Advanced Optimization

(10-801: cmu)

Lecture 19
Parallel proximal; Incremental gradient

26 Mar, 2014

o

Suvrit Sra

Douglas-Rachford

min f(z) + h(x)

24 3(I+ RyRy)z

/25

Douglas-Rachford

min f(z) + h(x)

24 3(I+ RyRy)z
Reflection operator

Ry :=2prox; —1I.

25

Douglas-Rachford

min f(z) + h(z)

24 3(I+ RyRy)z
Reflection operator
Ry :=2prox; —1I.

Observe: Ry = —Ry- (another justification of “reflection™)

25

Douglas-Rachford

min f(z) + h(z)

24 3(I+ RyRy)z
Reflection operator
Ry :=2prox; —1I.

Observe: Ry = —Ry- (another justification of “reflection™)

proxs +proxp. = [

25

Douglas-Rachford

min f(z) + h(z)

24 3(I+ RyRy)z
Reflection operator
Ry :=2prox; —1I.
Observe: Ry = —Ry- (another justification of “reflection™)

proxs +proxp. = [
2proxy = 2[—2proxs-

25

Douglas-Rachford

min f(z) + h(z)

24 3(I+ RyRy)z
Reflection operator
Ry :=2prox; —1I.

Observe: Ry = —Ry- (another justification of “reflection™)

proxs +proxp. = [
2proxy = 2[—2proxs-
2proxy—I = I —2proxy.

Ry = —Ry-

Douglas-Rachford — open problem

min f(z) + g(x) + h(z)

/25

Douglas-Rachford — open problem

min f(z) + g(x) + h(z)

i
2 g

/25

Douglas-Rachford — open problem

min f(z) 4+ g(x) + h(z)

0 €
3z €
3r €

Of (x) + dg(x) + Oh(x)

(I+90f)(x)+ (I +09g)(x)+ (I+ 0h)(x)
(I+0f)(z)+z+w

now what?

25

Douglas-Rachford — open problem

min f(z) 4+ g(x) + h(z)

Partial solution (Borwein, Tam (2013))

Thf = %(I + Rth)
Tipgn) := ThyTynTg

A T[fgh]z

25

Douglas-Rachford — open problem

min f(z) 4+ g(x) + h(z)

Partial solution (Borwein, Tam (2013))

Thf = %(I + Rth)
Tiggn) = ThsTynTry
Z T[fgh]z

Works for more than 3 functions too!

o

o

For two functions T[fg] =TTt

o

Does not coincide with usual DR.

o

Finding “correct” generalization an open problem

3/25

Parallel proximal methods

Optimizing separable objective functions
@) = Hle—yl3+ Y fila)
flz) = Y filx)

25

Parallel proximal methods

Optimizing separable objective functions
@) = Hle—yl3+ Y fila)
flz) = Y filx)

Let us consider

min f(z) = Zzl fi(z), x € R™

25

Product space technique

» Original problem over H = R"

/25

Product space technique

» Original problem over H = R"
» Suppose we have ", fi(z)

25

Product space technique

» Original problem over H = R"
» Suppose we have ", fi(z)

» Introduce new variables (z1, ..., %)

25

Product space technique

» Original problem over H = R"
» Suppose we have ", fi(z)
» Introduce new variables (z1, ..., %)

» Now problem is over domain H™ :=H X H x --- x H (m-times)

Product space technique

» Original problem over H = R"

» Suppose we have ", fi(z)

» Introduce new variables (z1, ..., %)

» Now problem is over domain H™ := H X H x ---
» New constraint: 1 =29 =... =2,

min Z fi(zx

5517 7xm)

st. 1 =X ="+ =T,

Technique due to: G. Pierra (1976)

X H (m-times)

5/25

Product space technique

Two block problem

mwin f(x) +1s(x)

where x € H" and B={z € H™ | z = (x, z, . ..

25

Product space technique

Two block problem

mwin f(x) +1s(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

> Lety = (y1,---,Ym)

6/25

Product space technique

Two block problem

mwin f(x) +1s(x)

where x € H" and B={z € H™ | z = (x, z, . ..

> Let y = (y1,---,Ym)
» prox;(y) = (proxy, (y1), ..., prox;, (ym))

6

25

Product space technique

Two block problem

mwin f(x) +1s(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

> Lety = (y1,---,Ym)

» prox;(y) = (proxy, (y1),- .., proxy, (Ym))
» proxg, = [I5(y) can be solved as follows:

6/25

Product space technique

Two block problem

mwin f(x) +1s(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

> Lety = (y1,---,Ym)
> prox;(y) = (proxy, (y1), ..., proxy, (ym))
» proxg, = [I5(y) can be solved as follows:
minzes 5llz — yll3
minger 3 5ll7 — will3
= T = % Zi Yi

6/25

Product space technique

Two block problem

mwin f(x) +1s(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

> Lety = (y1,---,Ym)
> prox;(y) = (proxy, (y1), ..., proxy, (ym))
» proxg, = [I5(y) can be solved as follows:
minzes 5llz — yll3
minger 3 5ll7 — will3
= T = % Zz Yi

Exercise: Work out the details of DR using the product space idea

This technique commonly exploited in ADMM too

6

25

Alternative: two block proximity

min, 5l —ylf + f(2) + h(z)

7/25

Alternative: two block proximity

min, 5l —ylf + f(2) + h(z)

Usually prox;,, # prox; o prox,

7/25

Alternative: two block proximity

min, 3z —yl} + f(z) + h(z)

Usually prox;,, # prox; o prox,

Proximal-Dykstra method

Let zg =9y, up =0, 20=0
k-th iteration (k > 0)

25

Alternative: two block proximity

min, 3z —yl} + f(z) + h(z)

Usually prox;,, # prox; o prox,

Proximal-Dykstra method
Let zg =9y, up =0, 20=0
k-th iteration (k > 0)

B W, = proxj»(xk. + ug)
B Upyl] = T+ U — W

25

Alternative: two block proximity

min, 3z —yl} + f(z) + h(z)

Usually prox;,, # prox; o prox,

Proximal-Dykstra method

Let zg =9y, up =0, 20=0
k-th iteration (k > 0)
m wy, = prox g (wg + up)
B Upyl] = T+ U — W
B 21 = prox, (wg + 2x)
N 2p41 = Wk + 2k — Tht1

25

Alternative: two block proximity

min, 3z —yl} + f(z) + h(z)

Usually prox;,, # prox; o prox,

Proximal-Dykstra method

Let zg =9y, up =0, 20=0
k-th iteration (k > 0)

wy = proxj»(wk + ug)
Uk4+1 = T + U — W
g1 = proxy, (wi + zx)
Zk4+1 = Wk + 2k — Th+1

Why does it work?

25

Alternative: two block proximity

min, 1|z — 3+ f(z) + hx)

Usually prox;,, # prox; o prox,

Proximal-Dykstra method

Let zg =9y, up =0, 20=0
k-th iteration (k > 0)

m wy, = prox g (wg + up)
Uk4+1 = T + Uk — W
g1 = prox,, (wi + zk)
Zk+1 = W + 2 — Th41

Why does it work?

Exercise: Use the product-space technique to extend this to a
parallel prox-Dykstra method for m > 3 functions.
Combettes, Pesquet (2010); Bauschke, Combettes (2012)

Proximal-Dykstra — some insight

min, 5l —ylf + f(2) + h(z)

8/25

Proximal-Dykstra — some insight

min, 5l —ylf + f(2) + h(z)

L(z, z,w, v, p) = 3|z — y[|3+f(2) +h(w)+v (2 —2)+p” (z—w).

/25

Proximal-Dykstra — some insight

min, 3z —yl} + f(z) + h(z)

L(z, z,w, v, p) = 3|z — y[|3+f(2) +h(w)+v (2 —2)+p” (z—w).

» Let's derive the dual from L:

gv,p) = inf L(z,zv,p)

T,2,W

25

Proximal-Dykstra — some insight

min, 3z —yl} + f(z) + h(z)

L(z, z,w, v, p) = 3|z — y[|3+f(2) +h(w)+v (2 —2)+p” (z—w).

» Let's derive the dual from L:

gv,p) = inf L(z,zv,p)
T,2,W
r—y+v+p=0 — x=y—v-—u

25

Proximal-Dykstra — some insight

min, 3z —yl} + f(z) + h(z)

L(z, z,w, v, p) = 3|z — y[|3+f(2) +h(w)+v (2 —2)+p” (z—w).

» Let's derive the dual from L:
gv,p) = inf L(z,z,v,p)
T,Z,w
r—y+v+p=0 — x=y—v-—u
inf f(z) —vlz = —f*(v), (similarly get — h*(u))
z

Proximal-Dykstra — some insight

min, 1|z — 3+ f(z) + hx)

Liw, 2w, v 1) = Sl — g3+ F(2) Fh(w) 17 (2—2)+1" (z—w).
» Let's derive the dual from L:

gv,p) = inf L(z,zv,p)
r—y+v+pu=0 = z=y—-v-—u
inf f(z) —vlz = —f*(v), (similarly get — h*(u))
gvow) = —glv+uli+ @+)ty -) - b

Equivalent dual problem

min G,) = Yl +u—yl3 + () + 1" ().

Proximal-Dykstra — key insight

Dual problem
min G (v, p) = gllv + p = yl3 + f* () + 1 ().

/25

Proximal-Dykstra — key insight

Dual problem
min G (v, p) = gllv + p = yl3 + f* () + 1 ().

Solve this dual via Block-Coordinate Descent! ‘

9/25

Proximal-Dykstra — key insight

Dual problem
min G (v, p) = gllv + p = yl3 + f* () + 1 ().

Solve this dual via Block-Coordinate Descent!

Vgy1 = argminy G(Va /'Lk)7

Hik+1 = argminu G(Vkg1, 1t)-
[e)

/25

Proximal-Dykstra — key insight

Dual problem
min G (v, p) = gllv + p = yl3 + f* () + 1 ().

Solve this dual via Block-Coordinate Descent!

Vk+1 = argminy G(Vauk)7

pe+1 = argmin, G V41, 1)-
(@]

» 0 € vpy1 +pp — Y+ 0f (Vey1)
» 0 € vpy1 + pg+1 — Y + O (pgetr)-

25

Proximal-Dykstra — key insight

Dual problem
min G (v, p) = gllv + p = yl3 + f* () + 1 ().

‘ Solve this dual via Block-Coordinate Descent! ‘

Vk+1 = argminy G(Vauk)7

pe+1 = argmin, G V41, 1)-
(@]

0 € vgy1 + ik —y+0f (Vky1) = ¥y — bk € Vg1 + Of (V1)

25

Proximal-Dykstra — key insight

Dual problem
min G (v, p) = gllv + p = yl3 + f* () + 1 ().

‘ Solve this dual via Block-Coordinate Descent! ‘

Vk+1 = argminy G(Vauk)7

pe+1 = argmin, G V41, 1)-
(@]

0 € vgy1 + ik —y+0f (Vky1) = ¥y — bk € Vg1 + Of (V1)
=> Vg1 = ProxXp. (Y — pg) = Vg1 =Y — pg — Proxs(y —)

25

Proximal-Dykstra — key insight

Dual problem
min G (v, p) = gllv + p = yl3 + f* () + 1 ().

| Solve this dual via Block-Coordinate Descent! |

Vk+1 = argminy G(Vaﬂk)7

fk+1 = argmin, G V41, 1)-
(@]

0 € vgy1 + ik —y+0f (Vky1) = ¥y — bk € Vg1 + Of (V1)
= Upg1 = Proxp (Y — pr) == Viy1 =Y — fix — Proxs(y —)

Similarly, pix11 =y — Vg1 — prox, (y — vey1)

/25

Proximal-Dykstra — key insight

» 0 € vpy1 +pp — Y+ Of (Vky1)
» 0 € Vg1 + piky1 — Y + OR" (pget1).

10/25

Proximal-Dykstra — key insight

» 0 € vpy1 +pp — Y+ Of (Vky1)
» 0 € Vg1 + piky1 — Y + OR" (pget1).

Vel =Y — Mg — ProxXs(y — pix)
Pkl =Y — Vi1 — Prox,, (Y — Viy1)

10/25

Proximal-Dykstra — key insight

» 0 € vpy1 +pp — Y+ Of (Vky1)
» 0 € Vg1 + piky1 — Y + OR" (pget1).

Vkt1 =Y — Mg — ProxX,(y — pux)
[k+1 =Y — Vi1 — ProxXp,(y — vpt1)
Now use Lagrangian stationarity condition

T=Y—V—p = Y- U= +v

to rewrite BCD using primal and dual variables.

10/25

Proximal-Dykstra — key insight

» 0 € vpy1 +pp — Y+ Of (Vky1)
» 0 € Vg1 + piky1 — Y + OR" (pget1).

Vkt1 =Y — Mg — ProxX,(y — pux)
[k+1 =Y — Vi1 — ProxXp,(y — vpt1)
Now use Lagrangian stationarity condition

T=Y—V—p = Y- U= +v

to rewrite BCD using primal and dual variables.

BCD
vis1 = argmin, G(v,),

Hk+1 = argmin, G V1, 1)-

10/25

Proximal-Dykstra — key insight

» 0 € vpy1 +pp — Y+ Of (Vky1)
» 0 € Vg1 + piky1 — Y + OR" (pget1).

Vkt1 =Y — Mg — ProxX,(y — pux)
[k+1 =Y — Vi1 — ProxXp,(y — vpt1)
Now use Lagrangian stationarity condition

T=Y—V—p = Y- U= +v

to rewrite BCD using primal and dual variables.

Prox-Dykstra
Wy, proxf(xk +)
Vg4l < Tk + Vg — Wi
Tp+1 < proxy, (wy + pg)
Mk+1 < fE + Wi — Th41

10/25

Example practical use

Anisotropic 2D-TV Proximity operator

s 1 2
min - 5[|X — YjF+ Zij Wi @i 51— @i5] + Zij wij| @i, — i

11/25

Example practical use

Anisotropic 2D-TV Proximity operator

s 1 2
min - 5[|X — Y| +Zij Wi w551 — T4 +Zij wij| @i, — i

Amenable to prox-Dykstra
Used in (Barbero, Sra, ICML 2011).
The subproblem:

min {ja — b[|3 + 3, wila; — aiq]

itself has been subject of over 15 papers!

. . L)
| still use it now and then &~

11/25

Incremental first-order
methods

12/25

Separable objectives

min

flx) =327 filw) + Ar(x)

13/25

Separable objectives

min f(z) =>"7" fi(z) + Ar(z)

Gradient / subgradient methods
Tpr1 = xp — o Vf(xg) A=0,
Tpp1 = T — agpg(zr), g(xr) € Of (xx) + A0 (k)
Tpy1 = ProxXy,(vr — apVf(zy))

Product-space based methods

min F(x1,...,2y) + Ig(x1, ..., 2n)

(xl,kJrl? ey xm,k+1) — prOXF(yl,ka s 73/m,k)

13 /25

Separable objectives

min f(z) =>"7" fi(z) + Ar(z)

Gradient / subgradient methods
Tpr1 = xp — o Vf(xg) A=0,
Tpy1 = xk —ogg(xk), g(wk) € Of (wg) + AOr(zy)
Tp41 = PTOXak.r(xk — iV f(zy))
Product-space based methods
min F(x1,...,2y) + Ig(x1, ..., 2n)

T1,k+1y -9 Tm,k+1 ProxXp(Yi,ks - - -5 UYm,k
() < (Ym k)

‘ How much computation does one iteration take?

13 /25

Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) € {1,2,...,m}?

14 /25

Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) € {1,2,...,m}?

And instead just perform the update?

Try1 = T — iV fie) (T)

14 /25

Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) € {1,2,...,m}?

And instead just perform the update?

Tpt1 = Tk — gV fir) (k)

» The update requires only gradient for f;q,

» One iteration now m times faster than with V f(z)

14 /25

Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) € {1,2,...,m}?

And instead just perform the update?

Tpt1 = Tk — gV fir) (k)

» The update requires only gradient for f;q,

» One iteration now m times faster than with V f(z)

2
2%
% ¢

@ But does this make sense?

14 /25

Incremental gradient methods

& Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

15/25

Incremental gradient methods

& Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

& Can “stream” through data — go through components one by
one, say cyclically instead of randomly

15/25

Incremental gradient methods

& Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

& Can “stream” through data — go through components one by
one, say cyclically instead of randomly

& For large m many f;(x) may have similar minimizers;

15/25

Incremental gradient methods

& Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

& Can “stream” through data — go through components one by
one, say cyclically instead of randomly

& For large m many f;(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

15/25

Incremental gradient methods

Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

Can “stream” through data — go through components one by
one, say cyclically instead of randomly

For large m many f;(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

15/25

Incremental gradient methods

Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

Can “stream” through data — go through components one by
one, say cyclically instead of randomly

For large m many f;(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

Several open questions related to convergence and rate of
convergence (for both convex, nonconvex)

15/25

Incremental gradient methods

Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

Can “stream” through data — go through components one by
one, say cyclically instead of randomly

For large m many f;(x) may have similar minimizers; using the
fi individually we could take advantage, and greatly speed up.

Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

Several open questions related to convergence and rate of
convergence (for both convex, nonconvex)

Usually randomization greatly simplifies convergence analysis

15/25

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 22 alm—b

16 /25

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 22 alm—b

» Solving f’'(z) = 0 we obtain

16 /25

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 22 alm—b

» Solving f’'(z) = 0 we obtain

» Minimum of a single f;(x) (aiz — b))% is 2} = bi/a;

16 /25

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 22 alm—b

» Solving f’'(z) = 0 we obtain

(ai:c — b1)2 is SU;‘ = bi/ai

» Minimum of a single f;(z)
» Notice now that

z* € [min;], max; zj] =: R

(Use: 3=, aibs = 3 a7 (bi/ai))

16

25

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min =3 g alm —b;)

» Notice: z* € [min; z}, max; z}] =: R

17/25

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 22 alm—b

» Notice: z* € [min; z}, max; z}] =: R
» If we have a scalar x that lies outside R?
» We see that

Vfi(z) = ai(a;x — b;)

Viz)

“ai(a;x — by)

17/25

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

22 alm—b

» Notice: z* € [min; z}, max; z}] =: R
» If we have a scalar x that lies outside R?
» We see that

Vfi(z) = ai(a;x — b;)

Viz)

“ai(a;x — by)

» Vfi(z) has same sign as V f(x). So using V f;(z) instead of
V f(x) also ensures progress.

17/25

Exam pIe (Bertsekas)

v

Assume all variables involved are scalars.

min 22 alm—b

Notice: z* € [min; z}, max; z}] =: R
If we have a scalar = that lies outside R?
We see that

Vfi(z) = ai(a;x — b;)

Viz)

“ai(a;x — by)

V fi(x) has same sign as V f(z). So using V f;(x) instead of
V f(x) also ensures progress.

But once inside region R, no guarantee that incremental
method will make progress towards optimum.

17/25

Incremental proximal method

min () = 3, /(@)

What if the f; are nonsmooth?

18/25

Incremental proximal method

min () = 3, /(@)

What if the f; are nonsmooth?

SN JWR
TRFT — PTOXg 7(2F)

18/25

Incremental proximal method

min () = 3, /(@)

What if the f; are nonsmooth?

ag f

Tjp1 = argmin (%Hfﬂ —all5 + akfi(k)(x))

i(k) € {1,2,...,m} picked uniformly at random.

18 /25

Incremental proximal method

min () = 3, /(@)

What if the f; are nonsmooth?

ag f

Try1 = prOXakfi(k)<Ik)
T = argmin (g[lz — 24l + ar fig ()

i(k) € {1,2,...,m} picked uniformly at random.

Convergence rate analysis? ‘

18 /25

Example

19/25

Example

Fermat-Weber problem
(historically the first facility-location problem)

ming Y willz — aj

19/25

Example

vVvy VvyYyYyywy

Fermat-Weber problem
(historically the first facility-location problem)

ming Y willz — aj

Assuming ||-[| = ||-[|2
Also assume no a; is an optimum
[Weiszfeld; '37) Let T :=z — (3, Tosol)/(Zl”xfi’aln)

T—al|
Assuming T is well-defined, T*(x9) — argmin
[Kuhn; 73] completed the proof

19/25

Example

Fermat-Weber problem
(historically the first facility-location problem)

ming Y willz — aj

Assuming ||-[| = ||-[|2
Also assume no a; is an optimum
[Weiszfeld; '37) Let T :=z — (3, Tosol)/(Zl”xfi’a”)

T—al|
Assuming T is well-defined, T*(x9) — argmin
[Kuhn; 73] completed the proof
What if [|-|| = [|-[,?
100s of papers discuss the Fermat-Weber problem

19/25

Incremental proximal method

Fermat-Weber problem

min, Zl willz — a4

20/25

Incremental proximal method

Fermat-Weber problem

min, Zl willz — a4

Now, fi(x) := w;||z — a;l|o-

w1 = argmin (3|2 — 243 + arwim |7 — ai |2)

i(k) € {1,2,...,m} picked uniformly at random.

20 /25

Incremental proximal method

Fermat-Weber problem

min, Zl willz — a4

Now, fi(x) := w;||z — a;l|o-
Ty = proxakfi(k)(xk)
Tpp1 = argmin (1| — 2|3 + cwwi |z — aiw)l|2)
i(k) € {1,2,...,m} picked uniformly at random.

Exercise: Obtain closed form solution to x4

20 /25

Incremental proximal method

Fermat-Weber problem

min, Zz willz — a4

Now, fi(x) := w;||z — a;l|o-
Ty = proxakfi(k)(xk)
Tpp1 = argmin (1| — 2|3 + cwwi |z — aiw)l|2)
i(k) € {1,2,...,m} picked uniformly at random.

Exercise: Obtain closed form solution to zj1

Rate of convergence? Most likely, sublinear?
Can we somehow get linear convergence?

20 /25

Incremental proximal-gradients

min ZZ fi(z) +r(z).

21/25

Incremental proximal-gradients

min ZZ fi(z) +r(z).

Tk+1 = proxnkr (.Tk — Nk Z:l sz(zz)), k= 07]-7 ey

21/25

Incremental proximal-gradients

min ZZ fi(z) +r(z).
Ti+1 = pI'OXnkT, (.’L’k — Tk Z:l vfl(zz))a k= 07]-7 R

Z1 = Tk

Zi+1 =Zi—77kai(Zi), i=1,...,m—1.

21/25

Incremental proximal-gradients

min Zl fi(z) +r(z).

m o
Thy1 = prOXnkr (.’L‘k — Nk Zi:l sz(zl)), k= 0, 1, ceey
21 = Xk

Zi+1 :zi—nkai(zi), i:1,...,m—1.

We can choose 7, = 1/L, where L is Lipschitz constant of V f(z)

21/25

Incremental proximal-gradients

min Zl fi(z) +r(z).

m o
Tyl = DProx,, (zk — Mk Zi:l Vii(z)), k=0,1,...,
21 = Xk

Zi+1 :zi—nkai(zi), i:1,...,m—1.

We can choose 7, = 1/L, where L is Lipschitz constant of V f(z)
Might be easier to analyze

Tk+1 = proxnk'r (xk — Nk ZZI vf’(zf))7 k= 07 17 ey

21/25

Incremental proximal-gradients

min Zl fi(z) +r(z).

m o
Tyl = DProx,, (zk — Mk Zi:l Vii(z)), k=0,1,...,
21 = Xk
Zi+1 :zi—nkai(zi), i:1,...,m—1.

We can choose 7, = 1/L, where L is Lipschitz constant of V f(z)
Might be easier to analyze

m o
Tpy1 = prOXUkT (a:k — Nk Zi:l Vf,(z,)), k= 07 1, ey
Z1 = Tk

Zip1 = prox,, (2 — iV fi(z)), i=1,...,m—1

21/25

Incremental proximal-gradients

min Zl fi(z) +r(z).

m o
Tyl = DProx,, (zk — Mk Zi:l Vii(z)), k=0,1,...,
21 = Xk
Zi+1 :zi—nkai(zi), i:1,...,m—1.

We can choose 7, = 1/L, where L is Lipschitz constant of V f(z)
Might be easier to analyze

m o
Tpy1 = prOXUkT (a;k — Nk Zi:l V]‘,(z,)), k= 07 1, ey
Z1 = Tk

Zip1 = prox,, (2 — iV fi(z)), i=1,...,m—1

Moreover, analysis easier if we go through the f; randomly
(so-called stochastic)

21/25

Incremental methods: deterministic

min (f(z) =), fi(z)) +r(z)

Gradient with error

Vfi(x) = Vf(x) +e

Tpi1 = ProX,, [1x — ar(V f(zr) + er)]

22 /25

Incremental methods: deterministic

min (f(z) =), fi(z)) +r(z)

Gradient with error

Vfi(x) = Vf(x) +e

Trp1 = ProXy,[zr — an(Vf(2p) + ex)]

So if in the limit error agey disappears, we should be ok!

22 /25

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

23 /25

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

» If we can control this error, we can control convergence

25

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

» If we can control this error, we can control convergence

» Error makes even smooth case more like nonsmooth case

25

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

» If we can control this error, we can control convergence
» Error makes even smooth case more like nonsmooth case

» So, convergence crucially depends on stepsize oy

23 /25

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

» If we can control this error, we can control convergence
» Error makes even smooth case more like nonsmooth case
» So, convergence crucially depends on stepsize oy
Some stepsize choices
& o = ¢, a small enough constant
& o, — 0, >, o = oo (diminishing scalar)
& Constant for some iterations, diminish, again constant, repeat
& o = min(c,a/(b+ k)), where a,b,c > 0 (user chosen).

23 /25

Incremental gradient — summary

& Usually much faster (large m) when far from convergence

24 /25

Incremental gradient — summary

& Usually much faster (large m) when far from convergence

& Slow progress near optimum (because «y, often too small)

24 /25

Incremental gradient — summary

& Usually much faster (large m) when far from convergence
& Slow progress near optimum (because «y, often too small)

& Constant step a; = «, doesn’t always yield convergence

24 /25

Incremental gradient — summary

& Usually much faster (large m) when far from convergence
& Slow progress near optimum (because «y, often too small)
& Constant step a; = «, doesn’t always yield convergence

& Diminishing step a, = O(1/k) leads to convergence

24 /25

Incremental gradient — summary

& Usually much faster (large m) when far from convergence
& Slow progress near optimum (because «y, often too small)
& Constant step a; = «, doesn’t always yield convergence
& Diminishing step a, = O(1/k) leads to convergence

& Usually slow, sublinear rate of convergence

24 /25

Incremental gradient — summary

& Usually much faster (large m) when far from convergence
& Slow progress near optimum (because «y, often too small)
& Constant step a; = «, doesn’t always yield convergence
& Diminishing step a, = O(1/k) leads to convergence

& Usually slow, sublinear rate of convergence

& If f; strongly convex, linear rate available (SAG, SVRG)

24 /25

Incremental gradient — summary

& Usually much faster (large m) when far from convergence
& Slow progress near optimum (because «y, often too small)
& Constant step a; = «, doesn’t always yield convergence
& Diminishing step a, = O(1/k) leads to convergence

& Usually slow, sublinear rate of convergence

& If f; strongly convex, linear rate available (SAG, SVRG)

Idea extends to subgradient, and proximal setups

24 /25

Incremental gradient — summary

LK JE 2K 2 2B 2 2 2

Usually much faster (large m) when far from convergence
Slow progress near optimum (because «y, often too small)
Constant step aj = «, doesn't always yield convergence
Diminishing step o, = O(1/k) leads to convergence
Usually slow, sublinear rate of convergence

If f; strongly convex, linear rate available (SAG, SVRG)
Idea extends to subgradient, and proximal setups

Some extensions also apply to nonconvex problems

24 /25

Incremental gradient — summary

LK JE 2 2 2B 2B 2 2 2

Usually much faster (large m) when far from convergence
Slow progress near optimum (because «y, often too small)
Constant step aj = «, doesn't always yield convergence
Diminishing step o, = O(1/k) leads to convergence
Usually slow, sublinear rate of convergence

If f; strongly convex, linear rate available (SAG, SVRG)
Idea extends to subgradient, and proximal setups

Some extensions also apply to nonconvex problems

Some extend to parallel and distributed computation

24 /25

References

& EE227A slides, S. Sra
& Introductory Lectures on Convex Optimization, Yu. Nesterov

& Proximal splitting methods, Combettes & Pesquet

25 /25

