

Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models)

Yi Zhang
10-701, Machine Learning, Spring 2011
April 6th, 2011

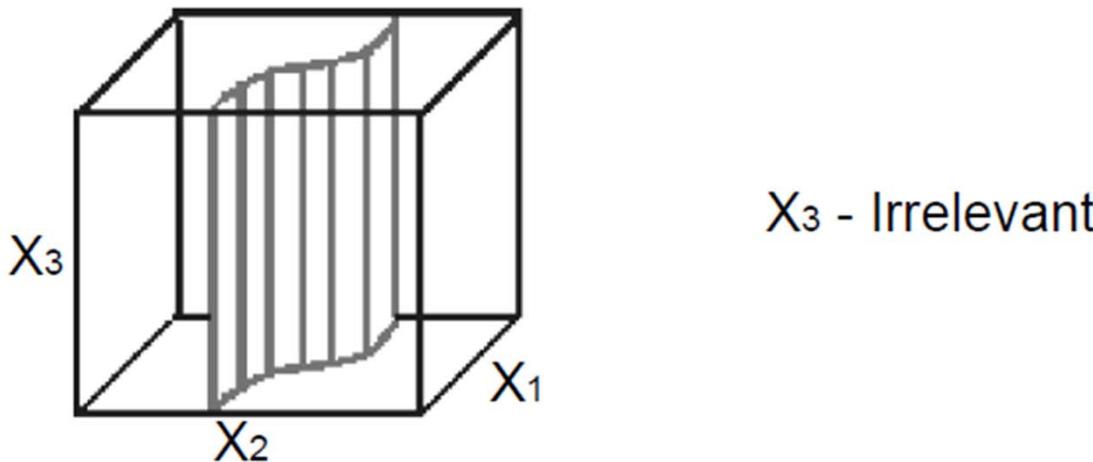
Parts of the PCA slides are from previous 10-701 lectures

Outline

- **Dimension reduction**
- Principal Components Analysis
- Independent Component Analysis
- Canonical Correlation Analysis
- Fisher's Linear Discriminant
- Topic Models and Latent Dirichlet Allocation

Dimension reduction

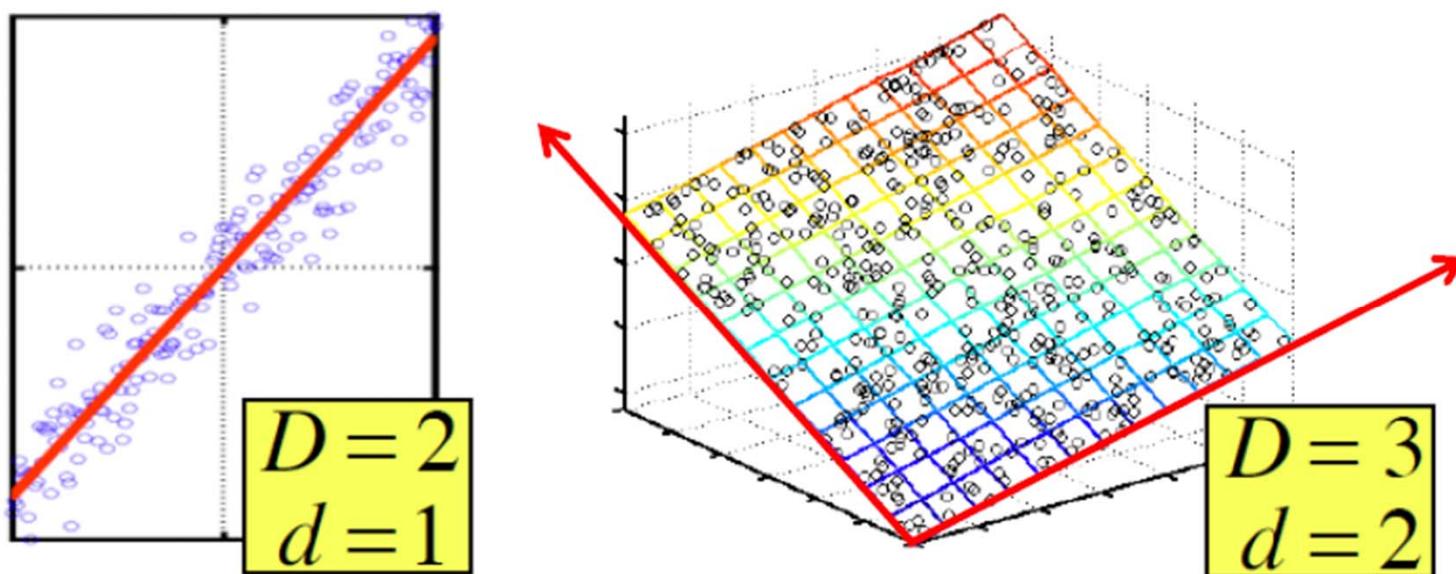
- Feature selection – select a subset of features



- More generally, **feature extraction**
 - Not limited to the original features
 - “Dimension reduction” usually refers to this case

Dimension reduction

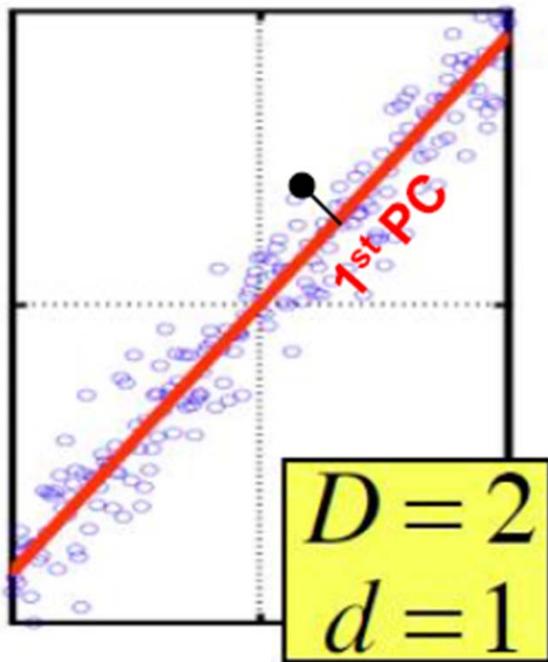
- Assumption: data (approximately) lies on a lower dimensional space
- Examples:



Outline

- Dimension reduction
- **Principal Components Analysis**
- Independent Component Analysis
- Canonical Correlation Analysis
- Fisher's Linear Discriminant
- Topic Models and Latent Dirichlet Allocation

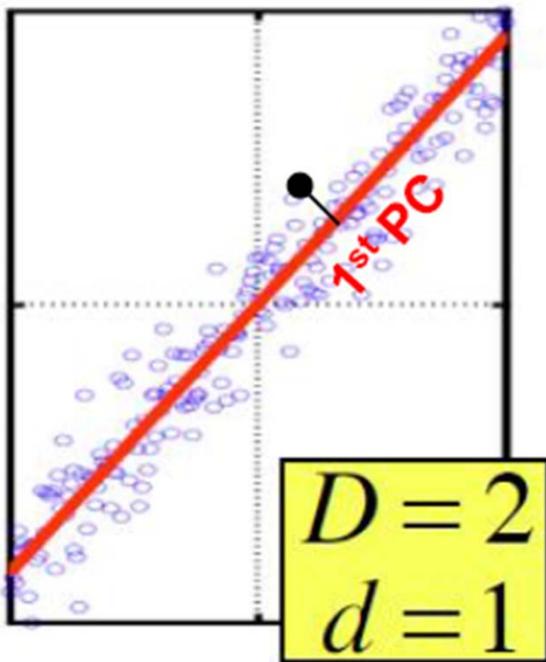
Principal components analysis



Principal Components (PC) are orthogonal directions that capture most of the variance in the data

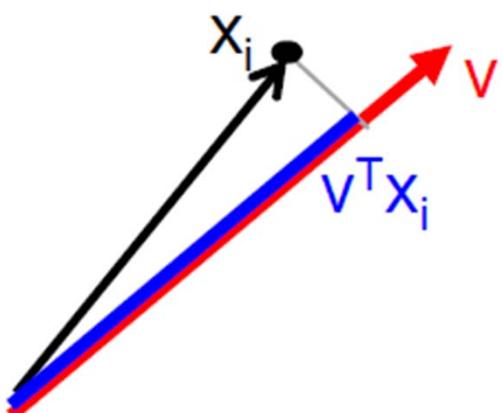
1st PC – direction of greatest variability in data

Principal components analysis



Principal Components (PC) are orthogonal directions that capture most of the variance in the data

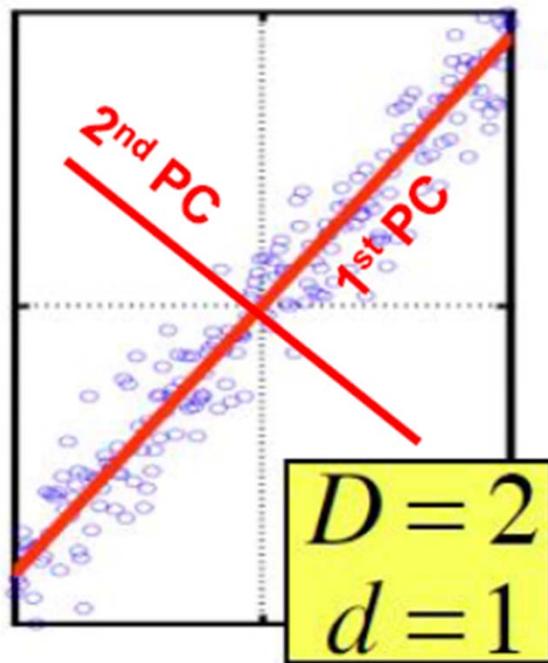
1st PC – direction of greatest variability in data



Take a data point x_i (D-dimensional vector)

Projection of x_i onto the 1st PC v is $v^T x_i$

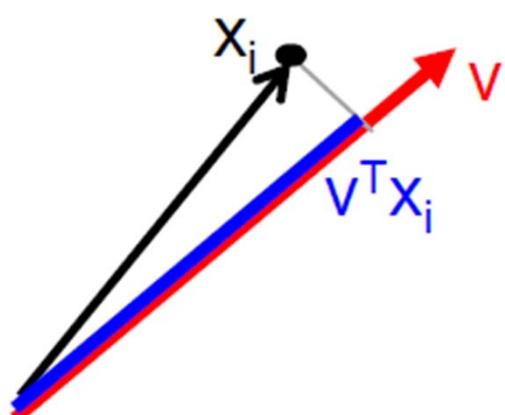
Principal components analysis



Principal Components (PC) are orthogonal directions that capture most of the variance in the data

1st PC – direction of greatest variability in data

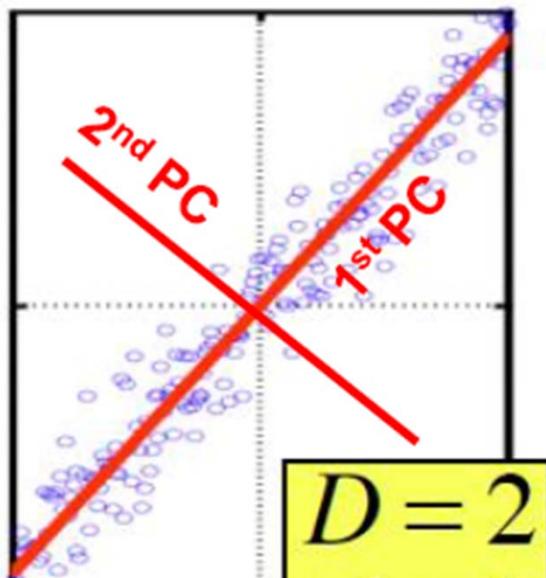
2nd PC – Next orthogonal (uncorrelated) direction of greatest variability



Take a data point x_i (D-dimensional vector)

Projection of x_i onto the 1st PC v is $v^T x_i$

Principal components analysis

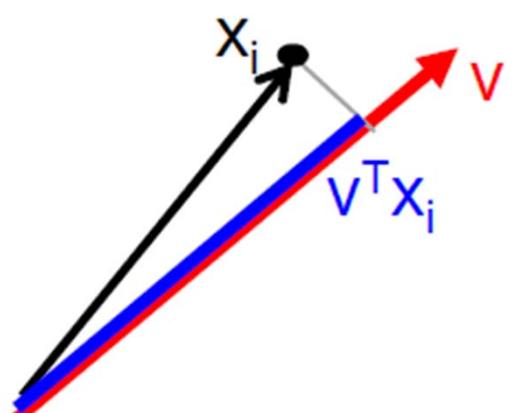


Principal Components (PC) are orthogonal directions that capture most of the variance in the data

1st PC – direction of greatest variability in data

2nd PC – Next orthogonal (uncorrelated) direction of greatest variability

(remove all variability in first direction, then find next direction of greatest variability)



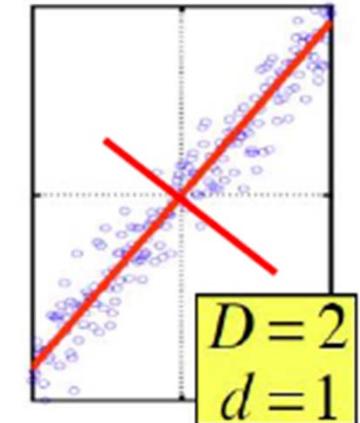
Take a data point x_i (D-dimensional vector)

Projection of x_i onto the 1st PC v is $v^T x_i$

Principal components analysis

- Assume data is centered
- For a projection direction \mathbf{v}
 - Variance of projected data

$$\frac{1}{n} \sum_{i=1}^n (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$



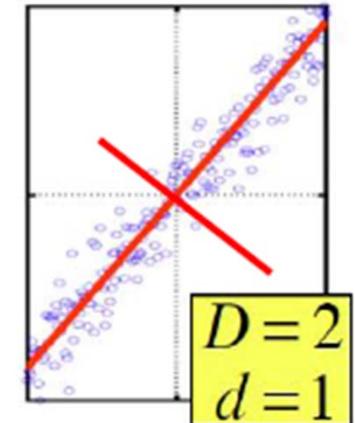
Principal components analysis

- Assume data is centered
- For a projection direction \mathbf{v}
 - Variance of projected data

$$\frac{1}{n} \sum_{i=1}^n (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

- Maximize the variance of projected data

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$



Principal components analysis

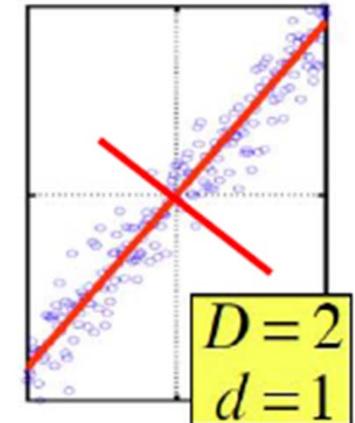
- Assume data is centered
- For a projection direction \mathbf{v}
 - Variance of projected data

$$\frac{1}{n} \sum_{i=1}^n (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

- Maximize the variance of projected data

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$

- How to solve this ?



Principal components analysis

- PCA formulation

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$

Lagrangian: $\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} - \lambda \mathbf{v}^T \mathbf{v}$

Wrap constraints into the objective function

$$\frac{\partial}{\partial \mathbf{v}} = 0 \quad (\mathbf{X} \mathbf{X}^T - \lambda \mathbf{I}) \mathbf{v} = 0 \quad \Rightarrow (\mathbf{X} \mathbf{X}^T) \mathbf{v} = \lambda \mathbf{v}$$

Therefore, \mathbf{v} is the eigenvector of sample correlation/covariance matrix $\mathbf{X} \mathbf{X}^T$

- As a result ...

The 1st Principal component v_1 is the eigenvector of the sample covariance matrix $\mathbf{X} \mathbf{X}^T$ associated with the largest eigenvalue λ_1

The 2nd Principal component v_2 is the eigenvector of the sample covariance matrix $\mathbf{X} \mathbf{X}^T$ associated with the second largest eigenvalue λ_2

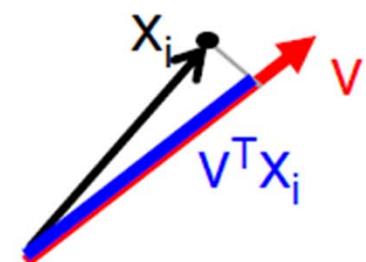
Principal components analysis

Maximum Variance Subspace: PCA finds vectors v such that projections on to the vectors capture maximum variance in the data

$$\frac{1}{n} \sum_{i=1}^n (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the vectors yields minimum MSE reconstruction

$$\frac{1}{n} \sum_{i=1}^n \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}\|^2 \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$

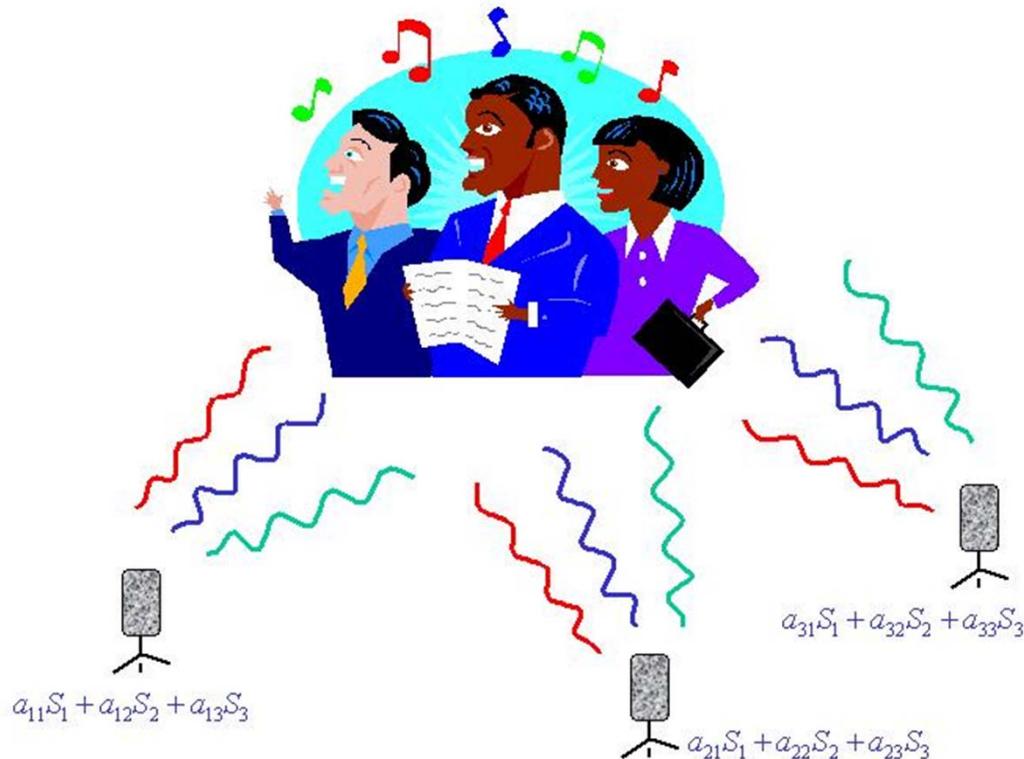


Outline

- Dimension reduction
- Principal Components Analysis
- **Independent Component Analysis**
- Canonical Correlation Analysis
- Fisher's Linear Discriminant
- Topic Models and Latent Dirichlet Allocation

Source separation

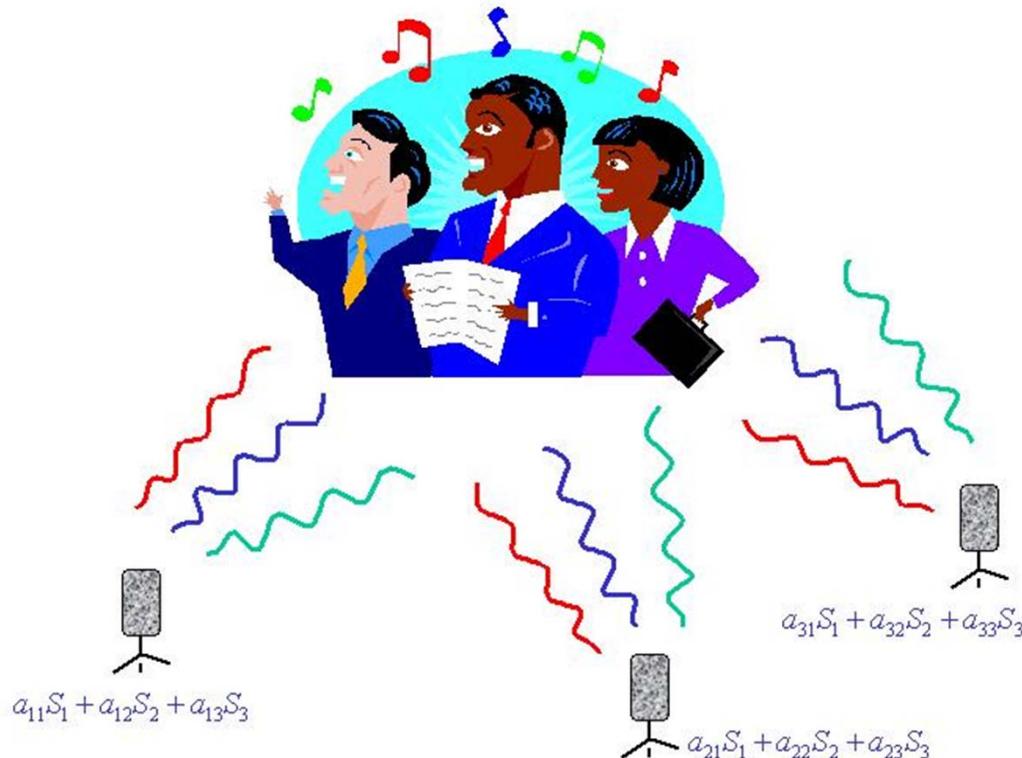
- The classical “cocktail party” problem



- Separate the mixed signal into sources

Source separation

- The classical “cocktail party” problem



- Separate the mixed signal into sources
- Assumption: different sources are **independent**

Independent component analysis

- Let $v_1, v_2, v_3, \dots, v_d$ denote the projection directions of independent components
- ICA: find these directions such that data projected onto these directions have maximum statistical independence

Independent component analysis

- Let $v_1, v_2, v_3, \dots, v_d$ denote the projection directions of independent components
- ICA: find these directions such that data projected onto these directions have maximum statistical independence
- How to actually maximize independence?
 - Minimize the mutual information
 - Or maximize the non-Gaussianity
 - Actual formulation quite complicated !

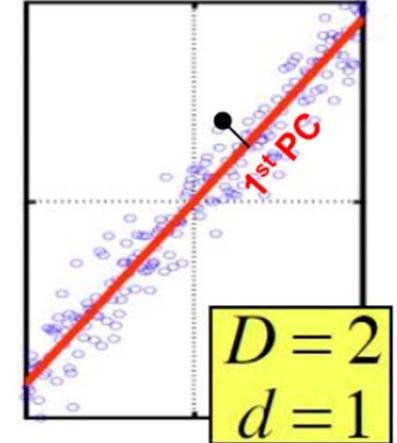
Outline

- Dimension reduction
- Principal Components Analysis
- Independent Component Analysis
- **Canonical Correlation Analysis**
- Fisher's Linear Discriminant
- Topic Models and Latent Dirichlet Allocation

Recall: PCA

- Principal component analysis

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$



- Note: $\frac{1}{n} \sum_{i=1}^n (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$
- Find the projection direction \mathbf{v} such that the variance of projected data is maximized
- Intuitively, find the intrinsic subspace of the original feature space (in terms of retaining the data variability)

Canonical correlation analysis

- Now consider **two** sets of variables \mathbf{x} and \mathbf{y}
 - \mathbf{x} is a vector of p variables
 - \mathbf{y} is a vector of q variables
 - Basically, **two** feature spaces
- How to find the connection between two set of variables (or two feature spaces)?

Canonical correlation analysis

- Now consider **two** sets of variables \mathbf{x} and \mathbf{y}
 - \mathbf{x} is a vector of p variables
 - \mathbf{y} is a vector of q variables
 - Basically, **two** feature spaces
- How to find the connection between two set of variables (or two feature spaces)?
 - CCA: find a projection direction \mathbf{u} in the space of \mathbf{x} , and a projection direction \mathbf{v} in the space of \mathbf{y} , so that projected data onto \mathbf{u} and \mathbf{v} has **max correlation**
 - Note: CCA simultaneously finds dimension reduction for two feature spaces

Canonical correlation analysis

- CCA formulation

$$\underset{\mathbf{u} \in R^p, \mathbf{v} \in R^q}{\operatorname{argmax}}$$

$$\frac{\mathbf{u}^T \mathbf{X}^T \mathbf{Y} \mathbf{v}}{\sqrt{(\mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u})(\mathbf{v}^T \mathbf{Y}^T \mathbf{Y} \mathbf{v})}}$$

- \mathbf{X} is n by p : n samples in p -dimensional space
- \mathbf{Y} is n by q : n samples in q -dimensional space
- The n samples are **paired** in \mathbf{X} and \mathbf{Y}

Canonical correlation analysis

- CCA formulation

$$\underset{\mathbf{u} \in R^p, \mathbf{v} \in R^q}{\operatorname{argmax}}$$

$$\frac{\mathbf{u}^T \mathbf{X}^T \mathbf{Y} \mathbf{v}}{\sqrt{(\mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u})(\mathbf{v}^T \mathbf{Y}^T \mathbf{Y} \mathbf{v})}}$$

- \mathbf{X} is n by p : n samples in p -dimensional space
- \mathbf{Y} is n by q : n samples in q -dimensional space
- The n samples are *paired* in \mathbf{X} and \mathbf{Y}
- How to solve? ... kind of complicated ...

Canonical correlation analysis

- CCA formulation

$$\underset{\mathbf{u} \in R^p, \mathbf{v} \in R^q}{\operatorname{argmax}}$$

$$\frac{\mathbf{u}^T \mathbf{X}^T \mathbf{Y} \mathbf{v}}{\sqrt{(\mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u})(\mathbf{v}^T \mathbf{Y}^T \mathbf{Y} \mathbf{v})}}$$

- \mathbf{X} is n by p : n samples in p -dimensional space
- \mathbf{Y} is n by q : n samples in q -dimensional space
- The n samples are *paired* in \mathbf{X} and \mathbf{Y}

- How to solve? Generalized eigenproblems !

$$\mathbf{X}^T \mathbf{Y} (\mathbf{Y}^T \mathbf{Y})^{-1} \mathbf{Y}^T \mathbf{X} \mathbf{u} = \lambda \mathbf{X}^T \mathbf{X} \mathbf{u}$$

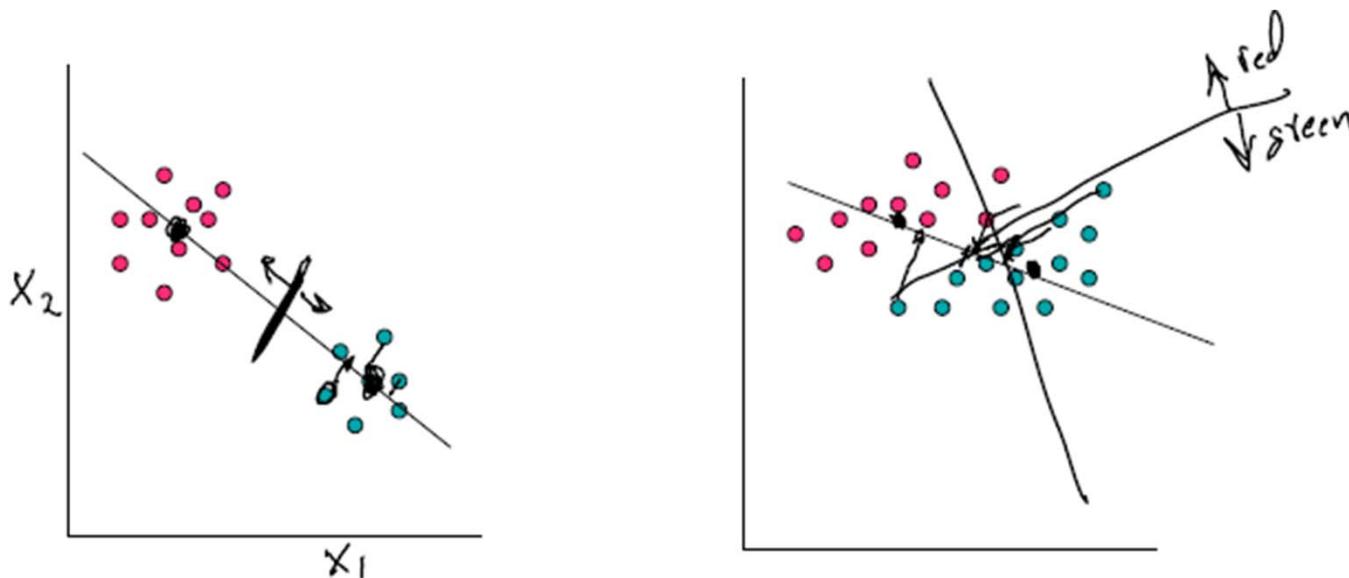
$$\mathbf{Y}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \mathbf{v} = \lambda \mathbf{Y}^T \mathbf{Y} \mathbf{v}$$

Outline

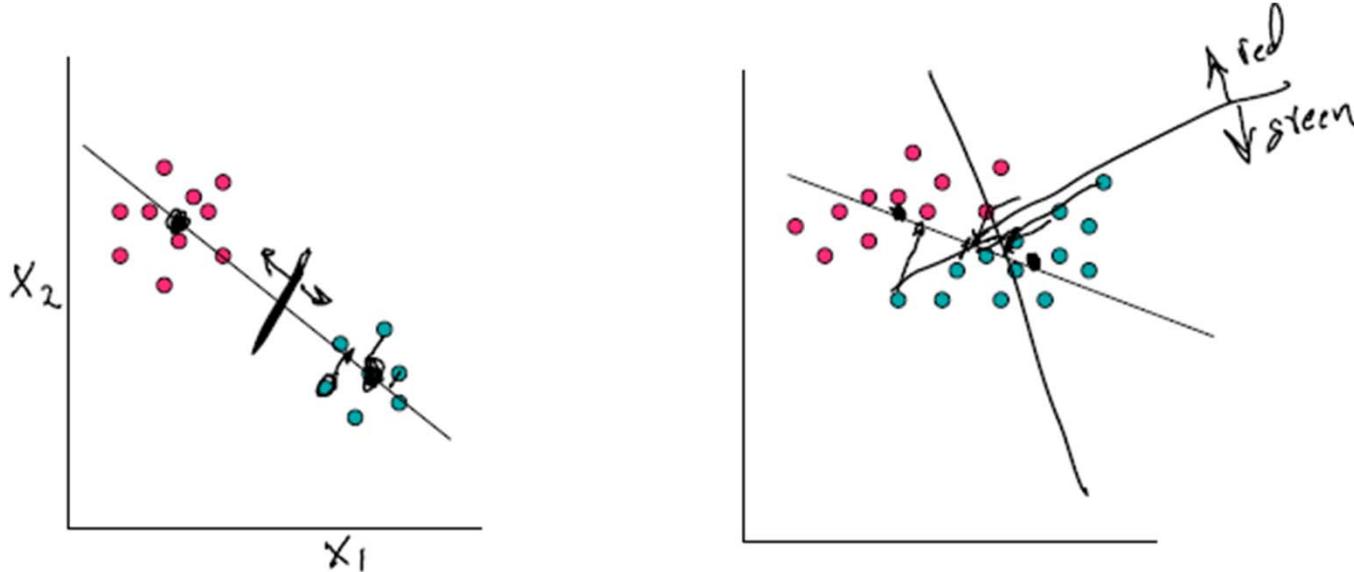
- Dimension reduction
- Principal Components Analysis
- Independent Component Analysis
- Canonical Correlation Analysis
- **Fisher's Linear Discriminant**
- Topic Models and Latent Dirichlet Allocation

Fisher's linear discriminant

- Now come back to *one* feature space
- In addition to features, we also have **label**
 - Find the dimension reduction that helps separate different classes of examples !
 - Let's consider 2-class case

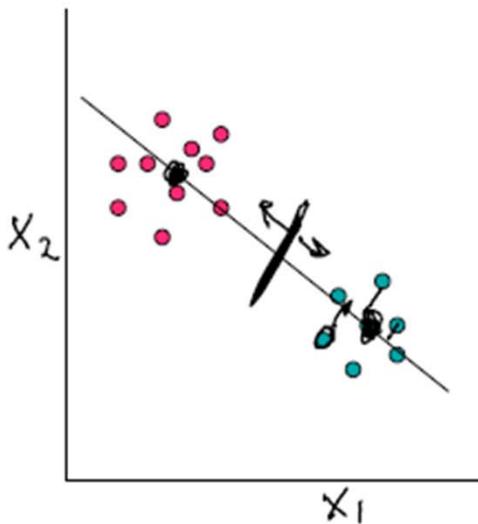
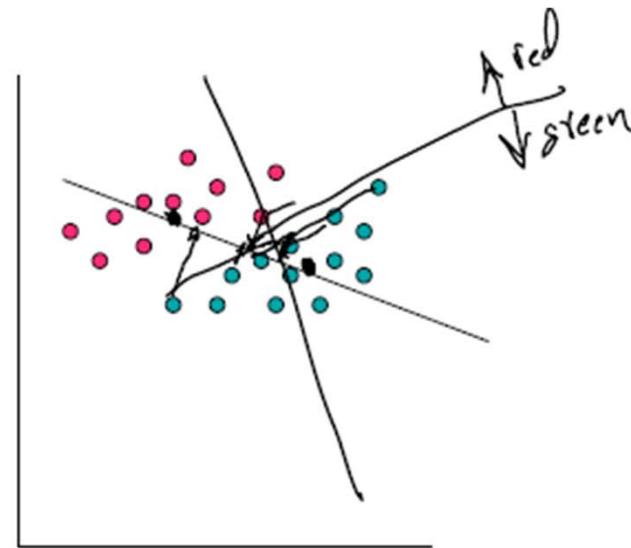


Fisher's linear discriminant



- Idea: maximize the ratio of “between-class variance” over “within-class variance” for the projected data

Fisher's linear discriminant



Fisher Linear Discriminant chooses:

$$\arg \max_w \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

$$m_i \equiv \mathbf{w}^T \mathbf{m}_i \quad s_i^2 \equiv \sum_{n \in C_i} (x^n - m_i)^2$$

Fisher's linear discriminant

- Generalize to multi-class cases
- Still, maximizing the ratio of “between-class variance” over “within-class variance” of the projected data:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

$$S_B = \sum_c (\boldsymbol{\mu}_c - \bar{\mathbf{x}})(\boldsymbol{\mu}_c - \bar{\mathbf{x}})^T$$

$$S_W = \sum_c \sum_{i \in c} (\mathbf{x}_i - \boldsymbol{\mu}_c)(\mathbf{x}_i - \boldsymbol{\mu}_c)^T$$

Outline

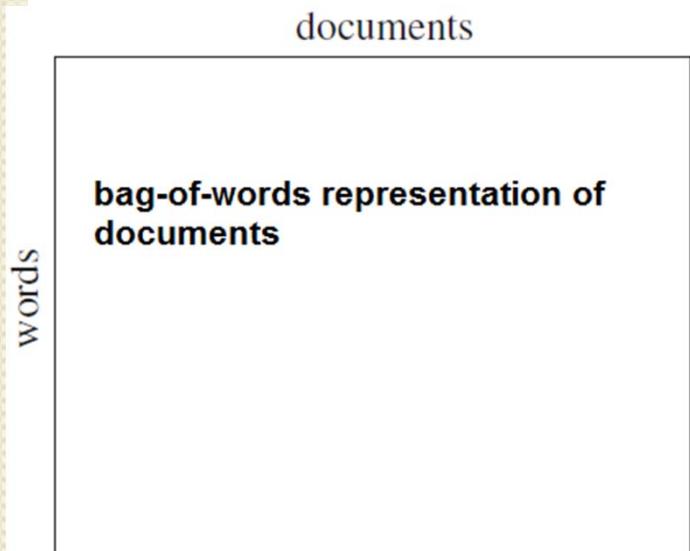
- Dimension reduction
- Principal Components Analysis
- Independent Component Analysis
- Canonical Correlation Analysis
- Fisher's Linear Discriminant
- **Topic Models and Latent Dirichlet Allocation**

Topic models

- Topic models: a class of dimension reduction models on text (from words to topics)

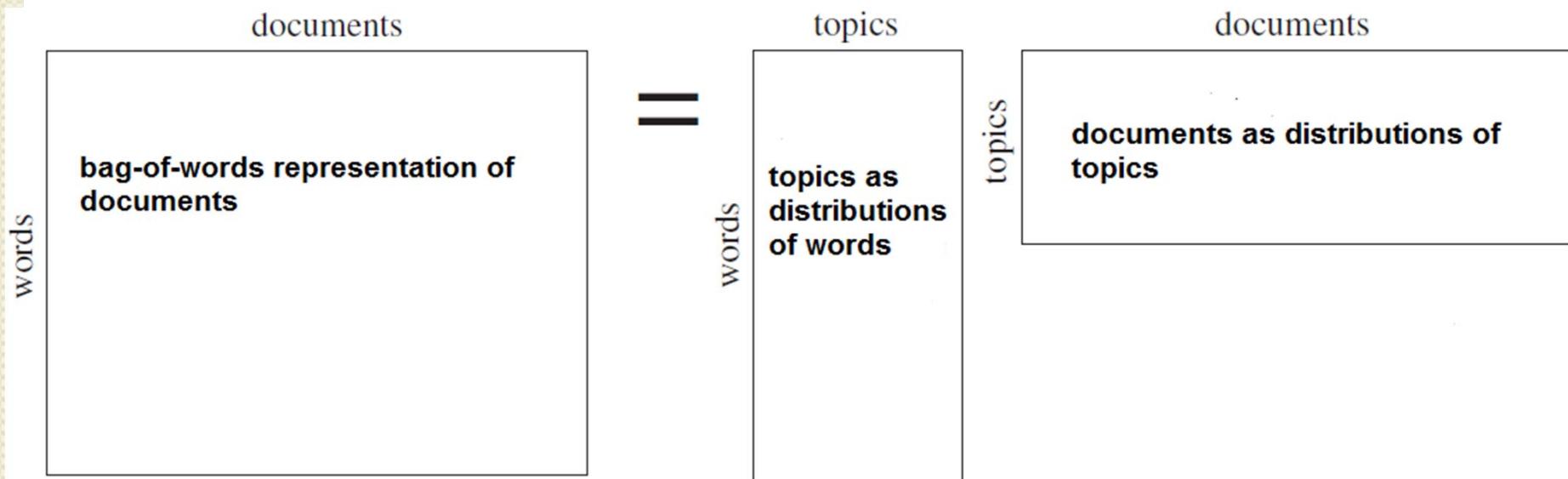
Topic models

- Topic models: a class of dimension reduction models on text (from words to topics)
- Bag-of-words representation of documents



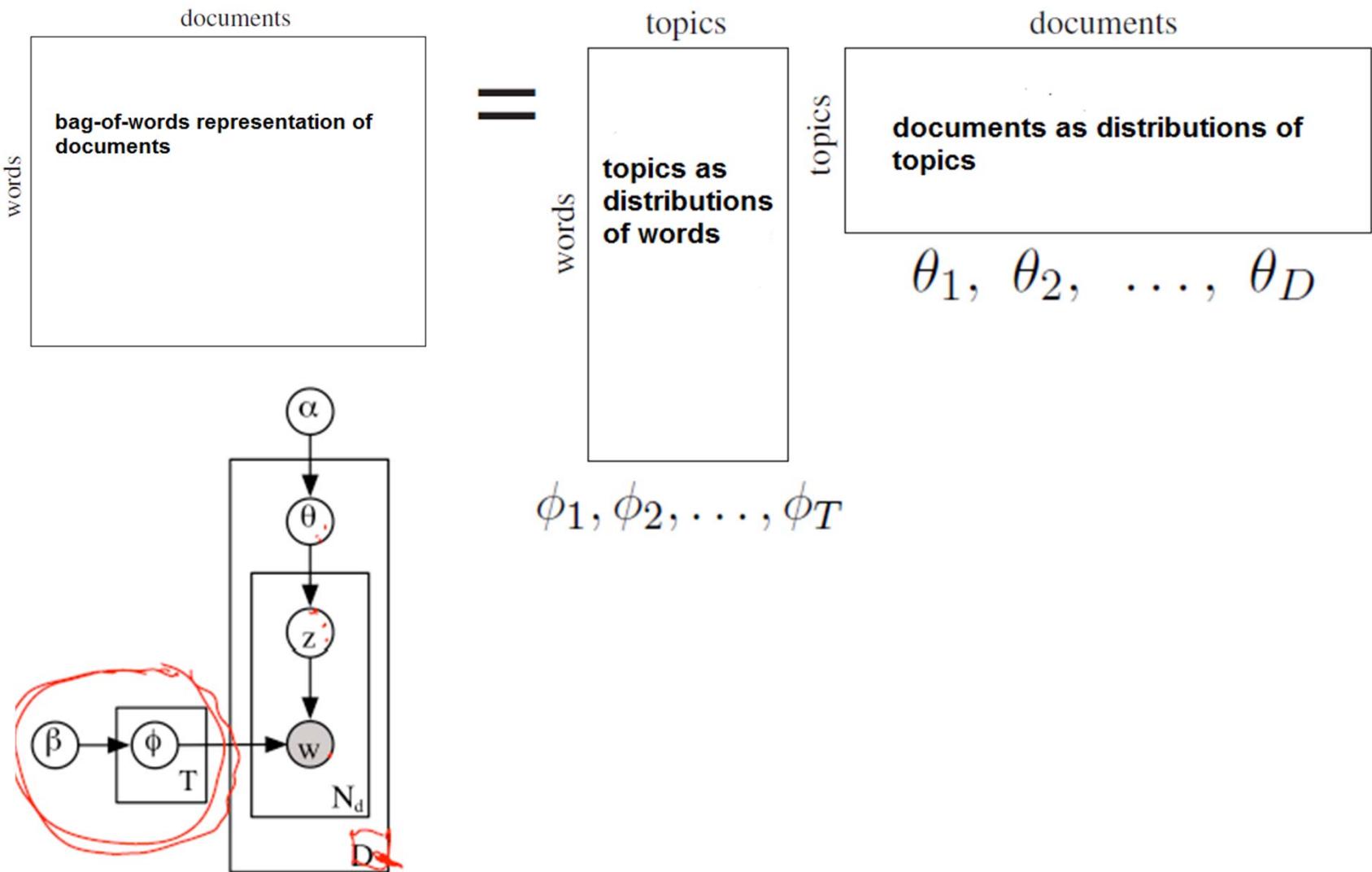
Topic models

- Topic models: a class of dimension reduction models on text (from words to topics)
- Bag-of-words representation of documents
- Topic models for representing documents

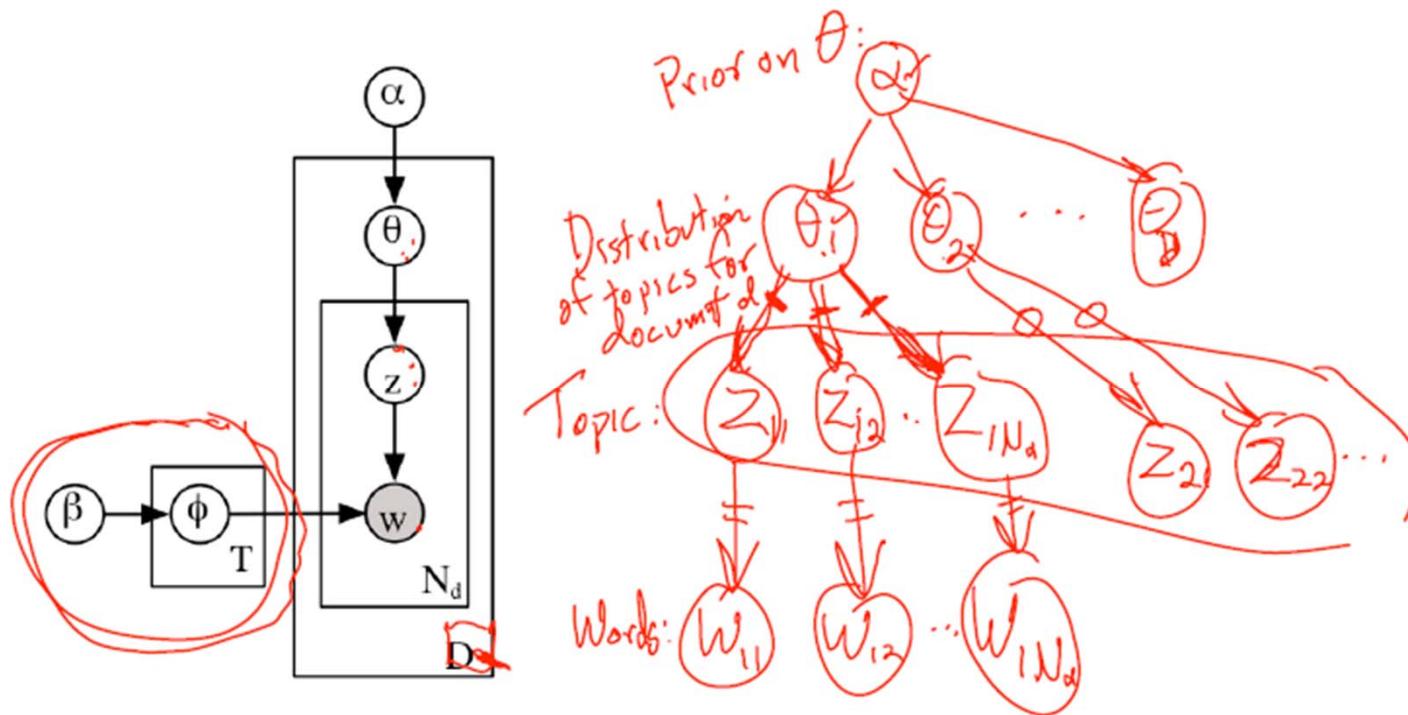


Latent Dirichlet allocation

- A fully Bayesian specification of topic models



Latent Dirichlet allocation



- Data: words on each documents
- Estimation: maximizing the data likelihood – difficult!

$$p(\mathbf{w} | \alpha, \beta) = \int p(\theta | \alpha) \left(\prod_{n=1}^N \sum_{z_n} p(z_n | \theta) p(w_n | z_n, \beta) \right) d\theta.$$