Advanced Optimization

(10-801: CMU)

Lecture 19
Parallel proximal; Incremental gradient

26 Mar, 2014

_____ o ____

Suvrit Sra

$$\min \quad f(x) + h(x)$$

$$z \leftarrow \frac{1}{2}(I + R_f R_h)z$$

$$\min \quad f(x) + h(x)$$

$$z \leftarrow \frac{1}{2}(I + R_f R_h)z$$

Reflection operator

$$R_f := 2\operatorname{prox}_f - I.$$

$$\min \quad f(x) + h(x)$$

$$z \leftarrow \frac{1}{2}(I + R_f R_h)z$$

Reflection operator

$$R_f := 2 \operatorname{prox}_f - I.$$

$$\min \quad f(x) + h(x)$$

$$z \leftarrow \frac{1}{2}(I + R_f R_h)z$$

Reflection operator

$$R_f := 2 \operatorname{prox}_f - I.$$

$$\operatorname{prox}_f + \operatorname{prox}_{f^*} = I$$

$$\min \quad f(x) + h(x)$$

$$z \leftarrow \frac{1}{2}(I + R_f R_h)z$$

Reflection operator

$$R_f := 2\operatorname{prox}_f - I.$$

$$\begin{array}{rcl} \operatorname{prox}_f + \operatorname{prox}_{f^*} & = & I \\ & 2\operatorname{prox}_f & = & 2I - 2\operatorname{prox}_{f^*} \end{array}$$

$$\min \quad f(x) + h(x)$$

$$z \leftarrow \frac{1}{2}(I + R_f R_h)z$$

Reflection operator

$$R_f := 2 \operatorname{prox}_f - I.$$

$$\operatorname{prox}_f + \operatorname{prox}_{f^*} = I$$

$$2 \operatorname{prox}_f = 2I - 2 \operatorname{prox}_{f^*}$$

$$2 \operatorname{prox}_f - I = I - 2 \operatorname{prox}_{f^*}$$

$$R_f = -R_{f^*}$$

$$\min f(x) + g(x) + h(x)$$

$$\min f(x) + g(x) + h(x)$$

$$z \leftarrow \frac{1}{2}(I + R_f R_g R_h)z$$

$$\min f(x) + g(x) + h(x)$$

$$\begin{array}{rcl} 0 & \in & \partial f(x) + \partial g(x) + \partial h(x) \\ 3x & \in & (I+\partial f)(x) + (I+\partial g)(x) + (I+\partial h)(x) \\ 3x & \in & (I+\partial f)(x) + z + w \\ & \text{now what?} \end{array}$$

$$\min f(x) + g(x) + h(x)$$

Partial solution (Borwein, Tam (2013))

$$T_{hf} := \frac{1}{2}(I + R_f R_h)$$
$$T_{[fgh]} := T_{hf} T_{gh} T_{fg}$$
$$z \leftarrow T_{[fgh]} z$$

$$\min f(x) + g(x) + h(x)$$

Partial solution (Borwein, Tam (2013))

$$T_{hf} := \frac{1}{2}(I + R_f R_h)$$
$$T_{[fgh]} := T_{hf} T_{gh} T_{fg}$$
$$z \leftarrow T_{[fgh]} z$$

- Works for more than 3 functions too!
- $\circ~$ For two functions $T_{[fg]} = T_{gf}T_{fg}$
- o Does not coincide with usual DR.
- o Finding "correct" generalization an open problem

Parallel proximal methods

Optimizing separable objective functions

$$f(x) := \frac{1}{2} ||x - y||_2^2 + \sum_i f_i(x)$$

 $f(x) := \sum_i f_i(x)$

Parallel proximal methods

Optimizing separable objective functions

$$f(x) := \frac{1}{2} ||x - y||_2^2 + \sum_i f_i(x)$$

 $f(x) := \sum_i f_i(x)$

Let us consider

$$\min \quad f(x) = \sum_{i=1}^{m} f_i(x), \qquad x \in \mathbb{R}^n.$$

 $lackbox{ Original problem over } \mathcal{H} = \mathbb{R}^n$

- lacktriangle Original problem over $\mathcal{H}=\mathbb{R}^n$
- ▶ Suppose we have $\sum_{i=1}^{m} f_i(x)$

- $lackbox{ Original problem over } \mathcal{H} = \mathbb{R}^n$
- ▶ Suppose we have $\sum_{i=1}^{m} f_i(x)$
- ▶ Introduce new variables $(x_1, ..., x_m)$

- lacktriangle Original problem over $\mathcal{H}=\mathbb{R}^n$
- ▶ Suppose we have $\sum_{i=1}^{m} f_i(x)$
- ▶ Introduce new variables $(x_1, ..., x_m)$
- ▶ Now problem is over domain $\mathcal{H}^m := \mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (*m*-times)

- ▶ Original problem over $\mathcal{H} = \mathbb{R}^n$
- ▶ Suppose we have $\sum_{i=1}^{m} f_i(x)$
- ▶ Introduce new variables (x_1, \ldots, x_m)
- ▶ Now problem is over domain $\mathcal{H}^m := \mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (*m*-times)
- \blacktriangleright New constraint: $x_1 = x_2 = \ldots = x_m$

$$\min_{(x_1,\dots,x_m)} \quad \sum_i f_i(x_i)$$

s.t.
$$x_1 = x_2 = \dots = x_m$$
.

Technique due to: G. Pierra (1976)

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \mathbb{I}_{\mathcal{B}}(\boldsymbol{x})$$

where
$$\boldsymbol{x} \in \mathcal{H}^m$$
 and $\mathcal{B} = \{ \boldsymbol{z} \in \mathcal{H}^m \mid \boldsymbol{z} = (x, x, \dots, x) \}$

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \mathbb{I}_{\mathcal{B}}(\boldsymbol{x})$$

where
$$\boldsymbol{x} \in \mathcal{H}^m$$
 and $\mathcal{B} = \{ \boldsymbol{z} \in \mathcal{H}^m \mid \boldsymbol{z} = (x, x, \dots, x) \}$

$$\blacktriangleright$$
 Let $\boldsymbol{y}=(y_1,\ldots,y_m)$

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \mathbb{I}_{\mathcal{B}}(\boldsymbol{x})$$

where
$$\boldsymbol{x} \in \mathcal{H}^m$$
 and $\mathcal{B} = \{ \boldsymbol{z} \in \mathcal{H}^m \mid \boldsymbol{z} = (x, x, \dots, x) \}$

- \blacktriangleright Let $\boldsymbol{y}=(y_1,\ldots,y_m)$

Two block problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \mathbb{I}_{\mathcal{B}}(\boldsymbol{x})$$

where $\boldsymbol{x} \in \mathcal{H}^m$ and $\mathcal{B} = \{ \boldsymbol{z} \in \mathcal{H}^m \mid \boldsymbol{z} = (x, x, \dots, x) \}$

- \blacktriangleright Let $\boldsymbol{y}=(y_1,\ldots,y_m)$
- $ightharpoonup \operatorname{prox}_{\mathbb{T}_{\mathcal{B}}} \equiv \Pi_{\mathcal{B}}(\boldsymbol{y})$ can be solved as follows:

$$\min_{\bm{x}} f(\bm{x}) + \mathbb{I}_{\mathcal{B}}(\bm{x})$$
 where $\bm{x} \in \mathcal{H}^m$ and $\mathcal{B} = \{\bm{z} \in \mathcal{H}^m \mid \bm{z} = (x,x,\dots,x)\}$

- \blacktriangleright Let $\boldsymbol{y} = (y_1, \dots, y_m)$
- $ightharpoonup \operatorname{prox}_{\mathbb{T}_{\mathcal{B}}} \equiv \Pi_{\mathcal{B}}(\boldsymbol{y})$ can be solved as follows:

$$\min_{\boldsymbol{z} \in \mathcal{B}} \quad \frac{1}{2} \|\boldsymbol{z} - \boldsymbol{y}\|_{2}^{2}
\min_{\boldsymbol{x} \in \mathcal{H}} \quad \sum_{i} \frac{1}{2} \|\boldsymbol{x} - y_{i}\|_{2}^{2}
\implies \quad \boldsymbol{x} = \frac{1}{m} \sum_{i} y_{i}$$

Two block problem

$$\min_{m{x}} f(m{x}) + \mathbb{I}_{\mathcal{B}}(m{x})$$

where $\boldsymbol{x} \in \mathcal{H}^m$ and $\mathcal{B} = \{ \boldsymbol{z} \in \mathcal{H}^m \mid \boldsymbol{z} = (x, x, \dots, x) \}$

- $\blacktriangleright \ \mathsf{Let} \ \boldsymbol{y} = (y_1, \dots, y_m)$
- $ightharpoonup \operatorname{prox}_{\mathbb{T}_{\mathcal{B}}} \equiv \Pi_{\mathcal{B}}(\boldsymbol{y})$ can be solved as follows:

$$\min_{\boldsymbol{z} \in \mathcal{B}} \quad \frac{1}{2} \|\boldsymbol{z} - \boldsymbol{y}\|_{2}^{2}$$

$$\min_{x \in \mathcal{H}} \quad \sum_{i} \frac{1}{2} \|x - y_{i}\|_{2}^{2}$$

$$\implies \quad x = \frac{1}{m} \sum_{i} y_{i}$$

Exercise: Work out the details of DR using the product space idea

This technique commonly exploited in ADMM too

$$\min_{x} \ \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

$$\min_{x} \ \frac{1}{2} \|x - y\|_{2}^{2} + f(x) + h(x)$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_f \circ \operatorname{prox}_h$

$$\min_{x} \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_f \circ \operatorname{prox}_h$

Proximal-Dykstra method

- 1 Let $x_0 = y$; $u_0 = 0$, $z_0 = 0$
- **2** k-th iteration $(k \ge 0)$

$$\min_{x} \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_f \circ \operatorname{prox}_h$

Proximal-Dykstra method

- 1 Let $x_0 = y$; $u_0 = 0$, $z_0 = 0$
- k-th iteration $(k \ge 0)$
 - $w_k = \operatorname{prox}_f(x_k + u_k)$
 - $u_{k+1} = x_k + u_k w_k$

$$\min_{x} \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_f \circ \operatorname{prox}_h$

Proximal-Dykstra method

- 1 Let $x_0 = y$; $u_0 = 0$, $z_0 = 0$
- 2 k-th iteration $(k \ge 0)$
 - $w_k = \operatorname{prox}_f(x_k + u_k)$
 - $u_{k+1} = x_k + u_k w_k$
 - $x_{k+1} = \operatorname{prox}_h(w_k + z_k)$
 - $z_{k+1} = w_k + z_k x_{k+1}$

$$\min_{x} \ \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_f \circ \operatorname{prox}_h$

Proximal-Dykstra method

- 1 Let $x_0 = y$; $u_0 = 0$, $z_0 = 0$
- k-th iteration $(k \ge 0)$
 - $w_k = \operatorname{prox}_f(x_k + u_k)$
 - $u_{k+1} = x_k + u_k w_k$
 - $x_{k+1} = \operatorname{prox}_h(w_k + z_k)$
 - $z_{k+1} = w_k + z_k x_{k+1}$

Why does it work?

$$\min_{x} \ \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

Usually $\operatorname{prox}_{f+h} \neq \operatorname{prox}_f \circ \operatorname{prox}_h$

Proximal-Dykstra method

- 1 Let $x_0 = y$; $u_0 = 0$, $z_0 = 0$
- **2** k-th iteration $(k \ge 0)$
 - $w_k = \operatorname{prox}_f(x_k + u_k)$
 - $u_{k+1} = x_k + u_k w_k$
 - $x_{k+1} = \operatorname{prox}_h(w_k + z_k)$
 - $z_{k+1} = w_k + z_k x_{k+1}$

Why does it work?

Exercise: Use the product-space technique to extend this to a parallel prox-Dykstra method for $m \geq 3$ functions.

Combettes, Pesquet (2010); Bauschke, Combettes (2012)

Proximal-Dykstra – some insight

$$\min_{x} \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

Proximal-Dykstra - some insight

$$\min_{x} \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

$$L(x,z,w,\nu,\mu) := \tfrac{1}{2} \|x-y\|_2^2 + f(z) + h(w) + \nu^T(x-z) + \mu^T(x-w).$$

Proximal-Dykstra - some insight

$$\min_{x} \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

$$L(x, z, w, \nu, \mu) := \frac{1}{2} ||x - y||_2^2 + f(z) + h(w) + \nu^T (x - z) + \mu^T (x - w).$$

▶ Let's derive the dual from *L*:

$$g(\nu,\mu) := \inf_{x,z,w} L(x,z,\nu,\mu)$$

Proximal-Dykstra – some insight

$$\min_{x} \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

$$L(x, z, w, \nu, \mu) := \frac{1}{2} ||x - y||_2^2 + f(z) + h(w) + \nu^T (x - z) + \mu^T (x - w).$$

▶ Let's derive the dual from *L*:

$$g(\nu,\mu) \quad := \quad \inf_{x,z,w} L(x,z,\nu,\mu)$$

$$x-y+\nu+\mu=0 \quad \Longrightarrow \quad x=y-\nu-\mu$$

$$\min_{x} \ \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

$$L(x, z, w, \nu, \mu) := \frac{1}{2} ||x - y||_2^2 + f(z) + h(w) + \nu^T (x - z) + \mu^T (x - w).$$

▶ Let's derive the dual from *L*:

$$\begin{array}{rcl} g(\nu,\mu) & := & \inf_{x,z,w} L(x,z,\nu,\mu) \\ x-y+\nu+\mu=0 & \Longrightarrow & x=y-\nu-\mu \\ \inf_z f(z)-\nu^T z & = & -f^*(\nu), & \text{(similarly get } -h^*(\mu)) \end{array}$$

$$\min_{x} \ \frac{1}{2} ||x - y||_{2}^{2} + f(x) + h(x)$$

$$L(x, z, w, \nu, \mu) := \frac{1}{2} ||x - y||_2^2 + f(z) + h(w) + \nu^T (x - z) + \mu^T (x - w).$$

▶ Let's derive the dual from *L*:

$$\begin{array}{rcl} g(\nu,\mu) & := & \inf_{x,z,w} L(x,z,\nu,\mu) \\ x-y+\nu+\mu=0 & \Longrightarrow & x=y-\nu-\mu \\ \inf_z f(z)-\nu^T z & = & -f^*(\nu), \qquad \text{(similarly get } -h^*(\mu)) \\ g(\nu,\mu) & = & -\frac{1}{2}\|\nu+\mu\|_2^2+(\nu+\mu)^T y-f^*(\nu)-h^*(\mu) \end{array}$$

Equivalent dual problem

$$\min \quad G(\nu, \mu) := \frac{1}{2} \|\nu + \mu - y\|_2^2 + f^*(\nu) + h^*(\mu).$$

Dual problem

$$\min \ G(\nu,\mu) := \frac{1}{2} \|\nu + \mu - y\|_2^2 + f^*(\nu) + h^*(\mu).$$

Dual problem

$$\min \ G(\nu,\mu) := \frac{1}{2} \|\nu + \mu - y\|_2^2 + f^*(\nu) + h^*(\mu).$$

Dual problem

$$\min \ G(\nu,\mu) := \frac{1}{2} \|\nu + \mu - y\|_2^2 + f^*(\nu) + h^*(\mu).$$

$$\nu_{k+1} = \operatorname{argmin}_{\nu} G(\nu, \mu_k),
\mu_{k+1} = \operatorname{argmin}_{\mu} G(\nu_{k+1}, \mu).$$

Dual problem

$$\min \ G(\nu,\mu) := \frac{1}{2} \|\nu + \mu - y\|_2^2 + f^*(\nu) + h^*(\mu).$$

$$\nu_{k+1} = \operatorname{argmin}_{\nu} G(\nu, \mu_k),$$

$$\mu_{k+1} = \operatorname{argmin}_{\mu} G(\nu_{k+1}, \mu).$$

- ▶ $0 \in \nu_{k+1} + \mu_k y + \partial f^*(\nu_{k+1})$
- $\blacktriangleright 0 \in \nu_{k+1} + \mu_{k+1} y + \partial h^*(\mu_{k+1}).$

Dual problem

$$\min \ G(\nu,\mu) := \frac{1}{2} \|\nu + \mu - y\|_2^2 + f^*(\nu) + h^*(\mu).$$

$$\nu_{k+1} = \operatorname{argmin}_{\nu} G(\nu, \mu_k),
\mu_{k+1} = \operatorname{argmin}_{\mu} G(\nu_{k+1}, \mu).$$

$$0 \in \nu_{k+1} + \mu_k - y + \partial f^*(\nu_{k+1}) \implies y - \mu_k \in \nu_{k+1} + \partial f^*(\nu_{k+1})$$

Dual problem

$$\min \ G(\nu,\mu) := \frac{1}{2} \|\nu + \mu - y\|_2^2 + f^*(\nu) + h^*(\mu).$$

$$\nu_{k+1} = \operatorname{argmin}_{\nu} G(\nu, \mu_k),
\mu_{k+1} = \operatorname{argmin}_{\mu} G(\nu_{k+1}, \mu).
\underline{\qquad} \circ \underline{\qquad}$$

$$0 \in \nu_{k+1} + \mu_k - y + \partial f^*(\nu_{k+1}) \Longrightarrow y - \mu_k \in \nu_{k+1} + \partial f^*(\nu_{k+1})$$

$$\Longrightarrow \nu_{k+1} = \operatorname{prox}_{f^*}(y - \mu_k) \Longrightarrow \nu_{k+1} = y - \mu_k - \operatorname{prox}_f(y - \mu_k)$$

Dual problem

$$\min \ G(\nu,\mu) := \frac{1}{2} \|\nu + \mu - y\|_2^2 + f^*(\nu) + h^*(\mu).$$

$$\nu_{k+1} = \operatorname{argmin}_{\nu} G(\nu, \mu_k),
\mu_{k+1} = \operatorname{argmin}_{\mu} G(\nu_{k+1}, \mu).$$

$$0 \in \nu_{k+1} + \mu_k - y + \partial f^*(\nu_{k+1}) \implies y - \mu_k \in \nu_{k+1} + \partial f^*(\nu_{k+1}) \\ \implies \nu_{k+1} = \operatorname{prox}_{f^*}(y - \mu_k) \implies \nu_{k+1} = y - \mu_k - \operatorname{prox}_f(y - \mu_k)$$
 Similarly, $\mu_{k+1} = y - \nu_{k+1} - \operatorname{prox}_h(y - \nu_{k+1})$

▶
$$0 \in \nu_{k+1} + \mu_k - y + \partial f^*(\nu_{k+1})$$

$$0 \in \nu_{k+1} + \mu_{k+1} - y + \partial h^*(\mu_{k+1}).$$

▶
$$0 \in \nu_{k+1} + \mu_k - y + \partial f^*(\nu_{k+1})$$

$$0 \in \nu_{k+1} + \mu_{k+1} - y + \partial h^*(\mu_{k+1}).$$

$$\nu_{k+1} = y - \mu_k - \text{prox}_f(y - \mu_k)$$

$$\mu_{k+1} = y - \nu_{k+1} - \text{prox}_h(y - \nu_{k+1})$$

▶
$$0 \in \nu_{k+1} + \mu_k - y + \partial f^*(\nu_{k+1})$$

$$0 \in \nu_{k+1} + \mu_{k+1} - y + \partial h^*(\mu_{k+1}).$$

$$\nu_{k+1} = y - \mu_k - \text{prox}_f(y - \mu_k)$$

$$\mu_{k+1} = y - \nu_{k+1} - \text{prox}_h(y - \nu_{k+1})$$

Now use Lagrangian stationarity condition

$$x = y - \nu - \mu \implies y - \mu = x + \nu$$

to rewrite BCD using primal and dual variables.

▶
$$0 \in \nu_{k+1} + \mu_k - y + \partial f^*(\nu_{k+1})$$

$$0 \in \nu_{k+1} + \mu_{k+1} - y + \partial h^*(\mu_{k+1}).$$

$$\nu_{k+1} = y - \mu_k - \text{prox}_f(y - \mu_k)$$

$$\mu_{k+1} = y - \nu_{k+1} - \text{prox}_h(y - \nu_{k+1})$$

Now use Lagrangian stationarity condition

$$x = y - \nu - \mu \implies y - \mu = x + \nu$$

to rewrite BCD using primal and dual variables.

BCD

$$\nu_{k+1} = \operatorname{argmin}_{\nu} \ G(\nu, \mu_k),$$

$$\mu_{k+1} = \operatorname{argmin}_{\mu} \ G(\nu_{k+1}, \mu).$$

▶
$$0 \in \nu_{k+1} + \mu_k - y + \partial f^*(\nu_{k+1})$$

$$0 \in \nu_{k+1} + \mu_{k+1} - y + \partial h^*(\mu_{k+1}).$$

$$\nu_{k+1} = y - \mu_k - \text{prox}_f(y - \mu_k)$$

$$\mu_{k+1} = y - \nu_{k+1} - \text{prox}_h(y - \nu_{k+1})$$

Now use Lagrangian stationarity condition

$$x = y - \nu - \mu \implies y - \mu = x + \nu$$

to rewrite BCD using primal and dual variables.

Prox-Dykstra

$$w_k \leftarrow \operatorname{prox}_f(x_k + \nu_k)$$
$$\nu_{k+1} \leftarrow x_k + \nu_k - w_k$$
$$x_{k+1} \leftarrow \operatorname{prox}_h(w_k + \mu_k)$$
$$\mu_{k+1} \leftarrow \mu_k + w_k - x_{k+1}$$

Example practical use

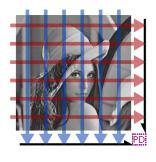
Anisotropic 2D-TV Proximity operator

$$\min_{X} \quad \tfrac{1}{2} \|X - Y\|_{\mathsf{F}}^2 + \sum\nolimits_{ij} w_{ij}^c |x_{i, {\color{blue} j+1}} - x_{ij}| + \sum\nolimits_{ij} w_{ij}^r |x_{{\color{blue} i+1}, j} - x_{ij}|$$

Example practical use

Anisotropic 2D-TV Proximity operator

$$\min_{X} \quad \tfrac{1}{2} \|X - Y\|_{\mathsf{F}}^2 + \sum\nolimits_{ij} w_{ij}^c |x_{i, {\color{blue} j+1}} - x_{ij}| + \sum\nolimits_{ij} w_{ij}^r |x_{{\color{blue} i+1}, j} - x_{ij}|$$



- Amenable to prox-Dykstra
- Used in (Barbero, Sra, ICML 2011).
- The subproblem: $\min \frac{1}{2} ||a - b||_2^2 + \sum_i w_i |a_i - a_{i+1}|$ itself has been subject of over 15 papers!
- I still use it now and then

Incremental first-order methods

Separable objectives

$$\min \quad f(x) = \sum_{i=1}^{m} f_i(x) + \lambda r(x)$$

Separable objectives

$$\min \quad f(x) = \sum_{i=1}^{m} f_i(x) + \lambda r(x)$$

Gradient / subgradient methods

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \qquad \lambda = 0,$$

$$x_{k+1} = x_k - \alpha_k g(x_k), \qquad g(x_k) \in \partial f(x_k) + \lambda \partial r(x_k)$$

$$x_{k+1} = \operatorname{prox}_{\alpha_k r}(x_k - \alpha_k \nabla f(x_k))$$

Product-space based methods

$$\min F(x_1, \dots, x_m) + \mathbb{I}_{\mathcal{B}}(x_1, \dots, x_m)$$
$$(x_{1,k+1}, \dots, x_{m,k+1}) \leftarrow \operatorname{prox}_F(y_{1,k}, \dots, y_{m,k})$$

Separable objectives

$$\min \quad f(x) = \sum_{i=1}^{m} f_i(x) + \lambda r(x)$$

Gradient / subgradient methods

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \qquad \lambda = 0,$$

$$x_{k+1} = x_k - \alpha_k g(x_k), \qquad g(x_k) \in \partial f(x_k) + \lambda \partial r(x_k)$$

$$x_{k+1} = \operatorname{prox}_{\alpha_k r}(x_k - \alpha_k \nabla f(x_k))$$

Product-space based methods

$$\min F(x_1, \dots, x_m) + \mathbb{I}_{\mathcal{B}}(x_1, \dots, x_m)$$
$$(x_{1,k+1}, \dots, x_{m,k+1}) \leftarrow \operatorname{prox}_F(y_{1,k}, \dots, y_{m,k})$$

How much computation does one iteration take?

What if at iteration k, we randomly pick an integer $i(k) \in \{1, 2, \dots, m\}$?

What if at iteration k, we randomly pick an integer $i(k) \in \{1, 2, \dots, m\}$?

And instead just perform the update?

$$x_{k+1} = x_k - \alpha_k \nabla f_{i(k)}(x_k)$$

What if at iteration k, we randomly pick an integer $i(k) \in \{1, 2, ..., m\}$?

And instead just perform the update?

$$x_{k+1} = x_k - \alpha_k \nabla f_{i(k)}(x_k)$$

- lacktriangle The update requires only gradient for $f_{i(k)}$
- ▶ One iteration now m times faster than with $\nabla f(x)$

What if at iteration k, we randomly pick an integer $i(k) \in \{1, 2, \dots, m\}$?

And instead just perform the update?

$$x_{k+1} = x_k - \alpha_k \nabla f_{i(k)}(x_k)$$

- lacktriangle The update requires only gradient for $f_{i(k)}$
- ▶ One iteration now m times faster than with $\nabla f(x)$

But does this make sense?

♠ Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.

- Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
- ♠ Can "stream" through data go through components one by one, say *cyclically* instead of randomly

- Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
- ♠ Can "stream" through data go through components one by one, say *cyclically* instead of randomly
- \spadesuit For large m many $f_i(x)$ may have similar minimizers;

- Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
- ♠ Can "stream" through data go through components one by one, say *cyclically* instead of randomly
- \spadesuit For large m many $f_i(x)$ may have similar minimizers; using the f_i individually we could take advantage, and greatly speed up.

- Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
- ♠ Can "stream" through data go through components one by one, say *cyclically* instead of randomly
- \spadesuit For large m many $f_i(x)$ may have similar minimizers; using the f_i individually we could take advantage, and greatly speed up.
- ♠ Incremental methods usually effective far from the eventual limit (solution) become very slow close to the solution.

- Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
- ♠ Can "stream" through data go through components one by one, say *cyclically* instead of randomly
- \spadesuit For large m many $f_i(x)$ may have similar minimizers; using the f_i individually we could take advantage, and greatly speed up.
- ♠ Incremental methods usually effective far from the eventual limit (solution) become very slow close to the solution.
- Several open questions related to convergence and rate of convergence (for both convex, nonconvex)

- Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
- ♠ Can "stream" through data go through components one by one, say *cyclically* instead of randomly
- \spadesuit For large m many $f_i(x)$ may have similar minimizers; using the f_i individually we could take advantage, and greatly speed up.
- ♠ Incremental methods usually effective far from the eventual limit (solution) become very slow close to the solution.
- ♠ Several open questions related to convergence and rate of convergence (for both convex, nonconvex)
- ♠ Usually randomization greatly simplifies convergence analysis

► Assume all variables involved are scalars.

min
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} (a_i x - b_i)^2$$

► Assume all variables involved are scalars.

min
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} (a_i x - b_i)^2$$

▶ Solving f'(x) = 0 we obtain

$$x^* = \frac{\sum_i a_i b_i}{\sum_i a_i^2}$$

► Assume all variables involved are scalars.

min
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} (a_i x - b_i)^2$$

▶ Solving f'(x) = 0 we obtain

$$x^* = \frac{\sum_i a_i b_i}{\sum_i a_i^2}$$

lacktriangle Minimum of a single $f_i(x) = \frac{1}{2}(a_ix - b_i)^2$ is $x_i^* = b_i/a_i$

► Assume all variables involved are scalars.

min
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} (a_i x - b_i)^2$$

▶ Solving f'(x) = 0 we obtain

$$x^* = \frac{\sum_i a_i b_i}{\sum_i a_i^2}$$

- ▶ Minimum of a single $f_i(x) = \frac{1}{2}(a_ix b_i)^2$ is $x_i^* = b_i/a_i$
- ▶ Notice now that

$$x^* \in [\min_i x_i^*, \max_i x_i^*] =: R$$

(Use:
$$\sum_i a_i b_i = \sum_i a_i^2 (b_i/a_i)$$
)

► Assume all variables involved are scalars.

min
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} (a_i x - b_i)^2$$

▶ Notice: $x^* \in [\min_i x_i^*, \max_i x_i^*] =: R$

Example (Bertsekas)

► Assume all variables involved are scalars.

min
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} (a_i x - b_i)^2$$

- ▶ Notice: $x^* \in [\min_i x_i^*, \max_i x_i^*] =: R$
- \blacktriangleright If we have a scalar x that lies outside R?
- ▶ We see that

$$\nabla f_i(x) = a_i(a_i x - b_i)$$
$$\nabla f(x) = \sum_i a_i(a_i x - b_i)$$

Example (Bertsekas)

► Assume all variables involved are scalars.

min
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} (a_i x - b_i)^2$$

- ▶ Notice: $x^* \in [\min_i x_i^*, \max_i x_i^*] =: R$
- \blacktriangleright If we have a scalar x that lies outside R?
- ▶ We see that

$$\nabla f_i(x) = a_i(a_i x - b_i)$$
$$\nabla f(x) = \sum_i a_i(a_i x - b_i)$$

▶ $\nabla f_i(x)$ has same sign as $\nabla f(x)$. So using $\nabla f_i(x)$ instead of $\nabla f(x)$ also ensures progress.

Example (Bertsekas)

► Assume all variables involved are scalars.

min
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} (a_i x - b_i)^2$$

- ▶ Notice: $x^* \in [\min_i x_i^*, \max_i x_i^*] =: R$
- \blacktriangleright If we have a scalar x that lies outside R?
- ▶ We see that

$$\nabla f_i(x) = a_i(a_i x - b_i)$$
$$\nabla f(x) = \sum_i a_i(a_i x - b_i)$$

- ▶ $\nabla f_i(x)$ has **same sign** as $\nabla f(x)$. So using $\nabla f_i(x)$ **instead** of $\nabla f(x)$ also ensures progress.
- \blacktriangleright But once inside region R, no guarantee that incremental method will make progress towards optimum.

$$\min \quad f(x) = \sum_{i} f_i(x)$$

What if the f_i are nonsmooth?

$$\min \quad f(x) = \sum_{i} f_i(x)$$

What if the f_i are nonsmooth?

$$-x_{k+1} = \operatorname{prox}_{\alpha_k f}(x_k) -$$

$$\min \quad f(x) = \sum_{i} f_i(x)$$

What if the f_i are nonsmooth?

$$\frac{-x_{k+1} = \operatorname{prox}_{\alpha_k f}(x_k)}{x_{k+1} = \operatorname{prox}_{\alpha_k f_{i(k)}}(x_k)}$$
$$x_{k+1} = \operatorname{argmin}\left(\frac{1}{2}||x - x_k||_2^2 + \alpha_k f_{i(k)}(x)\right)$$

 $i(k) \in \{1, 2, \dots, m\}$ picked uniformly at random.

$$\min \quad f(x) = \sum_{i} f_i(x)$$

What if the f_i are nonsmooth?

$$\frac{-x_{k+1} = \operatorname{prox}_{\alpha_k f}(x_k)}{x_{k+1} = \operatorname{prox}_{\alpha_k f_{i(k)}}(x_k)}$$
$$x_{k+1} = \operatorname{argmin}\left(\frac{1}{2}||x - x_k||_2^2 + \alpha_k f_{i(k)}(x)\right)$$

 $i(k) \in \{1, 2, \dots, m\}$ picked uniformly at random.

Convergence rate analysis?

Fermat-Weber problem (historically the first facility-location problem)

$$\min_{x} \quad \sum_{i} w_i \|x - a_i\|$$

Fermat-Weber problem (historically the first facility-location problem)

$$\min_{x} \quad \sum_{i} w_i \|x - a_i\|$$

- ▶ Assuming $\|\cdot\| = \|\cdot\|_2$
- \blacktriangleright Also assume no a_i is an optimum
- ▶ [Weiszfeld; '37] Let $T:=x\mapsto \left(\sum_i \frac{w_i a_i}{\|x-a_i\|}\right)/\left(\sum_i \frac{w_i}{\|x-a_i\|}\right)$
- ▶ Assuming T is well-defined, $T^k(x_0) \to \operatorname{argmin}$
- ► [Kuhn; 73] completed the proof

Fermat-Weber problem (historically the first facility-location problem)

$$\min_{x} \quad \sum_{i} w_i \|x - a_i\|$$

- ▶ Assuming $\|\cdot\| = \|\cdot\|_2$
- \blacktriangleright Also assume no a_i is an optimum
- ▶ [Weiszfeld; '37] Let $T:=x\mapsto \left(\sum_i \frac{w_i a_i}{\|x-a_i\|}\right)/\left(\sum_i \frac{w_i}{\|x-a_i\|}\right)$
- ▶ Assuming T is well-defined, $T^k(x_0) \to \operatorname{argmin}$
- ► [Kuhn; 73] completed the proof
- $\blacktriangleright \text{ What if } \|\cdot\| = \|\cdot\|_p?$
- ▶ 100s of papers discuss the Fermat-Weber problem

Fermat-Weber problem

$$\min_{x} \quad \sum_{i} w_i \|x - a_i\|$$

Fermat-Weber problem

$$\min_{x} \quad \sum_{i} w_i \|x - a_i\|$$

Now,
$$f_i(x) := w_i ||x - a_i||_2$$
.

$$x_{k+1} = \operatorname{prox}_{\alpha_k f_{i(k)}}(x_k)$$

$$x_{k+1} = \operatorname{argmin}\left(\frac{1}{2}||x - x_k||_2^2 + \alpha_k w_{i(k)}||x - a_{i(k)}||_2\right)$$

$$i(k) \in \{1, 2, \dots, m\}$$
 picked uniformly at random.

Fermat-Weber problem

$$\min_{x} \quad \sum_{i} w_i \|x - a_i\|$$

Now,
$$f_i(x) := w_i ||x - a_i||_2$$
.

$$\begin{aligned} x_{k+1} &= \mathrm{prox}_{\alpha_k f_{i(k)}}(x_k) \\ x_{k+1} &= \mathrm{argmin}\left(\frac{1}{2}\|x - x_k\|_2^2 + \alpha_k w_{i(k)}\|x - a_{i(k)}\|_2\right) \\ i(k) &\in \{1, 2, \dots, m\} \text{ picked uniformly at random}. \end{aligned}$$

Exercise: Obtain closed form solution to x_{k+1}

Fermat-Weber problem

$$\min_{x} \quad \sum_{i} w_i \|x - a_i\|$$

Now,
$$f_i(x) := w_i ||x - a_i||_2$$
.

$$x_{k+1} = \operatorname{prox}_{\alpha_k f_{i(k)}}(x_k)$$
$$x_{k+1} = \operatorname{argmin}\left(\frac{1}{2} \|x - x_k\|_2^2 + \alpha_k w_{i(k)} \|x - a_{i(k)}\|_2\right)$$

 $i(k) \in \{1, 2, \dots, m\}$ picked uniformly at random.

Exercise: Obtain closed form solution to x_{k+1}

Rate of convergence? Most likely, sublinear? Can we somehow get linear convergence?

$$\min \quad \sum_{i} f_i(x) + r(x).$$

$$\min \quad \sum_{i} f_i(x) + r(x).$$

$$x_{k+1} = \text{prox}_{\eta_k r} (x_k - \eta_k \sum_{i=1}^m \nabla f_i(z_i)), \quad k = 0, 1, \dots,$$

$$\min \quad \sum_{i} f_i(x) + r(x).$$

$$x_{k+1} = \operatorname{prox}_{\eta_k r} (x_k - \eta_k \sum_{i=1}^m \nabla f_i(z_i)), \quad k = 0, 1, \dots,$$

$$z_1 = x_k$$

$$z_{i+1} = z_i - \eta_k \nabla f_i(z_i), \quad i = 1, \dots, m-1.$$

$$\min \quad \sum_{i} f_i(x) + r(x).$$

$$x_{k+1} = \operatorname{prox}_{\eta_k r} (x_k - \eta_k \sum_{i=1}^m \nabla f_i(z_i)), \quad k = 0, 1, \dots,$$

$$z_1 = x_k$$

$$z_{i+1} = z_i - \eta_k \nabla f_i(z_i), \quad i = 1, \dots, m-1.$$

We can choose $\eta_k = 1/L$, where L is Lipschitz constant of $\nabla f(x)$

$$\min \quad \sum_{i} f_i(x) + r(x).$$

$$x_{k+1} = \operatorname{prox}_{\eta_k r} (x_k - \eta_k \sum_{i=1}^m \nabla f_i(z_i)), \quad k = 0, 1, \dots,$$

$$z_1 = x_k$$

$$z_{i+1} = z_i - \eta_k \nabla f_i(z_i), \quad i = 1, \dots, m-1.$$

We can choose $\eta_k = 1/L$, where L is Lipschitz constant of $\nabla f(x)$ Might be easier to analyze

$$x_{k+1} = \text{prox}_{\eta_k r} (x_k - \eta_k \sum_{i=1}^m \nabla f_i(z_i)), \quad k = 0, 1, \dots,$$

$$\min \quad \sum_{i} f_i(x) + r(x).$$

$$x_{k+1} = \operatorname{prox}_{\eta_k r} (x_k - \eta_k \sum_{i=1}^m \nabla f_i(z_i)), \quad k = 0, 1, \dots,$$

$$z_1 = x_k$$

$$z_{i+1} = z_i - \eta_k \nabla f_i(z_i), \quad i = 1, \dots, m-1.$$

We can choose $\eta_k=1/L$, where L is Lipschitz constant of $\nabla f(x)$ Might be easier to analyze

$$x_{k+1} = \operatorname{prox}_{\eta_k r} (x_k - \eta_k \sum_{i=1}^m \nabla f_i(z_i)), \quad k = 0, 1, \dots,$$

$$z_1 = x_k$$

$$z_{i+1} = \operatorname{prox}_{\eta_k r} (z_i - \eta_k \nabla f_i(z_i)), \quad i = 1, \dots, m-1.$$

$$\min \quad \sum_{i} f_i(x) + r(x).$$

$$x_{k+1} = \operatorname{prox}_{\eta_k r} (x_k - \eta_k \sum_{i=1}^m \nabla f_i(z_i)), \quad k = 0, 1, \dots,$$

$$z_1 = x_k$$

$$z_{i+1} = z_i - \eta_k \nabla f_i(z_i), \quad i = 1, \dots, m-1.$$

We can choose $\eta_k = 1/L$, where L is Lipschitz constant of $\nabla f(x)$ Might be easier to analyze

$$x_{k+1} = \operatorname{prox}_{\eta_k r} \left(x_k - \eta_k \sum_{i=1}^m \nabla f_i(z_i) \right), \quad k = 0, 1, \dots,$$

$$z_1 = x_k$$

$$z_{i+1} = \operatorname{prox}_{\eta_k r} \left(z_i - \eta_k \nabla f_i(z_i) \right), \quad i = 1, \dots, m-1.$$

Moreover, analysis easier if we go through the f_i randomly (so-called stochastic)

Incremental methods: deterministic

$$\min \quad (f(x) = \sum_{i} f_i(x)) + r(x)$$

Gradient with error

$$\nabla f_{i(k)}(x) = \nabla f(x) + \frac{e}{e}$$
$$x_{k+1} = \operatorname{prox}_{\alpha r} [x_k - \alpha_k (\nabla f(x_k) + \frac{e_k}{e})]$$

Incremental methods: deterministic

$$\min \quad (f(x) = \sum_{i} f_i(x)) + r(x)$$

Gradient with error

$$\nabla f_{i(k)}(x) = \nabla f(x) + \mathbf{e}$$
$$x_{k+1} = \operatorname{prox}_{\alpha r}[x_k - \alpha_k(\nabla f(x_k) + \mathbf{e}_k)]$$

So if in the limit error $\alpha_k e_k$ disappears, we should be ok!

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

▶ If we can control this error, we can control convergence

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

- ▶ If we can control this error, we can control convergence
- ▶ Error makes even smooth case more like nonsmooth case

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

- ▶ If we can control this error, we can control convergence
- ▶ Error makes even smooth case more like nonsmooth case
- lacktriangle So, convergence crucially depends on stepsize $lpha_k$

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

- ▶ If we can control this error, we can control convergence
- ▶ Error makes even smooth case more like nonsmooth case
- lacktriangle So, convergence crucially depends on stepsize α_k

Some stepsize choices

- \spadesuit $\alpha_k = c$, a small enough constant
- \spadesuit $\alpha_k \to 0$, $\sum_k \alpha_k = \infty$ (diminishing scalar)
- Constant for some iterations, diminish, again constant, repeat

 \spadesuit Usually much faster (large m) when far from convergence

- \spadesuit Usually much faster (large m) when far from convergence
- \spadesuit Slow progress near optimum (because α_k often too small)

- \spadesuit Usually much faster (large m) when far from convergence
- \spadesuit Slow progress near optimum (because α_k often too small)
- \spadesuit Constant step $\alpha_k = \alpha$, doesn't always yield convergence

- \spadesuit Usually much faster (large m) when far from convergence
- \spadesuit Slow progress near optimum (because α_k often too small)
- \spadesuit Constant step $\alpha_k = \alpha$, doesn't always yield convergence
- \spadesuit Diminishing step $\alpha_k = O(1/k)$ leads to convergence

- \spadesuit Usually much faster (large m) when far from convergence
- \spadesuit Slow progress near optimum (because α_k often too small)
- \spadesuit Constant step $\alpha_k = \alpha$, doesn't always yield convergence
- \spadesuit Diminishing step $\alpha_k = O(1/k)$ leads to convergence
- ♠ Usually slow, sublinear rate of convergence

- \spadesuit Usually much faster (large m) when far from convergence
- \spadesuit Slow progress near optimum (because α_k often too small)
- \spadesuit Constant step $\alpha_k=\alpha$, doesn't always yield convergence
- \spadesuit Diminishing step $\alpha_k = O(1/k)$ leads to convergence
- ♠ Usually slow, sublinear rate of convergence
- \spadesuit If f_i strongly convex, linear rate available (SAG, SVRG)

- \spadesuit Usually much faster (large m) when far from convergence
- \spadesuit Slow progress near optimum (because α_k often too small)
- \spadesuit Constant step $\alpha_k = \alpha$, doesn't always yield convergence
- \spadesuit Diminishing step $\alpha_k = O(1/k)$ leads to convergence
- ♠ Usually slow, sublinear rate of convergence
- \spadesuit If f_i strongly convex, linear rate available (SAG, SVRG)
- ♠ Idea extends to subgradient, and proximal setups

- \spadesuit Usually much faster (large m) when far from convergence
- \spadesuit Slow progress near optimum (because α_k often too small)
- \spadesuit Constant step $\alpha_k=\alpha$, doesn't always yield convergence
- \spadesuit Diminishing step $\alpha_k = O(1/k)$ leads to convergence
- Usually slow, sublinear rate of convergence
- \spadesuit If f_i strongly convex, linear rate available (SAG, SVRG)
- ♠ Idea extends to subgradient, and proximal setups
- ♠ Some extensions also apply to nonconvex problems

- \spadesuit Usually much faster (large m) when far from convergence
- \spadesuit Slow progress near optimum (because α_k often too small)
- \spadesuit Constant step $\alpha_k=\alpha$, doesn't always yield convergence
- \spadesuit Diminishing step $\alpha_k = O(1/k)$ leads to convergence
- ♠ Usually slow, sublinear rate of convergence
- \spadesuit If f_i strongly convex, linear rate available (SAG, SVRG)
- ♠ Idea extends to subgradient, and proximal setups
- ♠ Some extensions also apply to nonconvex problems
- ♠ Some extend to parallel and distributed computation

References

- ♠ EE227A slides, S. Sra
- ♠ Introductory Lectures on Convex Optimization, Yu. Nesterov
- Proximal splitting methods, Combettes & Pesquet