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Fixed-point theory

Many optimization problems

h(x) = 0

x− h(x) = 0

(I − h)(x) = x
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Fixed-point theory

Fixed-point

Any x that solves x = f(x)

Three types of results

1 Geometric: Banach contraction and relatives

2 Order-theoretic: Knaster-Tarski

3 Topological: Brouwer, Schauder-Leray, etc.
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Fixed-point theory – main concerns

� existence of a solution

� uniqueness of a solution

� stability under small perturbations of parameters

� structure of solution set (failing uniqueness)

� algorithms / approximation methods to obtain solutions

� rate of convergence analyses
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Fixed-point theory – Banach contraction

Some conditions under which the nonlinear equation

x = Tx, x ∈M ⊂ X,

can be solved by iterating

xk+1 = Txk, x0 ∈M, k = 0, 1, . . . .
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Fixed-point theory – Banach contraction

Theorem (Banach 1922.) Suppose (i) T : M ⊆ X → M ; (ii) M is
closed, nonempty set in a complete metric space (X, d); (iii) T is
q-contractive, i.e.,

d(Tx, Ty) ≤ qd(x, y), ∀x, y ∈M, constant 0 ≤ q < 1.

Then, we have the following:
(i) Tx = x has exactly one solution (T has a unique FP in M)
(ii) The sequence {xk} converges to the solution for any x0 ∈M
(iii) A priori error estimate

d(xk, x
∗) ≤ qk(1− q)−1d(x0, x1)

(iv) A posterior error estimate

d(xk+1, x
∗) ≤ q(1− q)−1d(xk, xk+1)

(v) (Global) linear rate of convergence: d(xk+1, x
∗) ≤ qd(xk, x

∗)
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Fixed-point theory – Banach contraction

I If X is a Banach space with distance d = ‖x− y‖

‖Tx− Ty‖ ≤ q‖x− y‖, 0 ≤ q < 1 (contraction)

I If inequality holds with q = 1, we call map nonexpansive

d(Tx, Ty) ≤ d(x, y)

Example: x 7→ x+ 1 is nonexpansive, but has no fixed points!

I Map is called contractive or weakly-contractive if

d(Tx, Ty) < d(x, y), ∀x, y ∈M.

I Several other variations of maps have been studied for Banach
spaces (see e.g., book by Bauschke, Combettes (2012))
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Banach contraction – proof

Blackboard

Summary:

I d must be positive-definite, i.e, d(x, y) = 0 iff x = y

I (X, d) must be complete (contain all its Cauchy sequences)

I T : M →M , M must be closed

I But M need not be compact!

I Contraction is often a rare luxury; nonexpansive maps are more
common (we’ve already seen several)
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More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex
compact subset M ⊂ Rd to M itself has a fixed-point.

Note: Proves existence only!
Generalizes the intermediate-value theorem.

Theorem (Schauder FP.) Every continuous function from a convex
compact subset M of a Banach space to M itself has a fixed-point.

Remarks:

I Brouwer FPs – very hard. “Exponential lower bounds for finding
Brouwer fixed points”–Hirsch, Papadimitriou, Vavasis (1988).

I Any algorithm for computing a Brouwer FP based on function evaluations

only must in the worst case perform a number of function evaluations

exponential in both the number of digits of accuracy and the dimension.

I Contrast with n = 1, where bisection yields |f(x̂)− f∗| ≤ 2−δ in O(δ)
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Kakutani fixed-point theorem

FP theorem for set-valued mappings (recall x ∈ (I − ∂f)(x))

Set-valued map

F : M → 2M , x ∈M 7→ F (x) ∈ 2M , i.e. F (x) ⊆M.

Closed-graph

{(x, y) | y ∈ F (x)} is a closed subset ofX ×X

(i.e., xk → x, yk → y and yk ∈ F (xk) =⇒ y ∈ F (x))

Theorem (S. Kakutani 1941.) Let M ⊂ Rn be nonempty, convex,
compact. Let F : M → 2M be a set-valued map with a closed
graph; also for all x ∈ M , let F (x) be non-empty and convex.
Then, F has a fixed point.

Application: See proof of Nash equilibrium on Wikipedia

9 / 19
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Brouwer FP – example

◦ Consider a Markov transition matrix A ∈ Rn×n
+

◦ Column stochastic: aij ≥ 0 and
∑

i aij = 1 for 1 ≤ j ≤ n

Claim. There is a probability vector x that is an eigenvector of A.

Prove: ∃x ≥ 0, xT 1 = 1 such that Ax = x.

I Let ∆n be probability simplex (compact, convex subset of Rn)

I Verify that if x ∈ ∆n then Ax ∈ ∆n

I Thus, A : ∆n → ∆n; A is obviously continuous

I Hence by Brouwer FP: there is an x ∈ ∆n such that Ax = x

How to compute such an x?
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Conic optimization

11 / 19



Some definitions

I Let K be a cone in a real vector space V

I Let y ∈ K and x ∈ V . We say y dominates x if

αy �K x �K βy, for some α, β ∈ R.

Max-min gauges

MK(x/y) := inf {β ∈ R | x ≤ βy}
mK(x/y) := sup {α ∈ R | αy ≤ x} .

Shorthand: ≤ ≡ �K

I Parts: We have an equivalence relation x ∼K y on K if x
dominates y and vice versa. The equivalence classes are called
parts of the cone.
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Hilbert projective metric

I If x ∼K y with y 6= 0, then ∃ α, β > 0 s.t. αy ≤ x ≤ βy.

Def. (Hilbert metric.) Let x ∼K y and y 6= 0. Then,

dH(x, y) := log
M(x/y)

m(x/y)

Proposition. Let K be a cone in V ; (K, dH) satisfies:

dH(x, y) ≥ 0, and dH(x, y) = dH(y, x) for all x, y ∈ K
dH(x, z) ≤ dH(x, y) + dH(y, z) for all x ∼K y ∼K z, and

dH(αx, βy) = dH(x, y) for all α, β > 0 and x, y ∈ K.

If K is closed, then dH(x, y) = 0 iff x = λy for some λ > 0. In
this case, if X ⊂ K satisfies that for each x ∈ K \ {0} there is
a unique λ > 0 such that λx ∈ X and P is a part of K, then
(P ∩X, dH) is a genuine metric space.

Proof: on blackboard
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Nonexpansive maps with dH

Def. (OPSH maps.) Let K ⊆ V and K ′ ⊆ V ′ be closed cones. The
f : K → K ′ is called order preserving if for x ≤K y, f(x) ≤K′ f(y).
It is homogeneous of degree r if f(λx) = λrf(x) for all x ∈ K and
λ > 0. It is subhomogeneous if λf(x) ≤ f(λx) for all x ∈ K and
0 < λ < 1.

Exercise: Prove that if f : K → K ′ is OPH of degree r > 0 then

dH(f(x), f(y)) ≤ rdH(x, y).

I In particular, if r = 1, then f is nonexpansive (in dH)
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I In particular, if r = 1, then f is nonexpansive (in dH)
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Birkhoff’s theorem

I Let L be a linear operator on a cone K (L : K → K)

Contraction ratio

κ(L) := inf {λ ≥ 0 | dH(Lx,Ly) ≤ λdH(x, y) for all x ∼K y in K} .

Theorem (Birkhoff.) Let ∆(L) := sup {dH(Lx,Ly) | Lx ∼K Ly}
be the projective diameter of L. Then

κ(L) = tanh(14∆(L))

I If ∆(L) <∞, then we have a strict contraction!
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Application to Pagerank eigenvector

◦ Markov transition matrix A ∈ Rn×n
+

◦ Column stochastic: aij ≥ 0 and
∑

i aij = 1 for 1 ≤ j ≤ n

I Consider cone K ≡ Rn
+

I Suppose ∆(A) <∞ – (next slide)

I Then dH(Ax,Ay) ≤ κ(A)dH(x, y)— strict contraction

I Need to argue that (∆n, dH) is a complete metric space

I Invoke Banach contraction theorem.

I Linear rate of convergence
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Application to Pagerank eigenvector

I Let K = Rn
+ and K ′ = Rm

+ , and A ∈ Rm×n

I A(K) ⊆ K ′ iff aij ≥ 0

I x ∼K y is equivalent to Ix := {i | xi > 0} = {i | yi > 0}
I In this case, we obtain

dH(x, y) = log

(
max
i,j∈Ix

xiyj
xjyi

)

Lemma If A ∈ Rm×n
+ . If there exists J ⊂ [n] s.t. Aei ∼K′ Aej for

all i, j ∈ J , and Aei = 0 for all i 6∈ J then the projective diameter

∆(A) = max
i,j∈J

dH(Aei, Aej) <∞.
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More applications

I Geometric optimization on the psd cone

Sra, Hosseini (2013). “Conic geometric optimisation on the
manifold of positive definite matrices.” arXiv:1312.1039.

I MDPs, Stochastic games, Nonlinear eigenvalue problems, etc.
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