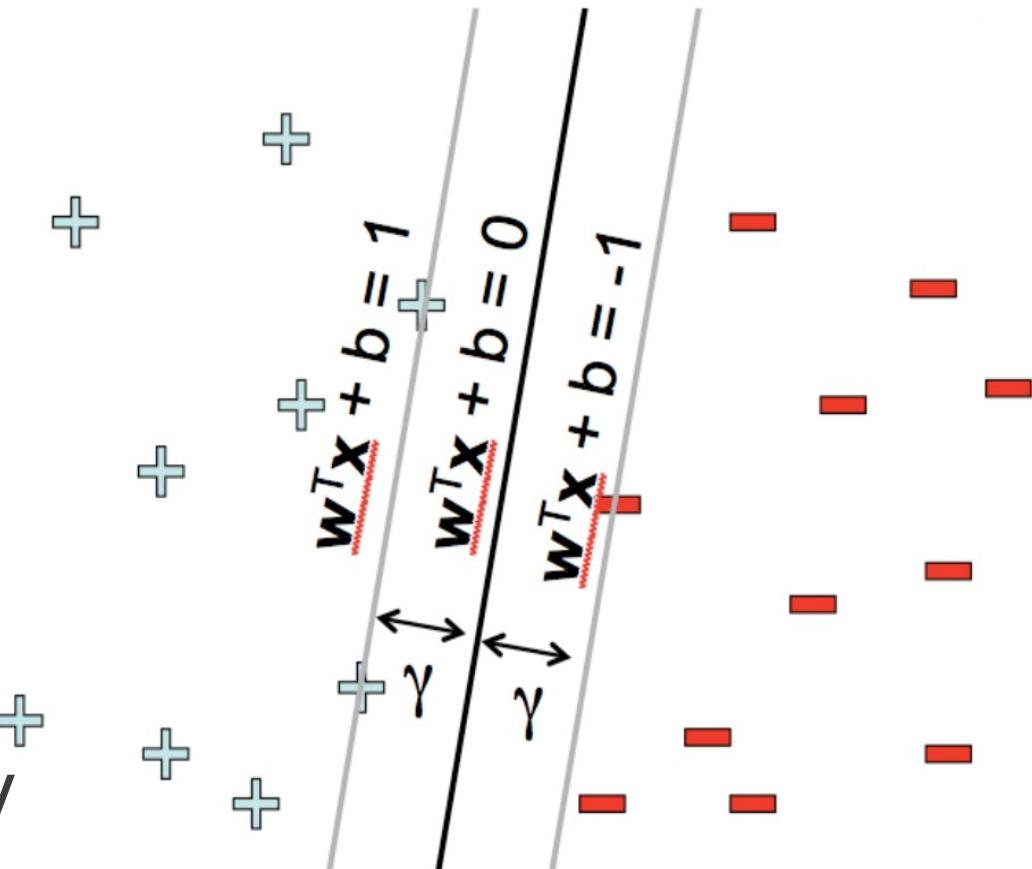


Hard-margin SVMs

- Dual form: W is a linear combination of training examples.

$$w = \sum_{l=1}^M \alpha_l y_l x_l$$

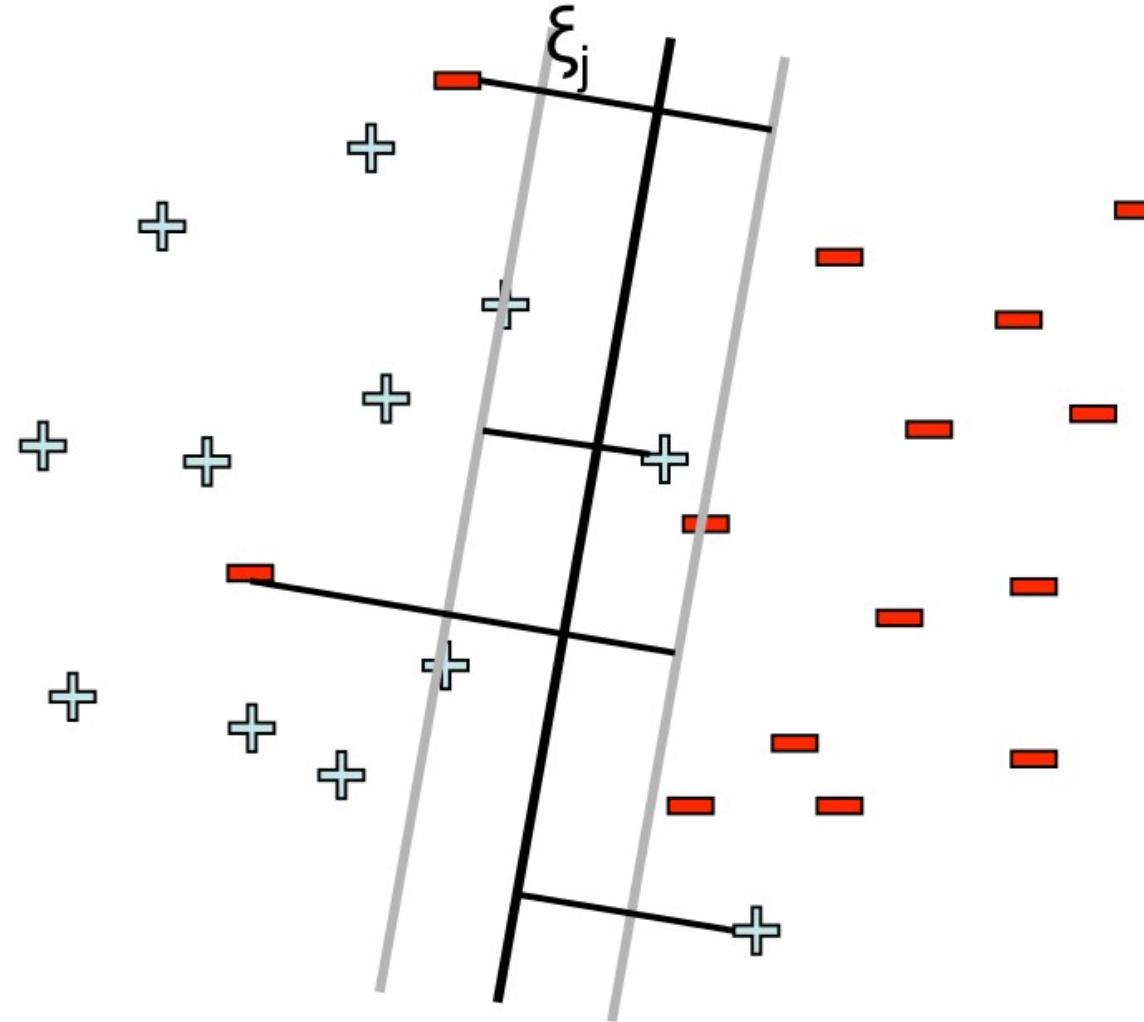
- Can optimize α 's directly
- α 's will be 0 except for support vectors.



Soft-margin SVMs

- Slack variables ξ which represent how 'wrong' our prediction is.

$$\min_w \|\mathbf{w}\| + C \sum_j \xi_j$$
$$(\mathbf{w}^T \mathbf{x}_j + b) y_j \geq 1 - \xi_j$$



Support Vector Machines **Kernel Methods**

Why Kernels?

- The HOG features of a patch:

(Dalal & Triggs 2005)

Why Kernels?

- Given this dog as input:

- This window is very close:

- And both of these windows are *somewhat* close:

Why Kernels?

- This window is very far:

- Distances mean nothing past a certain point
- We want a classifier that gives more weight to 'nearby' examples

Why Kernels?

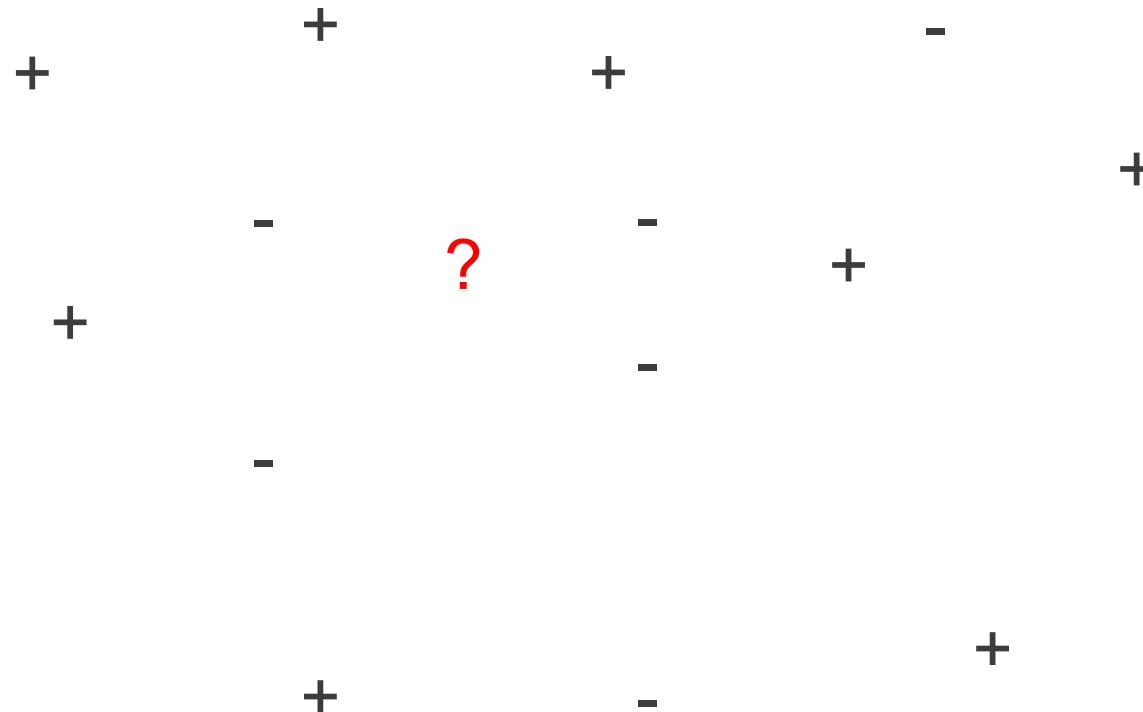
- Sometimes it is easier to define similarity between examples than it is to embed them in a feature space!
- Similarity of two patches a and b , for example:

$$\exp\left(-\frac{\|HOG(a) - HOG(b)\|_2^2}{2\sigma^2}\right)$$

- The kernel lets us not worry about the underlying HOG space.

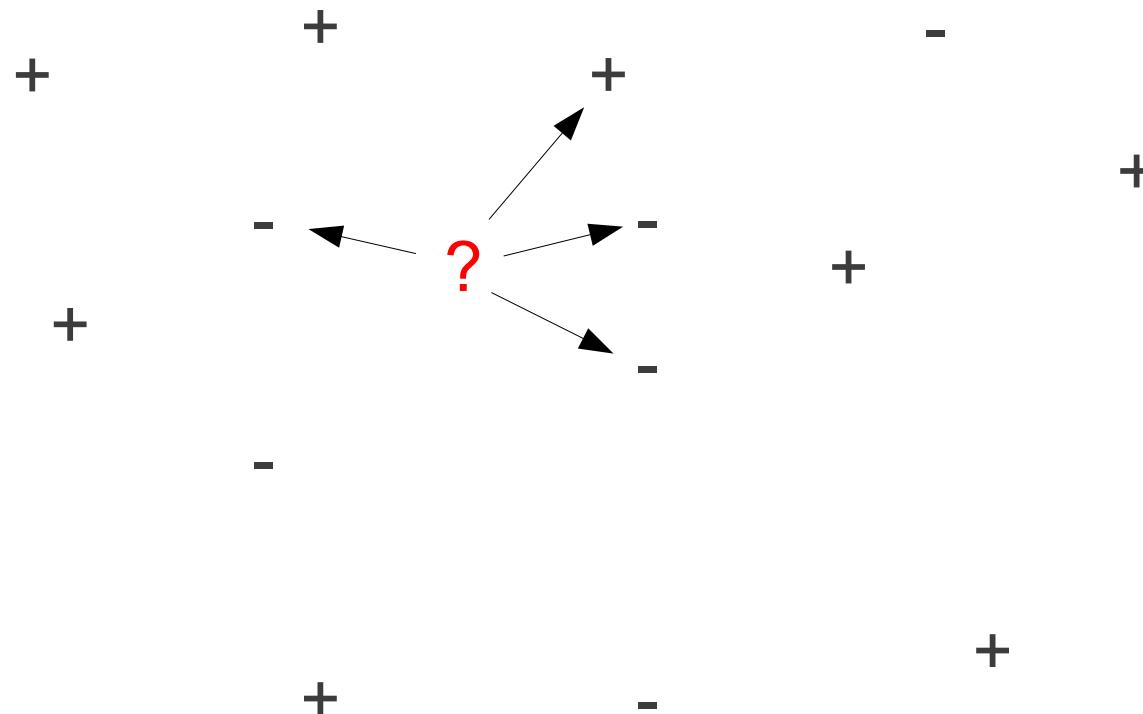
Classification & learning with Kernels

- Simplest idea: k-nearest neighbors



Classification & learning with Kernels

- Simplest idea: k-nearest neighbors
- Find nearest points using the kernel

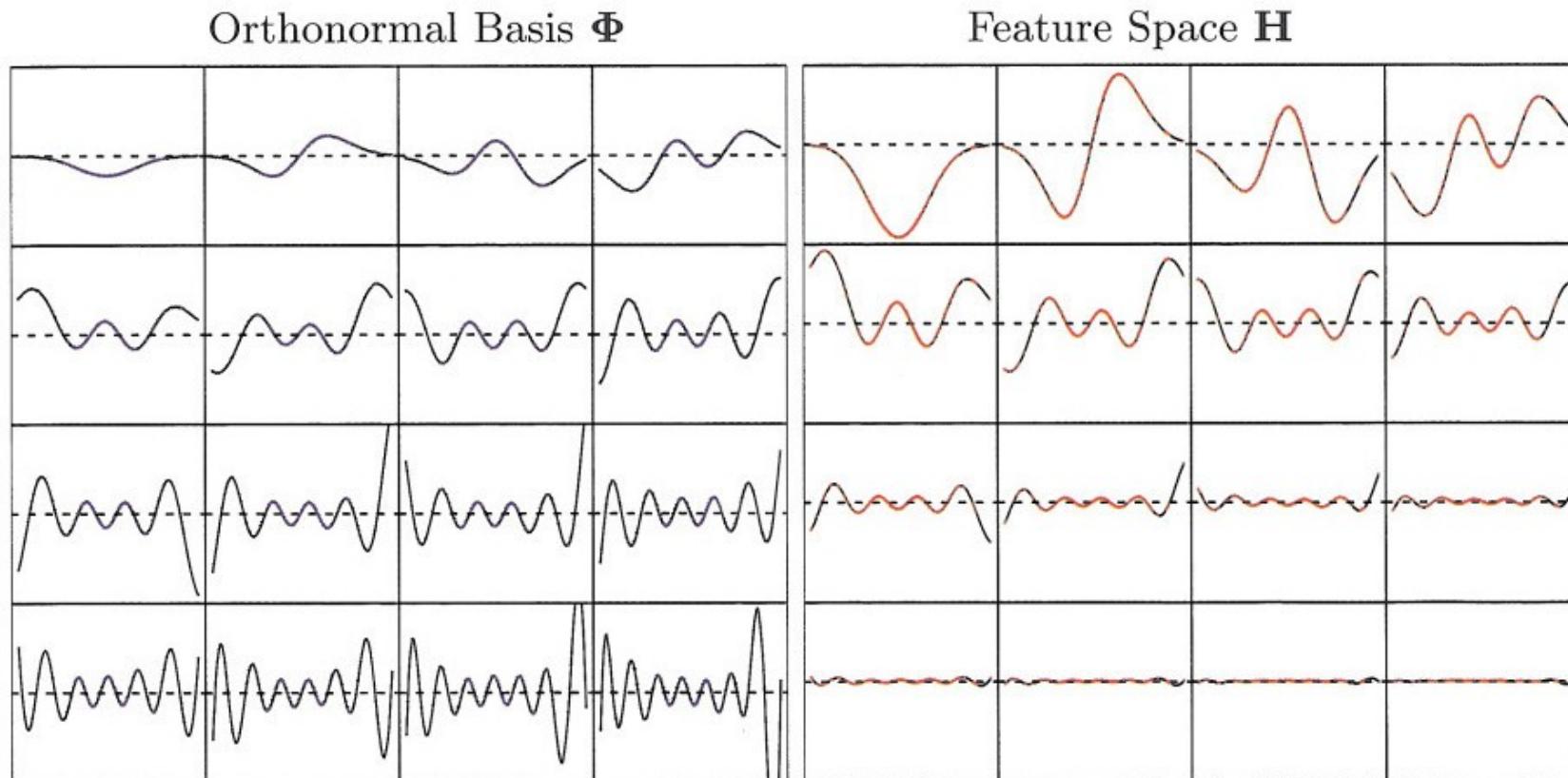


Linear methods with Kernels

- We want to maintain the properties of linear methods such as linear regression and, especially, support vector machines
- One approach: find a (possibly infinite-dimensional) space where dot product between two points in the space equals the kernel evaluated on the two points

Linear methods with Kernels

- Largest 16 bases corresponding to the Gaussian kernel in one dimension, over a bounded interval:



(Hastie, Tibshirani & Friedman 2009)

How do you compute these bases?

- You don't. You get lucky with math instead.
- This is the kernel trick: for many important problems, the final regression function has the form:

$$f(\mathbf{x}) = \sum_{x^l \in \text{trainingSet}} \alpha_l * \kappa(\mathbf{x}, \mathbf{x}^l)$$

- Where κ is the kernel and the α 's are a function of only the training data.
- Plug in testing examples as \mathbf{x} and get a prediction in time linear in the size of the training set.

How to compute the α 's?

- For linear regression in the a known space, use this formula to compute the α 's:

$$\alpha = (X X^T + \lambda I_m)^{-1} y$$

$$f(x) = \sum_{x^l \in trainingSet} \alpha_l * \langle x, x^l \rangle$$

- See Tom's slides for derivation

How to compute the α 's?

- For linear regression in the expanded space, use this formula to compute the α 's:

$$\boldsymbol{\alpha} = (K + \lambda I_m)^{-1} \mathbf{y}$$

$$f(\mathbf{x}) = \sum_{\mathbf{x}^l \in \text{trainingSet}} \alpha_l * \kappa(\mathbf{x}, \mathbf{x}^l)$$

- Where $K_{ij} = \kappa(\mathbf{x}^i, \mathbf{x}^j)$
- See Tom's slides for derivation

This works for SVM's too

- For any valid kernel, the final SVM classifier will have the form:

$$f(\mathbf{x}) = \sum_{\mathbf{x}^l \in \text{trainingSet}} \alpha_l * \kappa(\mathbf{x}, \mathbf{x}^l)$$

- Compute α 's via:

$$\begin{aligned} \max_{\alpha_1 \dots \alpha_M} \quad & \sum_{l=1}^M \alpha_l - \frac{1}{2} \sum_{j=1}^M \sum_{k=1}^M \alpha_j \alpha_k y_j y_k \kappa(\mathbf{x}_j, \mathbf{x}_k) \\ \text{s.t.} \quad & \alpha_l \geq 0 \quad \forall l \in \text{training examples} \\ & \sum_{l=1}^M \alpha_l y_l = 0 \end{aligned}$$