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Outline
 Overfitting
◦ True, training, testing errors, and overfitting

 PAC learning (finite hypothesis space)
◦ Consistent learner case, and agnostic case

 PAC learning (infinite hypothesis space)
◦ VC dimension, VC bounds, structural risk 

minimization
 Mistake bounds
◦ Find-S, Halving algorithm, weighted majority algorithm

 Semi-supervised learning
◦ The general idea, EM, co-training, NELL
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Training error and true error
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Training error and true error
 Is                 an unbiased approximation to the 

true error              ? No !
◦ Training error is an approximation to the true error
◦ Key:  h is selected using training examples
◦ On h, it is likely to be an underestimate

4



Overfitting
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Testing error and true error
 Testing error is an unbiased approximation to 

the true error
◦ as the testing set are i.i.d. samples draw from the true 

distribution independently of h

6



An example of overfitting

 What if the training set  infinite?
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PAC learning: finite hypothesis space

 Training error underestimates the true error !
 In PAC learning, we seek theory to relate:
◦ The number of training samples: m
◦ The gap between training and true errors

◦ Complexity of the hypothesis space: |H|
◦ Confidence of this relation:  at least
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A special case: training error is 0
 In PAC learning, we seek theory to relate:
◦ The number of training samples: m
◦ The gap between training (0) and true errors

◦ Complexity of the hypothesis space: |H|
◦ Confidence of this relation:  at least

 What is the probability that there exists 
consistent hypothesis with true error >   ?
◦ i.e., represent    using other quantities
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Derivation …
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Bounds for finite hypothesis space
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Agnostic learning
 Training error is not 0
 In PAC learning, we seek theory to relate:
◦ The number of training samples: m
◦ The gap between training and true errors

◦ Complexity of the hypothesis space: |H|
◦ Confidence of this relation:  at least
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Agnostic learning
 In PAC learning, we seek theory to relate:
◦ The number of training samples: m
◦ The gap between training and true errors

◦ Complexity of the hypothesis space: |H|
◦ Confidence of this relation:  at least

 The bound on

◦ Derived from Hoeffding bounds 
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Agnostic learning
 The bound on

◦ Derived from Hoeffding bounds

 Also 
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PAC learnable
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PAC learning: infinite hypothesis space

 Bounds for finite hypothesis space
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VC dimension

 VC(H): size of the largest sample set that 
can be shattered by H

◦ Shatter: correctly classify regardless of the 
labelings
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VC dimension: an example
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VC dimension: an example
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VC dimension: an example
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VC(H) vs. |H|

 Any relation between VC(H) and |H| ?
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VC bounds

 Bound on m using other quantities

 Bound on error using other quantities
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Structural risk minimization
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Mistake bounds
 Consider the following setting:
◦ Instances draw randomly from X according to the 

data distribution P(X)
◦ The learner must classify each instance x before 

knowing its label
◦ How many mistakes before the learner converges to 

the correct concept?
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Mistake bounds
 Consider the following setting:
◦ Instances draw randomly from X according to the 

data distribution P(X)
◦ The learner must classify each instance x before 

knowing its label
◦ How many mistakes before the learner converges to 

the correct concept?
 Analogy: given a pool of “experts”, how many 

mistakes before we find the “true expert”?
 Difference from the PAC learning bound
◦ Do not care about how many samples we see
◦ Care about how many mistakes we make
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Halving algorithm

 Start from a hypothesis space H
 Given each new instance x
◦ Majority voting from all h in H to classify x
◦ Obtain the label of x
◦ Remove from H those misclassify x

 Bound the number of mistakes K?
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Weight Majority Algorithm

 What is there is no “perfect” function h in 
the hypothesis space H?

 Can we design an algorithm using H, such 
that #mistakes is “close” to using the best 
h in H?

 Yes! Weighted majority algorithm:
◦ Assign initial weight one to each h in H
◦ Make prediction by weighted majority voting
◦ Update the weight of each h in H
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Semi-supervised learning
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Semi-supervised learning

 Why do we care?
◦ Unlabeled data is much easier to obtain!

 How can we use unlabeled data to help?
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EM

 Learn the initial model using a few labeled data
 Iterate:
◦ Use the model to “guess” unknown labels
◦ Re-learn the model using labeled + unlabeled data
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EM

 Any problem?
◦ The initial model can be inaccurate
◦ The “guess” on unknown labels may be inaccurate
◦ Model re-learned using inaccurate information
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Co-training and multi-view learning

 Features in X can be split into multiple views
 Ideally, each view is sufficient to predict Y
 Ideally, views are conditionally independent given Y
 Example: hyperlink view + page view  prof.  or not?
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 Difference to EM
◦ Directly assign labels instead of estimating expectation
◦ Use two (or more) models from different views !

 Potential problem? Self-labeling noise?
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 Idea for dealing with self-labeling noise?
 Last step:
◦ Add only consistent self-labeled examples to L? 
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Semi-supervised Learning in NELL

 NELL (never-ending language learning)
 Coupled semi-supervised learning
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Coupled semi-supervised learning

 Given: labeled set L, unlabeled set U
 Loop
◦ For each task i, learn the classifier fi using L
◦ For each task i, use fi to label samples in U
◦ Add self-labeled examples to L if labels from 

all fi are consistent
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Semi-supervised learning

 Self labeling is only one way for SSL
 Many many other ways …
 See: 
◦ Xiaojin Zhu. Semi-Supervised Learning 

Literature Survey. 
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Questions?
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