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Parts of the PCA slides are from previous 10-701 lectures
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Dimension reduction

e Feature selection — select a subset of features
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* More generally, feature extraction
> Not limited to the original features

> “Dimension reduction” usually refers to this case



Dimension reduction

e Assumption: data (approximately) lies on
a lower dimensional space

* Examples:
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Principal components analysis

Principal Components (PC) are orthogonal
directions that capture most of the variance
in the data

1t PC — direction of greatest variability in
data
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Principal components analysis

Principal Components (PC) are orthogonal

directions that capture most of the variance
in the data

1t PC — direction of greatest variability in
data

2"d PC — Next orthogonal (uncorrelated)
direction of greatest variability

(remove all variability in first direction, then
find next direction of greatest variability)

Take a data point xi (D-dimensional vector)

Projection of xi onto the 15t PC v is v'xi




Principal components analysis

e Assume data is centered

e For a projection direction v

° Variance of projected data
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Principal components analysis

e Assume data is centered

e For a projection direction v

° Variance of projected data

n

== (vIx)? = vIXXTy
i=1

> Maximize the variance of projected data
max vIXXTv st. viv=1

> How to solve this ?



Principal components analysis

o PCA formulation

m@x vIXXTy st. viv=1

Lagrangian: maxy vIXXTy — \w!lv Wfap ponstralnts into the
objective function

8/0v =0 (XXT — A)v =0 = (XXT)v = v

Therefore, v is the eigenvector of sample correlation/
covariance matrix XX

e As aresult ...

The 15t Principal component v1 is the eigenvector of the sample covariance
matrix XXT associated with the largest eigenvalue A1

The 2" Principal component vz is the eigenvector of the sample covariance
matrix XXT associated with the second largest eigenvalue A2



Principal components analysis

Maximum Variance Subspace: PCA finds vectors v such that projections on to the
vectors capture maximum variance in the data

1 n -
N (vIx)? =vixxty st viv=l
n

=1

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the
vectors yields minimum MSE reconstruction

1 n .
“ N Ix - (Vix)v]? sit. viv=1
n .

=1
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Source separation

* The classical “cocktail party” problem

A3pS) +a5pS) +a335;

@115 + @555 + @35, ;
™~ 5] +apS; @S,

> Separate the mixed signal into sources



Source separation

* The classical “cocktail party” problem

A3pS) +a5pS) +a335;

a1 S) + a5, + @35
™~ 5] +apS; @S,

> Separate the mixed signal into sources

> Assumption: different sources are independent



Independent component analysis

* Let v, Vv,, V3, ... v, denote the projection
directions of independent components

e ICA:find these directions such that data
projected onto these directions have maximum
statistical independence



Independent component analysis

* Let v, Vv,, V3, ... v, denote the projection
directions of independent components

o |CA:find these directions such that data

projected onto these directions have maximum
statistical independence

e How to actually maximize independence!?
> Minimize the mutual information

> Or maximize the non-Gaussianity

> Actual formulation quite complicated !
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Recall: PCA

* Principal component analysis

max vIiXXTlyv st. viv=1

> Note: = > (vIx)? = vIXXTv

i=1

° Find the projection direction v such that the
variance of projected data is maximized

° Intuitively, find the intrinsic subspace of the
original feature space (in terms of retaining
the data variability)
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Canonical correlation analysis

* Now consider two sets of variables x and y
° X is a vector of p variables
oy is a vector of g variables

> Basically, two feature spaces

* How to find the connection between two set of
variables (or two feature spaces)!?

22



Canonical correlation analysis

* Now consider two sets of variables x and y
° X is a vector of p variables
oy is a vector of g variables

> Basically, two feature spaces

* How to find the connection between two set of
variables (or two feature spaces)!?

> CCA:find a projection direction u in the space of x,
and a projection direction v in the space of y, so that
projected data onto u and v has max correlation

> Note: CCA simultaneously finds dimension reduction
for two feature spaces
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Canonical correlation analysis

o CCA formulation
u!' XTvYv
argmax
u€RP vERY V(T XTXu)(vIYTYV)

o X'is n by p: n samples in p-dimensional space

> Y is n by g: n samples in g-dimensional space

> The n samples are paired in X and Y
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Canonical correlation analysis

o CCA formulation
!/ XTYv
argmax
u€RP vERY V(T XTXu)(vIYTYV)

o X'is n by p: n samples in p-dimensional space

> Y is n by g: n samples in g-dimensional space

> The n samples are paired in X and Y

* How to solve! ... kind of complicated ...
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Canonical correlation analysis

o CCA formulation

u/ X'yYv
argmax
u€RP vERY V(T XTXu)(vIYTYV)
o X'is n by p: n samples in p-dimensional space

> Y is n by g: n samples in g-dimensional space

> The n samples are paired in X and Y
* How to solve! Generalized eigenproblems !
XY (YY) 'Y Xu = A\X'Xu
YIX(XITX) "1 XTYv =2YTYvV
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Fisher’s linear discriminant

 Now come back to one feature space

e |n addition to features, we also have label

° Find the dimension reduction that helps separate
different classes of examples !

o Let’s consider 2-class case
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Fisher’s linear discriminant

¢ ldea: maximize the ratio of “‘between-class
variance” over “within-class variance” for the
projected data
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Fisher’s linear discriminant
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Fisher’s linear discriminant

e Generalize to multi-class cases

o Still, maximizing the ratio of “between-class
variance” over “within-class variance” of the
projected data:

w! Spw

WT SVVW
Sp = Z(u( —x)(p, — %)"
Sw = Z > (x — )"

c 1€Ec

J(w) =
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Topic models

* Topic models: a class of dimension reduction
models on text (from words to topics)

33
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words

Topic models

* Topic models: a class of dimension reduction
models on text (from words to topics)

* Bag-of-words representation of documents
* Topic models for representing documents

documents topics documents

documents as distributions of
topics

Lopics

bag-of-words representation of topics as
documents distributions

of words

words
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Latent Dirichlet allocation

A fully Bayesian specification of topic models

documents [Ol)iC.\‘ documents
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Latent Dirichlet allocation
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o Data: words on each documents

o Estimation: maximizing the data likelihood — difficult!
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