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Fixed-point theory

Fixed-point

Any z that solves z = f(x)

Three types of results

Geometric: Banach contraction and relatives
Order-theoretic: Knaster-Tarski

Topological: Brouwer, Schauder-Leray, etc.
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Fixed-point theory — main concerns

® & & & o o

existence of a solution

uniqueness of a solution

stability under small perturbations of parameters
structure of solution set (failing uniqueness)

algorithms / approximation methods to obtain solutions

rate of convergence analyses
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Fixed-point theory — Banach contraction

Some conditions under which the nonlinear equation
x="Tx, re M CX,
can be solved by iterating

Tr1 = Ty, o €M, k=0,1,....
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Fixed-point theory — Banach contraction

Theorem (Banach 1922.) Suppose (i) T': M C X — M; (i) M is
closed, nonempty set in a complete metric space (X,d); (iii) T is
g-contractive, i.e.,

d(Tz,Ty) < qd(z,y), Va,y € M, constant 0 < ¢ < 1.

Then, we have the following:

(i) Tx = z has exactly one solution (7" has a unique FP in M)
(ii) The sequence {z} converges to the solution for any g € M
(iii) A priori error estimate

d(xp, ") < ¢"(1 —q) " d(o, 1)
(iv) A posterior error estimate
d(£k‘+1a QZ’*) < Q(l - Q)_ld(l’k,$k+1)

(v) (Global) linear rate of convergence: d(xp41,2*) < qd(zg, z*)
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Fixed-point theory — Banach contraction

» If X is a Banach space with distance d = ||z — y/|
Tz — Tyl < qllz —yl, 0<g<1 (contraction)
» If inequality holds with ¢ = 1, we call map nonexpansive

d(Tz,Ty) < d(z,y)
Example: x — x + 1 is nonexpansive, but has no fixed points!

» Map is called contractive or weakly-contractive if
d(Tz,Ty) < d(z,y), Vr,y € M.

» Several other variations of maps have been studied for Banach
spaces (see e.g., book by Bauschke, Combettes (2012))

6
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Banach contraction — proof

Blackboard
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Banach contraction — proof

‘ Blackboard

Summary:

» d must be positive-definite, i.e, d(z,y) =0 iff x =y

» (X, d) must be complete (contain all its Cauchy sequences)
» T': M — M, M must be closed

» But M need not be compact!

» Contraction is often a rare luxury; nonexpansive maps are more
common (we've already seen several)
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More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex
compact subset M C R? to M itself has a fixed-point.
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More general fixed-point theorems

Theorem (Brouwer FP.) Every continuous function from a convex
compact subset M C R? to M itself has a fixed-point.

Note: Proves existence only!
Generalizes the intermediate-value theorem.

Theorem (Schauder FP.) Every continuous function from a convex
compact subset M of a Banach space to M itself has a fixed-point.

Remarks:
» Brouwer FPs — very hard. “Exponential lower bounds for finding
Brouwer fixed points’—Hirsch, Papadimitriou, Vavasis (1988).

» Any algorithm for computing a Brouwer FP based on function evaluations
only must in the worst case perform a number of function evaluations

exponential in both the number of digits of accuracy and the dimension.

» Contrast with n = 1, where bisection yields |f(Z) — f*| < 27% in O(9)



Kakutani fixed-point theorem

FP theorem for set-valued mappings (recall z € (I — 9f)(x))
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Kakutani fixed-point theorem

FP theorem for set-valued mappings (recall x € (I — 0f)(z))

Set-valued map

F:M—=2M  geMw— Fz)e2M ie F(z)C M.

Closed-graph
{(z,y) |y € F(x)} is a closed subset of X x X

(ie., 2, =z, yp > y and y;, € F(xp) = y € F(x))
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Kakutani fixed-point theorem

FP theorem for set-valued mappings (recall x € (I — 0f)(z))

Set-valued map
F:M—=2M  geMw— Fz)e2M ie F(z)C M.

Closed-graph
{(z,y) |y € F(x)} is a closed subset of X x X

(ie., 2, =z, yp > y and y;, € F(xp) = y € F(x))

Theorem (S. Kakutani 1941.) Let M C R"™ be nonempty, convex,

compact. Let F: M — 2M be a set-valued map with a closed
graph; also for all x € M, let F(x) be non-empty and convex.
Then, F' has a fixed point.

Application: See proof of Nash equilibrium on Wikipedia
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Brouwer FP — example

o Consider a Markov transition matrix A € R}*"
o Column stochastic: a;; >0and > ,a;; =1for 1 <j<n
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Prove: 3z >0, 71 =1 such that Az = x.
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Brouwer FP — example

o Consider a Markov transition matrix A € R*"
o Column stochastic: a;; >0and > ,a;; =1for 1 <j<n

Claim. There is a probability vector x that is an eigenvector of A.

|

Prove: 3z >0, 71 =1 such that Az = x.

» Let A, be probability simplex (compact, convex subset of R™)
» Verify that if z € A,, then Az € A,

» Thus, A: A, — A,; A is obviously continuous

» Hence by Brouwer FP: there is an x € A,, such that Az =z

How to compute such an z7?
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Conic optimization
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Some definitions

» Let K be a cone in a real vector space V'
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Some definitions

» Let K be a cone in a real vector space V'
» Let y € K and x € V. We say y dominates z if

ay =k ¢ <K Py, forsome o, € R.

Max-min gauges

My (z/y) = mf{fcR[z< By}
mg(z/y) = sup{a €R|ay <z}.
Shorthand: < = =<g

» Parts: We have an equivalence relation x ~x y on K if «
dominates y and vice versa. The equivalence classes are called
parts of the cone.

12 /19



Hilbert projective metric

» If v~y withy #0,then 3, 8>0 st ay<z<fy.
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Hilbert projective metric

» If v~y withy #0,then 3, 8>0 st ay<z<fy.

Def. (Hilbert metric.) Let z ~x y and y # 0. Then,

M(z/y)
m(z/y)
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Hilbert projective metric

» If v~y withy #0,then 3, 8>0 st ay<z<fy.

Def. (Hilbert metric.) Let z ~x y and y # 0. Then,

M(z/y)
m(z/y)

dp(x,y) :=log

Proposition. Let K be a cone in V; (K,dy) satisfies:
mdy(z,y) >0, and dg(z,y) = du(y,z) for all z,y € K
mdy(x,2) <dp(z,y) +du(y,z) for al x ~x y ~k z, and
m dy(ax,By) =dg(x,y) for all o, >0 and z,y € K.

If K is closed, then dg(x,y) = 0 iff ¢ = Ay for some A > 0. In
this case, if X C K satisfies that for each x € K \ {0} there is
a unique A > 0 such that Ax € X and P is a part of K, then
(PN X,dn) is a genuine metric space.

Proof: on blackboard
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Nonexpansive maps with dy

Def. (OPSH maps.) Let K C V and K’ C V' be closed cones. The
f: K — K'is called order preserving if for x <y vy, f(z) <g f(y).
It is homogeneous of degree r if f(Ax) = A" f(x) for all z € K and
A > 0. It is subhomogeneous if Af(z) < f(Az) for all z € K and
0< A<
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Nonexpansive maps with dy

Def. (OPSH maps.) Let K C V and K’ C V' be closed cones. The
f: K — K'is called order preserving if for x <y vy, f(z) <g f(y).
It is homogeneous of degree r if f(Ax) = A" f(x) for all z € K and
A > 0. It is subhomogeneous if Af(z) < f(Az) for all z € K and
0< A<

Exercise: Prove that if f: K — K’ is OPH of degree r > 0 then

du(f(x), f(y)) < rdu(z,y).

» In particular, if r =1, then f is nonexpansive (in dp)
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Birkhoff’s theorem

» Let L be a linear operator on a cone K (L : K — K)
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Birkhoff’s theorem

» Let L be a linear operator on a cone K (L : K — K)

Contraction ratio
k(L) :==1inf{\ > 0| dg(Lz, Ly) < Adg(z,y) for all x ~x y in K}.

Theorem (Birkhoff.) Let A(L) := sup{duy(Lx,Ly) | Lv ~x Ly}
be the projective diameter of L. Then

k(L) = tanh(LA(L))

» If A(L) < oo, then we have a strict contraction!

15/19



Application to Pagerank eigenvector

o Markov transition matrix A € R}*"
o Column stochastic: a;; >0and >, a;; =1for 1 <j<n
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Application to Pagerank eigenvector

o Markov transition matrix A € R}™"
o Column stochastic: a;; >0and >, a;; =1for 1 <j<n

Consider cone K = R"}
Suppose A(A) < oo — (next slide)
Then dy(Ax, Ay) < k(A)dg(z,y)— strict contraction

| 2
| 2
| 2
» Need to argue that (A,,,dy) is a complete metric space
» Invoke Banach contraction theorem.

>

Linear rate of convergence
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Application to Pagerank eigenvector

» Let K =R"} and K’ =R7, and A € R™*"

> A(K) C K’ iff az; > 0

» =~ yisequivalent to I, :={i | x; >0} ={i|y; >0}
» In this case, we obtain

dg(z,y) = log (max %)

1,jEI Z5Y;
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Application to Pagerank eigenvector

» Let K =R"} and K’ =R7, and A € R™*"
» =~ yis equivalent to I, :== {i|x; >0} = {i |y, > 0}

» In this case, we obtain

dy(z,y) = log (max $iyj)
1,jEl: XY

Lemma If A € RT"*". If there exists J C [n] s.t. Ae; ~g+ Aej for
alli,j € J, and Ae; = 0 for alli € J then the projective diameter

A(A) = maxdy (Ae;, Aej) < 0.
1,7€J
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More applications

» Geometric optimization on the psd cone

Sra, Hosseini (2013). “Conic geometric optimisation on the
manifold of positive definite matrices.” arXiv:1312.1039.

» MDPs, Stochastic games, Nonlinear eigenvalue problems, etc.
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