Advanced Optimization

(10-801: CMU)

Lecture 22
Fixed-point theory; nonlinear conic optimization

07 Apr 2014

Suvrit Sra

Many optimization problems

$$h(x) = 0$$

$$x - h(x) = 0$$

$$(I - h)(x) = x$$

Many optimization problems

$$h(x) \ni 0$$

$$x - h(x) \ni 0$$

$$(I - h)(x) \ni x$$

Fixed-point

Any
$$x$$
 that solves $x = f(x)$

Fixed-point

Any x that solves x = f(x)

Three types of results

1 Geometric: Banach contraction and relatives

Fixed-point

Any x that solves x = f(x)

Three types of results

1 Geometric: Banach contraction and relatives

2 Order-theoretic: Knaster-Tarski

Fixed-point

Any x that solves x = f(x)

Three types of results

- 1 Geometric: Banach contraction and relatives
- Order-theoretic: Knaster-Tarski
- **Topological:** Brouwer, Schauder-Leray, etc.

Fixed-point theory – main concerns

- existence of a solution
- uniqueness of a solution
- ♦ stability under small perturbations of parameters
- ♦ structure of solution set (failing uniqueness)
- ♦ algorithms / approximation methods to obtain solutions
- ♦ rate of convergence analyses

Some conditions under which the nonlinear equation

$$x = Tx, \qquad x \in M \subset X,$$

can be solved by iterating

$$x_{k+1} = Tx_k, \quad x_0 \in M, \quad k = 0, 1, \dots$$

Theorem (Banach 1922.) Suppose (i) $T:M\subseteq X\to M$; (ii) M is closed, nonempty set in a complete metric space (X,d); (iii) T is q-contractive, i.e.,

$$d(Tx, Ty) \le qd(x, y), \quad \forall x, y \in M, \text{ constant } 0 \le q < 1.$$

Then, we have the following:

- (i) Tx = x has exactly one solution (T has a unique FP in M)
- (ii) The sequence $\{x_k\}$ converges to the solution for any $x_0 \in M$
- (iii) A priori error estimate

$$d(x_k, x^*) \le q^k (1 - q)^{-1} d(x_0, x_1)$$

(iv) A posterior error estimate

$$d(x_{k+1}, x^*) \le q(1-q)^{-1}d(x_k, x_{k+1})$$

(v) (Global) linear rate of convergence: $d(x_{k+1}, x^*) \leq qd(x_k, x^*)$

▶ If X is a Banach space with distance d = ||x - y||

$$||Tx - Ty|| \le q||x - y||, \qquad 0 \le q < 1$$
 (contraction)

▶ If X is a Banach space with distance d = ||x - y||

$$||Tx - Ty|| \le q||x - y||, \qquad 0 \le q < 1$$
 (contraction)

▶ If inequality holds with q = 1, we call map nonexpansive

$$d(Tx, Ty) \le d(x, y)$$

Example: $x \mapsto x + 1$ is nonexpansive, but has no fixed points!

▶ If X is a Banach space with distance d = ||x - y||

$$||Tx - Ty|| \le q||x - y||, \qquad 0 \le q < 1$$
 (contraction)

▶ If inequality holds with q = 1, we call map nonexpansive

$$d(Tx, Ty) \le d(x, y)$$

Example: $x \mapsto x + 1$ is nonexpansive, but has no fixed points!

▶ Map is called contractive or weakly-contractive if

$$d(Tx, Ty) < d(x, y), \quad \forall x, y \in M.$$

▶ If X is a Banach space with distance d = ||x - y||

$$||Tx - Ty|| \le q||x - y||, \qquad 0 \le q < 1$$
 (contraction)

▶ If inequality holds with q = 1, we call map nonexpansive

$$d(Tx, Ty) \le d(x, y)$$

Example: $x \mapsto x + 1$ is nonexpansive, but has no fixed points!

▶ Map is called contractive or weakly-contractive if

$$d(Tx, Ty) < d(x, y), \quad \forall x, y \in M.$$

➤ Several other variations of maps have been studied for Banach spaces (see e.g., book by Bauschke, Combettes (2012))

Banach contraction – proof

Blackboard

Banach contraction – proof

Blackboard

Summary:

- ▶ d must be positive-definite, i.e, d(x,y) = 0 iff x = y
- \blacktriangleright (X,d) must be complete (contain all its Cauchy sequences)
- ightharpoonup T: M o M, M must be closed
- ▶ But *M* need not be compact!
- ► Contraction is often a rare luxury; nonexpansive maps are more common (we've already seen several)

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^d$ to M itself has a fixed-point.

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^d$ to M itself has a fixed-point.

Note: Proves existence only!

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^d$ to M itself has a fixed-point.

Note: Proves existence only!

Generalizes the intermediate-value theorem.

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^d$ to M itself has a fixed-point.

Note: Proves existence only!

Generalizes the intermediate-value theorem.

Theorem (Schauder FP.) Every continuous function from a convex compact subset M of a Banach space to M itself has a fixed-point.

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^d$ to M itself has a fixed-point.

Note: Proves existence only!
Generalizes the intermediate-value theorem.

Theorem (Schauder FP.) Every continuous function from a convex compact subset M of a Banach space to M itself has a fixed-point.

Remarks:

▶ Brouwer FPs – very hard. "Exponential lower bounds for finding Brouwer fixed points" –Hirsch, Papadimitriou, Vavasis (1988).

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^d$ to M itself has a fixed-point.

Note: Proves existence only!

Generalizes the intermediate-value theorem.

Theorem (Schauder FP.) Every continuous function from a convex compact subset M of a Banach space to M itself has a fixed-point.

Remarks:

- ▶ Brouwer FPs very hard. "Exponential lower bounds for finding Brouwer fixed points" –Hirsch, Papadimitriou, Vavasis (1988).
- ▶ Any algorithm for computing a Brouwer FP based on function evaluations only must in the worst case perform a number of function evaluations exponential in both the number of digits of accuracy and the dimension.

Theorem (Brouwer FP.) Every continuous function from a convex compact subset $M \subset \mathbb{R}^d$ to M itself has a fixed-point.

Note: Proves existence only!

Generalizes the intermediate-value theorem.

Theorem (Schauder FP.) Every continuous function from a convex compact subset M of a Banach space to M itself has a fixed-point.

Remarks:

- ▶ Brouwer FPs very hard. "Exponential lower bounds for finding Brouwer fixed points" –Hirsch, Papadimitriou, Vavasis (1988).
- Any algorithm for computing a Brouwer FP based on function evaluations only must in the worst case perform a number of function evaluations exponential in both the number of digits of accuracy and the dimension.
- ► Contrast with n=1, where bisection yields $|f(\hat{x}) f^*| \leq 2^{-\delta}$ in $O(\delta)$

Kakutani fixed-point theorem

FP theorem for **set-valued** mappings (recall $x \in (I - \partial f)(x)$)

Kakutani fixed-point theorem

FP theorem for set-valued mappings (recall $x \in (I - \partial f)(x)$)

Set-valued map

$$F: M \to 2^M$$
, $x \in M \mapsto F(x) \in 2^M$, i.e. $F(x) \subseteq M$.

Closed-graph

$$\{(x,y)\mid y\in F(x)\}$$
 is a closed subset of $X\times X$ (i.e., $x_k\to x$, $y_k\to y$ and $y_k\in F(x_k)\implies y\in F(x)$)

Kakutani fixed-point theorem

FP theorem for **set-valued** mappings (recall $x \in (I - \partial f)(x)$)

Set-valued map

$$F: M \to 2^M$$
, $x \in M \mapsto F(x) \in 2^M$, i.e. $F(x) \subseteq M$.

Closed-graph

$$\{(x,y)\mid y\in F(x)\}$$
 is a closed subset of $X\times X$
(i.e., $x_k\to x$, $y_k\to y$ and $y_k\in F(x_k)\implies y\in F(x)$)

Theorem (S. Kakutani 1941.) Let $M \subset \mathbb{R}^n$ be nonempty, convex, compact. Let $F: M \to 2^M$ be a set-valued map with a **closed graph**; also for all $x \in M$, let F(x) be non-empty and convex. Then, F has a fixed point.

Application: See proof of Nash equilibrium on Wikipedia

- \circ Consider a Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- \circ Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$

- \circ Consider a Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$

- \circ Consider a Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

Prove: $\exists x \geq 0, \ x^T 1 = 1$ such that Ax = x.

- \circ Consider a Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

Prove:
$$\exists x \geq 0, \ x^T 1 = 1 \text{ such that } Ax = x.$$

▶ Let Δ_n be probability simplex (compact, convex subset of \mathbb{R}^n)

- \circ Consider a Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$

Prove:
$$\exists x \geq 0, \ x^T 1 = 1 \text{ such that } Ax = x.$$

- ▶ Let Δ_n be probability simplex (compact, convex subset of \mathbb{R}^n)
- ▶ Verify that if $x \in \Delta_n$ then $Ax \in \Delta_n$

- \circ Consider a Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$

Prove:
$$\exists x \geq 0, \ x^T 1 = 1 \text{ such that } Ax = x.$$

- ▶ Let Δ_n be probability simplex (compact, convex subset of \mathbb{R}^n)
- ▶ Verify that if $x \in \Delta_n$ then $Ax \in \Delta_n$
- ▶ Thus, $A: \Delta_n \to \Delta_n$; A is obviously continuous

- o Consider a Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- \circ Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$

Prove:
$$\exists x \geq 0, \ x^T 1 = 1 \text{ such that } Ax = x.$$

- ▶ Let Δ_n be probability simplex (compact, convex subset of \mathbb{R}^n)
- ▶ Verify that if $x \in \Delta_n$ then $Ax \in \Delta_n$
- ▶ Thus, $A: \Delta_n \to \Delta_n$; A is obviously continuous
- ▶ Hence by Brouwer FP: there is an $x \in \Delta_n$ such that Ax = x

- \circ Consider a Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- \circ Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$

Claim. There is a probability vector x that is an eigenvector of A.

Prove:
$$\exists x \geq 0, \ x^T 1 = 1 \text{ such that } Ax = x.$$

- ▶ Let Δ_n be probability simplex (compact, convex subset of \mathbb{R}^n)
- ▶ Verify that if $x \in \Delta_n$ then $Ax \in \Delta_n$
- ▶ Thus, $A: \Delta_n \to \Delta_n$; A is obviously continuous
- ▶ Hence by Brouwer FP: there is an $x \in \Delta_n$ such that Ax = x

How to compute such an x?

Conic optimization

Some definitions

 \blacktriangleright Let K be a cone in a real vector space V

- \blacktriangleright Let K be a cone in a real vector space V
- ▶ Let $y \in K$ and $x \in V$. We say y dominates x if

$$\alpha y \preceq_K x \preceq_K \beta y$$
, for some $\alpha, \beta \in \mathbb{R}$.

- ▶ Let *K* be a cone in a real vector space *V*
- ▶ Let $y \in K$ and $x \in V$. We say y dominates x if

$$\alpha y \preceq_K x \preceq_K \beta y$$
, for some $\alpha, \beta \in \mathbb{R}$.

Max-min gauges

$$M_K(x/y) := \inf \{ \beta \in \mathbb{R} \mid x \leq \beta y \}$$

 $m_K(x/y) := \sup \{ \alpha \in \mathbb{R} \mid \alpha y \leq x \}.$

Shorthand:
$$\leq \equiv \preceq_K$$

- \blacktriangleright Let K be a cone in a real vector space V
- ▶ Let $y \in K$ and $x \in V$. We say y dominates x if

$$\alpha y \preceq_K x \preceq_K \beta y$$
, for some $\alpha, \beta \in \mathbb{R}$.

Max-min gauges

$$M_K(x/y) := \inf \{ \beta \in \mathbb{R} \mid x \leq \beta y \}$$

 $m_K(x/y) := \sup \{ \alpha \in \mathbb{R} \mid \alpha y \leq x \}.$

Shorthand:
$$\leq \equiv \preceq_K$$

▶ Parts: We have an equivalence relation $x \sim_K y$ on K if x dominates y and vice versa.

- lackbox Let K be a cone in a real vector space V
- ▶ Let $y \in K$ and $x \in V$. We say y dominates x if

$$\alpha y \preceq_K x \preceq_K \beta y$$
, for some $\alpha, \beta \in \mathbb{R}$.

Max-min gauges

$$M_K(x/y) := \inf \{ \beta \in \mathbb{R} \mid x \leq \beta y \}$$

 $m_K(x/y) := \sup \{ \alpha \in \mathbb{R} \mid \alpha y \leq x \}.$

Shorthand:
$$\leq \equiv \preceq_K$$

▶ Parts: We have an equivalence relation $x \sim_K y$ on K if x dominates y and vice versa. The equivalence classes are called parts of the cone.

Hilbert projective metric

▶ If $x \sim_K y$ with $y \neq 0$, then $\exists \alpha, \beta > 0$ s.t. $\alpha y \leq x \leq \beta y$.

Hilbert projective metric

▶ If $x \sim_K y$ with $y \neq 0$, then $\exists \ \alpha, \beta > 0$ s.t. $\alpha y \leq x \leq \beta y$.

Def. (Hilbert metric.) Let $x \sim_K y$ and $y \neq 0$. Then,

$$d_H(x,y) := \log \frac{M(x/y)}{m(x/y)}$$

Hilbert projective metric

▶ If $x \sim_K y$ with $y \neq 0$, then $\exists \alpha, \beta > 0$ s.t. $\alpha y \leq x \leq \beta y$.

Def. (Hilbert metric.) Let $x \sim_K y$ and $y \neq 0$. Then,

$$d_H(x,y) := \log \frac{M(x/y)}{m(x/y)}$$

Proposition. Let K be a cone in V; (K, d_H) satisfies:

- \bullet $d_H(x,y) \ge 0$, and $d_H(x,y) = d_H(y,x)$ for all $x,y \in K$
- $d_H(x,z) \le d_H(x,y) + d_H(y,z)$ for all $x \sim_K y \sim_K z$, and
- $d_H(\alpha x, \beta y) = d_H(x, y) \text{ for all } \alpha, \beta > 0 \text{ and } x, y \in K.$

If K is closed, then $d_H(x,y) = 0$ iff $x = \lambda y$ for some $\lambda > 0$. In this case, if $X \subset K$ satisfies that for each $x \in K \setminus \{0\}$ there is a unique $\lambda > 0$ such that $\lambda x \in X$ and P is a part of K, then $(P \cap X, d_H)$ is a genuine metric space.

Proof: on blackboard

Nonexpansive maps with d_H

Def. (OPSH maps.) Let $K\subseteq V$ and $K'\subseteq V'$ be closed cones. The $f:K\to K'$ is called order preserving if for $x\leq_K y$, $f(x)\leq_{K'} f(y)$. It is homogeneous of degree r if $f(\lambda x)=\lambda^r f(x)$ for all $x\in K$ and $\lambda>0$. It is subhomogeneous if $\lambda f(x)\leq f(\lambda x)$ for all $x\in K$ and $0<\lambda<1$.

Nonexpansive maps with d_H

Def. (OPSH maps.) Let $K\subseteq V$ and $K'\subseteq V'$ be closed cones. The $f:K\to K'$ is called order preserving if for $x\le_K y$, $f(x)\le_{K'} f(y)$. It is homogeneous of degree r if $f(\lambda x)=\lambda^r f(x)$ for all $x\in K$ and $\lambda>0$. It is subhomogeneous if $\lambda f(x)\le f(\lambda x)$ for all $x\in K$ and $0<\lambda<1$.

Exercise: Prove that if $f: K \to K'$ is OPH of degree r > 0 then

$$d_H(f(x), f(y)) \le r d_H(x, y).$$

Nonexpansive maps with d_H

Def. (OPSH maps.) Let $K\subseteq V$ and $K'\subseteq V'$ be closed cones. The $f:K\to K'$ is called order preserving if for $x\le_K y$, $f(x)\le_{K'} f(y)$. It is homogeneous of degree r if $f(\lambda x)=\lambda^r f(x)$ for all $x\in K$ and $\lambda>0$. It is subhomogeneous if $\lambda f(x)\le f(\lambda x)$ for all $x\in K$ and $0<\lambda<1$.

Exercise: Prove that if $f: K \to K'$ is OPH of degree r > 0 then

$$d_H(f(x), f(y)) \le r d_H(x, y).$$

▶ In particular, if r = 1, then f is nonexpansive (in d_H)

▶ Let L be a linear operator on a cone K $(L: K \rightarrow K)$

▶ Let L be a linear operator on a cone K $(L: K \to K)$

Contraction ratio

$$\kappa(L) := \inf \left\{ \lambda \geq 0 \mid d_H(Lx,Ly) \leq \lambda d_H(x,y) \text{ for all } x \sim_K y \text{ in } K \right\}.$$

▶ Let L be a linear operator on a cone K $(L: K \to K)$

Contraction ratio

$$\kappa(L) := \inf \left\{ \lambda \geq 0 \mid d_H(Lx, Ly) \leq \lambda d_H(x, y) \text{ for all } x \sim_K y \text{ in } K \right\}.$$

Theorem (Birkhoff.) Let $\Delta(L) := \sup \{d_H(Lx, Ly) \mid Lx \sim_K Ly\}$ be the projective diameter of L. Then

$$\kappa(L) = \tanh(\frac{1}{4}\Delta(L))$$

▶ Let L be a linear operator on a cone K $(L: K \to K)$

Contraction ratio

$$\kappa(L) := \inf \left\{ \lambda \geq 0 \mid d_H(Lx, Ly) \leq \lambda d_H(x, y) \text{ for all } x \sim_K y \text{ in } K \right\}.$$

Theorem (Birkhoff.) Let $\Delta(L):=\sup\{d_H(Lx,Ly)\mid Lx\sim_K Ly\}$ be the projective diameter of L. Then

$$\kappa(L)=\tanh(\tfrac{1}{4}\Delta(L))$$

▶ If $\Delta(L) < \infty$, then we have a strict contraction!

- Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- \circ Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$

- Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$
- ▶ Consider cone $K \equiv \mathbb{R}^n_+$
- ▶ Suppose $\Delta(A) < \infty$ (next slide)

- Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$
- ▶ Consider cone $K \equiv \mathbb{R}^n_+$
- ▶ Suppose $\Delta(A) < \infty$ (next slide)
- ▶ Then $d_H(Ax, Ay) \le \kappa(A)d_H(x, y)$ strict contraction

- Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$
- ▶ Consider cone $K \equiv \mathbb{R}^n_+$
- ▶ Suppose $\Delta(A) < \infty$ (next slide)
- ▶ Then $d_H(Ax, Ay) \le \kappa(A)d_H(x, y)$ strict contraction
- ▶ Need to argue that (Δ_n, d_H) is a complete metric space

- Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$
- ▶ Consider cone $K \equiv \mathbb{R}^n_+$
- ▶ Suppose $\Delta(A) < \infty$ (next slide)
- ▶ Then $d_H(Ax, Ay) \le \kappa(A)d_H(x, y)$ strict contraction
- ▶ Need to argue that (Δ_n, d_H) is a complete metric space
- ▶ Invoke Banach contraction theorem.

- Markov transition matrix $A \in \mathbb{R}^{n \times n}_+$
- Column stochastic: $a_{ij} \geq 0$ and $\sum_i a_{ij} = 1$ for $1 \leq j \leq n$
- ▶ Consider cone $K \equiv \mathbb{R}^n_+$
- ▶ Suppose $\Delta(A) < \infty$ (next slide)
- ▶ Then $d_H(Ax, Ay) \le \kappa(A)d_H(x, y)$ strict contraction
- ▶ Need to argue that (Δ_n, d_H) is a complete metric space
- ▶ Invoke Banach contraction theorem.
- ► Linear rate of convergence

 \blacktriangleright Let $K=\mathbb{R}^n_+$ and $K'=\mathbb{R}^m_+$, and $A\in\mathbb{R}^{m\times n}$

- ▶ Let $K = \mathbb{R}^n_+$ and $K' = \mathbb{R}^m_+$, and $A \in \mathbb{R}^{m \times n}$
- ▶ $A(K) \subseteq K'$ iff $a_{ij} \ge 0$

- ▶ Let $K = \mathbb{R}^n_+$ and $K' = \mathbb{R}^m_+$, and $A \in \mathbb{R}^{m \times n}$
- \blacktriangleright $A(K) \subseteq K'$ iff $a_{ij} \ge 0$
- ▶ $x \sim_K y$ is equivalent to $I_x := \{i \mid x_i > 0\} = \{i \mid y_i > 0\}$

- ▶ Let $K = \mathbb{R}^n_+$ and $K' = \mathbb{R}^m_+$, and $A \in \mathbb{R}^{m \times n}$
- \blacktriangleright $A(K) \subseteq K'$ iff $a_{ij} \ge 0$
- lacksquare $x \sim_K y$ is equivalent to $I_x := \{i \mid x_i > 0\} = \{i \mid y_i > 0\}$
- ▶ In this case, we obtain

$$d_H(x,y) = \log \left(\max_{i,j \in I_x} \frac{x_i y_j}{x_j y_i} \right)$$

- ▶ Let $K = \mathbb{R}^n_+$ and $K' = \mathbb{R}^m_+$, and $A \in \mathbb{R}^{m \times n}$
- \blacktriangleright $A(K) \subseteq K'$ iff $a_{ij} \ge 0$
- ▶ $x \sim_K y$ is equivalent to $I_x := \{i \mid x_i > 0\} = \{i \mid y_i > 0\}$
- ▶ In this case, we obtain

$$d_H(x,y) = \log \left(\max_{i,j \in I_x} \frac{x_i y_j}{x_j y_i} \right)$$

Lemma If $A \in \mathbb{R}_+^{m \times n}$. If there exists $J \subset [n]$ s.t. $Ae_i \sim_{K'} Ae_j$ for all $i, j \in J$, and $Ae_i = 0$ for all $i \notin J$ then the projective diameter

$$\Delta(A) = \max_{i,j \in J} d_H(Ae_i, Ae_j) < \infty.$$

More applications

► Geometric optimization on the psd cone

Sra, Hosseini (2013). "Conic geometric optimisation on the manifold of positive definite matrices." arXiv:1312.1039.

▶ MDPs, Stochastic games, Nonlinear eigenvalue problems, etc.

References

- ♠ Nonlinear functional analysis-Vol.1 (Fixed-point theorems). E. Zeidler.
- ♠ Nonlinear Perron-Frobenius theory. Lemmens, Nussbaum (2013).