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Training error and true error

True error of hypothesis h with respect to ¢

e How often h(x) # c(xz) over future 1nstances
drawn at random from D

_ Probability
errorp(h) = EE[C(:':) 7 h(l‘)] distribution

P(x)

Training error of hypothesis h with respect to
target concept c

e How often h(x) # ¢(x) over training instances D

>reD 0(c(z) # h(z))
D]

erroriain(h) = xFE’E)[C(w) # h(z)] =

training
examples




Training error and true error

* |Is errori.in(h) an unbiased approximation to the
true error errorp(h) ? No !
° Training error is an approximation to the true error
> Key: h is selected using training examples

> On h, it is likely to be an underestimate

Training error of hypothesis h with respect to
target concept c

e How often h(z) # ¢(z) over training instances D

T — oz ()] = ZII:ED(S(C(:H) - h’(-T))
€TT07f,-(,,,,(h-) = :IYEE)[ () '_/é I’()] = |D’

training
True error of hypothesis h with respect to ¢ examples




Overfitting

Consider error of hypothesis h over
e training data: errori.q.i,(h)
e entire distribution D of data: errorp(h)

Hypothesis h € H overfits training data if there is
an alternative hypothesis h' € H such that

errorirain(h) < erroriyain(h')

and
errorp(h) > errorp(h’)



Testing error and true error

 Testing error is an unbiased approximation to
the true error

° as the testing set are i.i.d. samples draw from the true
distribution independently of h
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PAC learning: finite hypothesis space

 Training error underestimates the true error !

* In PAC learning, we seek theory to relate:
> The number of training samples: m
> The gap between training and true errors
errorirue(h) < €rroryqin(h) + €
o Complexity of the hypothesis space: |H|

> Confidence of this relation: at least (1-8)



A special case: training error is O

* In PAC learning, we seek theory to relate:
> The number of training samples: m
> The gap between training (0) and true errors
errorirue(h) < erroryqin(h) + €

v

erroryrue(h) < €
> Complexity of the hypothesis space: |H|
> Confidence of this relation: at least (1-9)

* What is the probability that there exists
consistent hypothesis with true error > €?

° i.e., represent § using other quantities



Derivation ...
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Bounds for finite hypothesis space

Pr((3h € H)s.t.(erroryqin(h) = 0)A(erroryye(h) > €)] < |H|e™ ™

T

Suppose we want this probability to be at most 6

1. How many training examples suffice?
m > 2(in [H| +In(1/6))
€
2. If errory,,in(h) = 0O then with probability at least (1-6):

errorirue(h) < %(In |H| 4+ In(1/6))



Agnostic learning

 Training error is not 0

* In PAC learning, we seek theory to relate:

> The number of training samples: m

> The gap between training and true errors
errorirue(h) < €rroryqin(h) + €

o Complexity of the hypothesis space: |H|

> Confidence of this relation: at least (1-8)



Agnostic learning

* In PAC learning, we seek theory to relate:
> The number of training samples: m

> The gap between training and true errors

errorirue(h) < errory.qin(h) + €
> Complexity of the hypothesis space: |H|

> Confidence of this relation: at least (1-9)
e The bound on §
oy 2
Pr((3h € H)erroryye(h) > errory.qin(h)+e] < |H|e_2”“

> Derived from Hoeffding bounds



Agnostic learning

e The bound on §
Pr[(3h € H)erroryye(h) > errorypqin(h)+e] < |1‘1’|e_2”“62

> Derived from Hoeffding bounds

e Also

@1&@* /) ¥

1
In|H|+In %

2m

errorirue(h) < erroryyqin(h) - \



PAC learnable

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C is PAC-learnable by L using  Sufficient condition:
H if for all ¢ € C, distributions D over X, € Holds if learner L

such that 0 < € < 1/2, and 6 such that requires only a
0<d<1/2, polynomial number of

learner L will with probability at least (1 4~ §) ;:g:‘;ggi:;;:f'es' and

output a hypothesis h € H such that example is polynomial
errorp(h) < €, in time that is polynomial in
1/e, 1/4, n and size(c).
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PAC learning: infinite hypothesis space

* Bounds for finite hypothesis space

v i nt/o) X

In|H|+ In}

2m

errorirye(h) < errort’r'az’n(h) + J

Pr((3h € H)erroryye(h) > erroryqin(h)+e] < |H|e_2mé2

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of |H| ?



VC dimension

* VC(H): size of the largest sample set that
can be shattered by H

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space I
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oo.

o Shatter: correctly classify regardless of the
labelings



VC dimension: an example

What is VC dimension of
* Hy= { (W T wW;x; +Wyx))>0 2 y=1)}
— VC(H,)=3

* For H, = linear separating hyperplanes in n dimensions,

VC(H,)=n+1

20



VC dimension: an example

2. [3 pts] Consider a decision tree learner applied to data where each example is described
by 10 boolean variables (X;, X5, ... Xj0). What is the VC dimension of the hypothesis
space used by this decision tree learner?

21



VC dimension: an example

2. [3 pts] Consider a decision tree learner applied to data where each example is described

by 10 boolean variables (X;, X5, ... Xj0). What is the VC dimension of the hypothesis
space used by this decision tree learner?

% SOLUTION: The VC dimension is 2'°, because we can shatter 2!° examples using
a tree with 219 leaf nodes, and we cannot shatter 2!° + 1 examples (since in that case we
must have duplicated examples and they can be assigned with conflicting labels).

22



VC(H) vs. |H|

* Any relation between VC(H) and |H| ?

VclH) =k
5}’101#(« )

N
L labwops o i

ho 1
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K = [03,)\(1"(1

- CKG(UVJ{ZS
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VC bounds

* Bound on m using other quantities

m > ~(41095(2/8) + 8VC(H) logx(13/))

* Bound on error using other quantities

VC(H)(In 20~ + 1) +In%
GTTOTt-'r"tt.(e(h) < Crrortrain(h)_I_J ()

m

24



Structural risk minimization

Which hypothesis space should we choose?
« Bias / variance tradeoff

SRM: choose H to minimize bound on expected true error!

errorirue(h) < errory.qin(h)+ -

J VO(H)(In y 20 + 1) +In %

25
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Mistake bounds

* Consider the following setting:

° Instances draw randomly from X according to the
data distribution P(X)

> The learner must classify each instance x before
knowing its label

> How many mistakes before the learner converges to
the correct concept!

27



Mistake bounds

e Consider the following setting:

° Instances draw randomly from X according to the
data distribution P(X)

o The learner must classify each instance x before
knowing its label

> How many mistakes before the learner converges to
the correct concept!?

* Analogy: given a pool of “experts”, how many
mistakes before we find the “true expert™?

 Difference from the PAC learning bound
> Do not care about how many samples we see
o Care about how many mistakes we make

28



Mistake Bounds: Find-S x= <%, %5 - xxt “):f’g" b
e h = (X ');/\(7—- ~5 Y|

f j [=
- ﬁ '718'7 "37y,:/
Consider Find-S when H = conjunction of Hboolean

literals _
g I
FIND-S:
I . . 5"‘”"' W\'H/t 20 Hs
e Initialize h to the most specific hypothesis e
LA ALANS. .. %A L, Mistake Lo Cowo

Z Fust * ofﬂqp‘c
e For each positive training instance x

— Remove from h any literal that is not
satisfied by x ;

e Output hypothesis h. a

How many mistakes before converging to correct h? < N+ I

MiS‘[’uL( 1 Yemove | oy

WoX e

l

7
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Halving algorithm

e Start from a hypothesis space H
e Given each new instance X

> Majority voting from all h in H to classify x
> Obtain the label of x

> Remove from H those misclassify x

e Bound the number of mistakes K?

M)‘(’t«( 51:2_(, 9‘@ \7; [H‘
alver L st 4 (0l <\; W\j
@w«?c,&kgs L /9» k S L oox

30



Optimal Mistake Bounds

Let M 4(C') be the max number of mistakes made
by algorithm A to learn concepts in C. (maximum
over all possible ¢ € C, and all possiblé training
sequences)

M4(C) — I(Ilél,g( M_4(C)

Definition: Let C' be an arbitrary non-empty
concept class. The optimal mistake bound for
C, denoted Opt(C), is the minimum over all
possible learning algorithms A of M4(C).
Opt(C) = min M4(C)

A€learning algorithms

(VOC) 0ptC) < Mitun(©) < logi([C)).

\..—)
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Weight Majority Algorithm

* What is there is no “perfect” function h in
the hypothesis space H!?

» Can we design an algorithm using H, such
that #mistakes is “close” to using the best

hin H?
* Yes! Weighted majority algorithm:
> Assign initial weight one to each h in H
> Make prediction by weighted majority voting
> Update the weight of each h in H

32



Weighted Majority Algorithm

a; denotes the i" prediction algorithm in the pool A

menotes the weight associated with

e
a;.

—For all 7 mltla_llz?[/—, - 1J

— For each training example (z, (‘

* Initialize qnb;.nd qléo 0 wher([:i)J
3 ot : , equivalent to
# For each prediction algorithm a, e el
If a;(x) = 0 then gy + qo @ algorithm
If a;(z) =1 then o q
+If ¢ > qo then predict c(z) = 1
If gy > q; then predict ¢(z) =0 —

If g = qo then predict 0 or 1 at random for ﬁ =09

c(x)

* For each prediction algorithm a; in A do
If a;(z) # ¢(x) then w; « Pw;

33



Weighted Majority

Even algorithms
that learn or
change over time..

[Relative mistake bound for
WEIGHTED-MAJORITY] Let D be-dny sequence of
training examples, let A be any set of n prediction

algorithms, and 1etg@e,m®@
mistakes made by any algorithm in A for the

training sequence D. Then the number of mistakes
over D made by the WEIGHTED-MAJORITY

algorithm using 3 = i_lf: at most
@ k +logym) = B sshleed by wel Mgy
— *
kK H \

34
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Semi-supervised learning

Consider problem setting:

« Set X of instances drawn from unknown distribution P(X)
« Wish to learn target function . X2 Y (or, P(Y|X))

« Given a set H of possible hypotheses for f

Given:
+ iid. labeled examples L = {{x1,y1)...{(xm,ym)}
| i.i.d. unlabeled examples [J = {;L-_m+1, . ;1;-,m_+n} |

37



Semi-supervised learning

Consider problem setting:

« Set X of instances drawn from unknown distribution P(X)
« Wish to learn target function . X2 Y (or, P(Y|X))

« Given a set H of possible hypotheses for f

Given:
i.i.d. labeled examples L = {(z1,vy1) ... {(Tm,ym)}
| Li.d. unlabeled examples U = {x,, 41, ... Typ4n} |

* Why do we care!

o Unlabeled data is much easier to obtain!

* How can we use unlabeled data to help?

38



EM

Using Unlabeled Data to Help Train
Naive Bayes Classifier

Learn P(Y|X)
Y [X1[x2 [X3 |x4
A1 o (o [1 |1
Ao o [1 [o o
{0 [0 [0 |1 0O
6 @@ .~ 0o |1 |1 [0
re ) [0 |1 [0 |1

e Learn the initial model using a few labeled data
* |terate:

> Use the model to “guess” unknown labels

> Re-learn the model using labeled + unlabeled data

39



EM

Using Unlabeled Data to Help Train
Naive Bayes Classifier

Learn P(Y|X)
Y [X1[x2 [X3 |x4
A1 o (o [1 |1
Ao o [1 [o o
{0 [0 [0 |1 0O
6 @@ .~ 0o |1 |1 [0
re ) [0 |1 [0 |1

e Any problem!?
° The initial model can be inaccurate
> The “guess” on unknown labels may be inaccurate

> Model re-learned using inaccurate information

40



Co-training and multi-view learning

e Features in X can be split into multiple views
o |deally, each view is sufficient to predictY
o |deally, views are conditionally independent givenY

» Example: hyperlink view + page view = prof. or not?

U.S. mail address:
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Uraversity of Maryland

College Park, D 20742
(97-95: on leave at CMU)
Office: 3227 A Y. Wikams Bldg.
Phone: (Z01)405-2695

Fax: (301) 405-6707

Email: christos(@es.umd edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Scicnce. (97-28: on leave at CIIT)
Join Appointment: Insttuse for Systems Rescarch (ISR).
Academic Degrees: Ph.D. and M. Sc. (Uraversty of Toronto 13 B.Sc. (Nat Tech T Ath

Research Interests:

= Query by content in multime dia databases,

* Fractals for clustening and spabial access methods,
* Dala mimng,




CoTraining Algorithm #1

[Blum&Mitchell, 1998]

Given: labeled data L,
unlabeled data U
Loop:
Train gl (hyperlink classifier) using L
Train g2 (page classifier) using L
Allow g1 to label p positive, » negative examps from U
Allow g2 to label p positive, n negative examps from U

Add these self-labeled examples to L

» Difference to EM
o Directly assign labels instead of estimating expectation

> Use two (or more) models from different views !

* Potential problem!? Self-labeling noise!?

42



CoTraining Algorithm #1

[Blum&Mitchell, 1998]

Given: labeled data L,
unlabeled data U
Loop:
Train gl (hyperlink classifier) using L
Train g2 (page classifier) using L
Allow g1 to label p positive, » negative examps from U
Allow g2 to label p positive, n negative examps from U

Add these self-labeled examples to L

* |ldea for dealing with self-labeling noise?

 Last step:

> Add only consistent self-labeled examples to L!

43



Semi-supervised Learning in NELL

 NELL (never-ending language learning)
* Coupled semi-supervised learning

playsSport(a,s)

person

|

NP

hard -4

(underconstrained) h _ —_—
semi-supervised much easier (more constrained)

learning problem semi-supervised learning problem

L
NP2



Coupled semi-supervised learning

e Given: labeled set L, unlabeled set U
* Loop

> For each task i, learn the classifier f. using L
° For each task i, use f. to label samples in U

> Add self-labeled examples to L if labels from
all f are consistent =~ =

@, L
NP1 NP2
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Semi-supervised learning

* Self labeling is only one way for SSL
* Many many other ways ...
* See:

o Xiaojin Zhu. Semi-Supervised Learning
Literature Survey.
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Questions!?
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