
PFPL Supplement:
Church’s λ-Calculus*

Robert Harper

Fall, 2025

1 Introduction

The λ-calculus is a remarkably simple and elegant model of computation formulated by Church in
the early 1930’s that is based on the concept of a mathematical variable, which is given meaning by
substitution. Think back to when you first learned about polynomials, plugging in values for vari-
ables and simplifying them by equational deduction. What a pleasure that was! The λ-calculus
has the same flavor, except that, rather than standing for real numbers, the variables in a λ-term
stand for other λ-terms. And just as polynomials may be thought of as functions of their free
variables, so λ-terms may be thought of as functions acting on λ-terms, one of which is the λ-term
itself—the λ-calculus is inherently self-referential, which is the source of its expressive power.

2 λ-Terms

Expressions of the λ-calculus are called λ-terms. They have one of three forms:

1. A variable, x.

2. An application, ap(M1 ; M2), of λ-term M1 to another λ-term M2.

3. An abstraction, λ(x.M), of a variable x within the λ-term M.

For the time being, it is best not to try to impose meaning on λ-terms, but rather just to concentrate
on their definition as pieces of syntax. However, the idea is that the λ-calculus is a system of
functions that may be applied to one another as arguments. In particular the λ-term λ(x.M)
defines a function with argument x and result given by the λ-term M, which may use x. The
bewildering fact is that the λ-calculus has no constants, no numbers, no primitive operations, but only
functions. Yet, amazingly, data structures such as numbers, lists, trees, and tuples are all implicitly
present in that they are all definable as certain functions!

The description of what are the λ-terms is “self-referential” in that the second and third clauses
describe terms that may be constructed from other terms. This description may be regarded as an
inductive definition of the λ-terms in which variables are base cases given outright, and both ap-
plication and abstraction are inductive cases that make use of “previously” given λ-terms. The

*Copyright © Robert Harper. All Rights Reserved.

1

inductive definition of λ-terms is similar to that of natural numbers, which are defined by say-
ing that 0 is a natural number, and that if n is a natural number, then so is n + 1. Or, similarly,
inductively defining a tree to be either empty, or, if t1 and t2 are trees, then so is node(t1, t2).

The standard format for formulating such inductive definitions is by a collection of rules for
defining one or more judgments, or assertions. In the present case the judgment M tm states that M
is a λ-term. It is inductively defined by the following rules:

x var
x tm (1a)

M1 tm M2 tm
ap(M1 ; M2) tm (1b)

x var M tm
λ(x.M) tm (1c)

The definition makes use of an assumed judgment x var stating that x is a variable. It is essential
that there be infinitely many variables, written x, y, z, x1, x2, x′, and similarly.

To say that the judgment M tm is inductively defined by these rules means that the M tm is
the strongest assertion that is closed under, or obeys, the rules given above. This means that M tm
obeys the rules, and it implies any other assertion that also obeys the rules. Thus, the rules may be
read as implications stating that “if the judgments above the line hold, then the judgment below
the line also holds.” For M tm to be the strongest judgment obeying the rules means that “if some
assertion P obeys the rules, then M tm implies that P holds of M.” For P to obey the rules means
that (1) it holds for every variable x; (2) if it holds for M1 and M2, then it holds for ap(M1 ; M2);
and (3) if it holds for M and x is a variable, then it holds for λ(x.M). This is called the principle of
rule induction.

For example, define the judgment size(M, n), with the meaning that the size of the λ-term M
is the natural number n, by the following rules:

x var
size(x, 1) (2a)

size(M1, n1) size(M2, n2)

size(ap(M1 ; M2), n1 + n2 + 1) (2b)

x var size(M, n)

size(λ(x.M), n + 1) (2c)

In fact every λ-term has a size: if M tm, then there exists a natural number n such that size(M, n).
Let P(M) be the property there exists an n such that size(M, n). It suffices to show that P is closed
under the rules defining M tm:

1. If M is x where x var, then take n to be 1 and note that size(x, 1) by rule (2a).

2. If M is ap(M1 ; M2) where M1 tm and M2 tm, then by induction there exists n1 and n2 such
that size(M1, n1) and size(M2, n2). Let n = n1 + n2 + 1, and apply rule (2b).

3. If M is λ(x.M1), where x var and M1 tm, then by induction there exists n1 such that size(M1, n1),
and take n to be n1 + 1, and apply rule (2c).

2

Furthermore, the size of a λ-term is unique, meaning that if M tm, size(M, n1), and size(M, n2), then
n1 = n2. Consequently, the size of a λ-term M is well-defined.

Exercise 2.1. 1. Prove by rule induction that the size of a λ-terms is uniquely defined by rules (2).

2. Give an inductive definition of the depth of a λ-term to be the maximal nesting of λ-abstractions
within it. Prove by rule induction that every λ-term has a unique depth.

An abbreviated notation, called a grammar, is useful for defining the abstract syntax of a lan-
guage. The grammar for λ-terms is as follows:

M ::= x | ap(M1 ; M2) | λ(x.M)

It says, in words, a λ-term M is either a variable, x, or an application of two λ-terms M1 and M2
to each other, or an abstraction of a variable x in a λ-term M. Thus, the grammar is short-hand
notation for rules (1). The principle of rule induction for a set of rules determined by a grammar
is often called structural induction.

When writing examples it is helpful to use notational conventions that look better on the page
or screen. For the λ-calculus these conventions are to write M1 M2 for ap(M1 ; M2), and λx.M for
λ(x.M). When written in this form, application is left-associative; parentheses are used to override
this convention when necessary. Moreover, applications have precedence over abstractions. Thus,
one might write (λx.x x) (λx.x x) instead of the official form, ap(λ(x. ap(x ; x)) ; λ(x. ap(x ; x))),
and regard M1 M2 M3 as short for ap(ap(M1 ; M2) ; M3).

3 Binding and Scope

The distinction between free and bound occurrences of variables in a λ-term is of the essence. You
encountered this distinction already in differential calculus when you consider, for example, that
∂/∂x(x2 + x y + y2) = 2 x + y. Recall that the partial derivative with respect to a coordinate, or
variable, x, is defined as the ordinary derivative of the function in which x varies while the other
variables (y, in this case) are held fixed. The result is again a function in which y is held fixed, but
again varying in the specified coordinate.

To be more explicit, write the above equation as

D(x 7→ x2 + x y + y2) = x 7→ 2 x + y.

The idea is that the operator D takes a function as argument and yields a function as result, and
the equation states that the two functions are equal (give the same result on all arguments). The
variable y is fixed on both sides of the equation, which means that its scope (range of significance)
lies outside of the derivative.

It is usual in informal mathematics to drop the “x 7→” notation when it is “clear from context”
what is intended. But (a) it is sometimes less than clear from context, and (b) computers are terrible
at understanding informal conventions. To make this precise, it is important to observe that in the
mapping notation x 7→ x2 + x y + y2 the variable x is local, or bound, within the mapping, whereas
the variable y is unbound, or free, within the mapping, which is to say that it remains constant while
x varies. Because the variable is local to the mapping, the choice of variable name does not change
the meaning: x 7→ x2 + x y + y2 could equally well have been written z 7→ z2 + z y + y2. More

3

precisely, any choice of variable is as good as any other, except for y, because y is already in use:
the function y 7→ y2 + y y + y2, that is y 7→ 3 y2, is not the same function as the others. Choosing y
as the mapping parameter is said to capture the separate use of y in the body of the mapping.

Although it is not at all concerned with the real numbers, the λ-calculus shares with the differ-
ential calculus the need to carefully distinguish between free and bound variables. The notation
λ(x.M) is analogous to the notation x 7→ x2 + x y + 1 for mappings in that the variable x is bound
within the λ-term M. There is no difference if x is replaced by any other variable, provided that
it does not already occur in M. Unlike differential calculus, where variables range over real num-
bers, in λ-calculus variables range over λ-terms, and so a λ-term may be substituted for a free
variable in another λ-term, much as numbers may be plugged in for variables in algebra.

And that, fundamentally, is all there is to it.
To make this precise the collection of λ-terms is inductively defined by a collection of rules

that serve as a specification for an implementation on a computer. First, if x is a variable and M is
a λ-term, the judgment x ∈ FV(M), which states that x occurs free in M, is inductively defined by
the following rules:

x ∈ FV(x) (3a)

x ∈ FV(M1)

x ∈ FV(ap(M1 ; M2)) (3b)

x ∈ FV(M2)

x ∈ FV(ap(M1 ; M2)) (3c)

x ̸= y x ∈ FV(M)

x ∈ FV(λ(y.M)) (3d)

There are two rules for application, which states that x is free in ap(M1 ; M2) iff it is free in either
M1 or M2. The rule for abstractions demands that x be different from y. For example, x is not free
in λ(x.x), but is free in λ(y. ap(y ; x)).

Exercise 3.1. 1. Give a direct inductive definition of the judgment x /∈ FV(M), stating positively that
x is not free in M.

2. Prove that if x var and M tm, then either x ∈ FV(M) or x /∈ FV(M). Proceed by structural induction
on M, making use of the fact that if x var and y var, then either x = y or x ̸= y.

4 Substitution

Substitution is defined by an inductive definition of the relation subst(M, x, N, P), which states
that P is the result of substituting M for free x’s in N. It is common to write this relation as
[M/x]N = P, once it is clear that the four-place relation defines P as a (partial) function of M, x,
and N.

subst(M, x, x, M) (4a)

x ̸= y
subst(M, x, y, y) (4b)

4

subst(M, x, N1, P1) subst(M, x, N2, P2)

subst(M, x, ap(N1 ; N2), ap(P1 ; P2)) (4c)

subst(M, x, λ(x.N), λ(x.N)) (4d)

x ̸= y y /∈ FV(M) subst(M, x, N, P)

subst(M, x, λ(y.N), λ(y.P)) (4e)

The last two rules, defining substitution into a λ-abstraction, are easy to get wrong. First off, if
the λ-abstraction binds the variable x, then there cannot also be free x’s within it, and so sub-
stitution has no effect. If the λ-abstraction binds a different variable y, substitution replaces free
occurrrences of x within its body, and then λ-abstracts y over the result. This seems a plausible
definition (just “plug in” M for x in the body of N and re-abstract), but it is nevertheless incorrect.

To see what is wrong, ignore for the moment the second premise of rule (4e), and derive

subst(y, x, λ(y. ap(y ; x)), λ(y. ap(y ; y))).

But this is not correct! When substituting y for x in λ(y. ap(y ; x)), the bound variable y is local to
the λ-abstraction, and should not be confused with the y being plugged in for x. Doing so is said
to incur capture: the binding for y governs the y being plugged, changing its meaning. Thus, the
purpose of the second premise of rule (4e) is to ensure that the incorrect result cannot be derived:
substitution is undefined if capture would otherwise occur. Thus, in the foregoing example, there is
no P such that subst(y, x, λ(y. ap(y ; x)), P), because the bound variable y of the abstraction occurs
free substituting term, namely y itself. However, for any M, x, and N, there is at most one P such
that subst(M, x, N, P); that is, the result of substitution is a partial function of its arguments.

Exercise 4.1. Prove that if M tm, x var, and N tm, then if subst(M, x, N, P1), and subst(M, x, N, P2),
then P1 = P2.

5 α-Equivalence

Because the substitution judgment defines a partial function, it is tempting to write [M/x]N for
the unique P such that subst(M, x, N, P), if it exists, much as in math one may write 1/x for the
unique y, if it exists, such that x y = 1. In a sense it is “cheating” to write [M/x]N, but, with care,
nothing can go wrong, just as writing 1/x is ok as long as x ̸= 0. Nevertheless, it would be better
if substitution were always defined so that there are no worries, but can that be achieved?

Consider again the example in the last section for which substitution is undefined. Let N be
the λ-term λ(y. ap(y ; x)) considered above, and let N′ be the λ-term λ(y′. ap(y′ ; x)), which differs
from N only in that the bound variable y has been renamed to y′, which has been chosen so that
y′ /∈ FV(M). Now there is a (unique) P′ such that subst(M, x, N′, P′), even though “morally”
there is no difference between N and N′. Notice that y is free in P′, as it should be, because it
is meaningful in the surrounding context of the substitution and should not be confused with a
bound variable that would change its meaning. This shows that any undefinedness in substitution
may always be removed by simply changing the names of the bound variables in N so as to avoid
capture before it would occur.

5

Define the equivalence relation, M ≡α M′, on λ-terms, called α-equivalence, that equates two
terms that differ only in their bound variable names, as follows:

M ≡α M (5a)

M ≡α M′

M′ ≡α M (5b)

M ≡α M′ M′ ≡α M′′

M ≡α M′′ (5c)

M1 ≡α M′
1 M2 ≡α M′

2

ap(M1 ; M2) ≡α ap(M′
1 ; M′

2) (5d)

M ≡α M′

λ(x.M) ≡α λ(x.M′) (5e)

subst(x′, x, M, M′) (x′ /∈ FV(M))

λ(x.M) ≡α λ(x′.M′) (5f)

Rule (5f) states that a bound variable x may be renamed to x′ whenever doing so would not incur
capture.

Exercise 5.1. Show that substitution is well-defined up to α-equivalence: for any M and x and N, there ex-
ists N′ such that N′ ≡α N and subst(M, x, N′, P′) for some P′; moreover, if N′′ ≡α N′ and subst(M, x, N′′, P′′),
then P′′ ≡α P′.

From now on λ-terms are identified up to α-equivalence, meaning that terms that differ only in
the names of their bound variables are not distinguished from one another. Under this convention,
substitution is always defined, and so it is appropriate to write [M/x]N for the unique-up-to-α-
equivalence result of substitution of M into some α-variant of N chosen to avoid capture of free
variables in M. As was shown in the preceding exercise, the result is insensitive to the choice of
α-variants of N, the result being the same up to α-equivalence.

This policy is convenient not only in informal work, but is also a boon to implementation. The
convenience amounts to this:

A bound variable is automatically “fresh” in the sense of being different from any other
variable in any a given context.

By the miracle of α-equivalence, a bound variable is “never what one thinks it is.” It is instead a
“fresh” version that does not conflict with any other variable in use.

6 β-Equivalence: Calculation in λ-Calculus

The λ-calculus is so-called because it is a system of calculation, in fact a model of computation
based on equations. In this regard it is similar to algebra, but quite far removed from machine
models of computation, which emphasize the step-by-step process of computation. It is possible,
and essential for implementation, to formulate a deterministic method of calculation, but for the
present purposes it is enough to define the rules of equational reasoning in the λ-calculus.

6

The judgment M ≡β M′ states that the λ-terms M and M′ are β-equivalent to one another using
rules that are reminiscent of those you learned in algebra. This judgment is a form of equality for
λ-terms that enjoys these properties:

1. It is an equivalence relation: it is reflexive, symmetric, and transitive.

2. It is compatible meaning that equals may be replaced by equals to get equals within any term.

3. It encodes computation by simplification of the application of an abstraction to an argument.

The first two properties are so familiar from algebra that they are often not even mentioned. The
third is much the same: if I define a function of x, say x 7→ x2 + 2 x + 1, then I can apply it to some
number, say 2, by “plugging it in” for x to obtain 22 + 2 2 + 1, which is of course 9.

Here is an inductive definition of β-equivalence given by a set of rules:

M ≡β M (6a)

M ≡β M′

M′ ≡β M (6b)

M ≡β M′ M′ ≡β M′′

M ≡β M′′ (6c)

M1 ≡β M′
1 M2 ≡β M′

2

ap(M1 ; M2) ≡β ap(M′
1 ; M′

2) (6d)

M ≡β M′

λ(x.M) ≡β λ(x.M′) (6e)

ap(λ(x.N) ; M) ≡β [M/x]N (6f)

Rules (6a), (6b), and (6c) specify that β-equivalence is reflexive, symmetric, and transitive. Rules (6d)
and (6e) specify that it is compatible with application and abstraction. And rule (6f) defines how
to apply a function to an argument: substitute the argument for the parameter in the body.

Exercise 6.1. Define the following λ-terms, which are called combinators:

I ≜ λx.x

K ≜ λx.λy.x

S ≜ λx.λy.λz.(x z) (y z)

The I combinator is the identity function, the K combinator generates konstant functions, and the S combi-
nator is a “distributor” that “sends” z to both x and y, and then applies the results. Prove that S K K ≡β I
by exhibiting a derivation of it using the rules of β-equivalence.

7

The β-reduction judgment, M ≻β N, is defined by the same rules as for β-equivalence, but
without the rules of reflexivity or symmetry. Thus M ≻β N expresses that M simplifies to N by
applying rule (6f) one or more times anywhere in M. Thus, for example,

K I I I ≻β I I ≻β I,

but not the other way around.
A major result about the λ-calculus, called the Church-Rosser Theorem, states that M ≡β M′

iff M and M′ have a common reduct: there exists P such that M ≻β P and M′ ≻β P. Thus, to
determine whether M ≡β M′, it suffices to simplify both sides until a common reduct is reached.

Exercise 6.2. A λ-term N is called a β-normal form iff it is β-irreducible in that there is no N′ such that
N ≻β N′. Show that there is a λ-term M without a normal form, that is such that there is no N such that
M ≻β N and N ̸≻β.

7 Church’s Law

Unless you have prior experience with it, the λ-calculus must seem to be an arbitrary and myste-
rious formalism. In fact it was introduced by Church as a universal model of computation, which
means that it is a fully general programming language. Church’s Law is the the assertion that
the λ-calculus can express any computable function on the natural numbers. Because it makes
a prediction about the nature of such computable functions, namely that they are always pro-
grammable in the λ-calculus, Church’s Law is a scientific law on par with Newton’s Law relating
forces to accelerations. And, like Newton’s F = m a, it has been empirically verified so thoroughly
that it is accepted as an eternal truth, within its range of applicability.

How is the λ-calculus supposed to compute on the natural numbers? Apparently, it doesn’t
even have natural numbers on which to compute! Appearances are deceiving, though: the natural
numbers are definable as certain λ-terms. For the time being, assume given the following primitive
constructs pertaining to the natural numbers:

1. 0, representing the number 0.

2. succ(M), representing the successor of the number given by M.

3. ifz(M, M0, M1), representing a case analysis on whether a natural number M is zero or a
successor.

The computation steps corresponding to the case analysis are as follows:

ifz(0, M0, M1) ≡β M0 (7a)

ifz(succ(M), M0, M1) ≡β M1 M (7b)

Notice that in the second case, the argument M1 is applied to the predecessor M.
Using these primitives it is almost possible to define, say, addition of natural numbers, except

for the fact that there is apparently no way for a function to “call itself.” In fact, there is a way,

8

using a programming trick, called the Y combinator, which was invented by Church and Kleene in
the 1930’s.

Begin by defining addition using the following recursion equations as a guide:

x + 0 = x
x + (y + 1) = (x + y) + 1

This suggests the following “definition,” which refers to itself at the underlined spot:

add ≜ λx.λy.ifz(y, x, λz.succ(add x z))

In programming languages such as ML this would be considered a valid definition, because self-
reference is implicitly taken care of. But it is interesting to consider how to obtain add without
assuming the problem has already been solved.

What is required is a solution to the recursion equation

add ≡β λx.λy.ifz(y, x, λz.succ(add x z)).

Kleene’s invention was to obtain a solution in two steps. First, define a “prototype” of add that
takes an additional argument, the function to be called in lieu of calling itself.

addproto ≜ λ f .λx.λy.ifz(y, x, λz.succ(f x z))

The idea is that add will be defined to be a fixed point of addproto, which is to say that add is a
solution to the equation

add ≡β addproto add

Expanding the right-hand side yields the equation

add ≡β λx.λy.ifz(y, x, λz.succ(add x z)).

This is self-referential in that the function add itself has been substituted for the variable f in the
body of addproto.

But why should there be such a function add at all? That is, why should addproto have a fixed
point? The second, and most intriguing, part of Kleene’s invention is that the desired fixed point
may be obtained using a technique called self-application. Define the auxiliary

addself ≜ λthis.addproto (this this),

then define
add ≜ addself addself,

which is the application of addself to itself. Calculate:

add ≜ addself addself
≡β addproto (addself addself)

≡β addproto add

But this (ahem) is exactly what is wanted!
What is going on here? The main idea is adopt a programming convention for defining re-

cursive functions. Specifically, to define a recursive function, give it an “extra” first argument
with which it may refer to itself, then ensure that whenever that function is called, it is implicitly
applied to the function itself everywhere it is used, including the internal call sites at which a
function calls itself.

9

Exercise 7.1. The foregoing calculation is so slick that it is easy to miss what is really going on here.

1. Write out explicitly what is addself, namely λthis.. . ., where you are to fill in the dots by expanding
addproto and reducing the resulting application.

2. Then verify that addself addself expands to the desired form, using self-application to effect the
recursion.

For the coup de grace abstract the entire discussion from addition, and define the Y combinator
to be the following λ-term:

Y ≜ λproto.(λthis.proto (this this)︸ ︷︷ ︸
Mproto

) (λthis.proto (this this)︸ ︷︷ ︸
Mproto

).

Then define
add ≜ Y addproto

and check that
add ≡β addproto add.

Exercise 7.2. Define the function to add up the first n natural numbers.

Now show that the natural numbers are definable as λ-terms in such a way that it is possible to
program with case analysis. The original formulation was given by Church in the form of what are
called the Church numerals whereby the natural number n is represented by the λ-term λb.λs.s(n) b,
the n-fold application of s, the inductive step, to b, the base case. Using this representation it is
rather difficult, but possible, to define the case analysis primitive.1 An alternative is to use the
Barendregt numerals, named after the author of the definitive book on the λ-calculus.

The first step is to define the Church booleans using binary decision diagrams represented as fol-
lows:

T ≜ λx.λy.x

F ≜ λx.λy.y

if(M, M0, M1) ≜ M M0 M1

When expanded, if(T, M0, M1) ≡β M0 and if(F, M0, M1) ≡β M1. That is, the boolean itself chooses
between the two alternatives! Rather than being “passive data,” the booleans are active programs
that make the appropriate choice.

Now define the Church pair ⟨M0, M1⟩ by the λ-term λz.z M0 M1, which takes in a function and
applies it to the two components of the pair.2 Check that under this definition ⟨M0, M1⟩T ≡β M0
and ⟨M0, M1⟩ F ≡β M1. That is, to obtain the first component of a pair, apply it to T, and to obtain
the second, apply it to F.

Barendregt’s idea is that the natural number n ≥ 0 is represented by a sequence of F’s ending
with I, the identity combinator. This is a very cool hack!

0 ≜ I

succ(M) ≜ ⟨F, M⟩
1If you want a hard programming challenge, try to do it!
2The argument z to the pair is sometimes called a visitor, and the programming method is nowadays called, rather

grandly, the visitor pattern.

10

The Barendregt numeral for n, written n, is defined to be succ(. . . succ(0)), with n iterations of the
successor ending with zero.

Exercise 7.3. What is the normal form of n for n ≥ 0?

To appreciate the “hack value” of the Barendregt numerals, be sure to do the following exer-
cise!

Exercise 7.4. Define ifz(M, M0, M1) in terms of the Barendregt numerals.

8 Normalization

The β-equivalence relation for the λ-calculus defines when two terms are equal by virtue of calcu-
lation, but it does not provide a guide for how to determine when two terms are β-equivalent. A
natural approach is to do what you did in school: to see if two polynomials are the same, simplify
both sides as much as possible and check whether the results have the same form when written in
decreasing order of degree. Unlike in school, however, a λ-term may not have a simplest form—
the simplification process can go on forever. But there is no better way to proceed than to try, with
the understanding that it may not converge to an answer.

In the λ-calculus each step of simplification is called a β-reduction; it consists of replacing
(λx.M) N by [N/x]M anywhere within a term. When a term cannot be β-reduced, it is said to
be in β-normal form. The process of finding a β-normal form for a term, if it has one, is called β-
normalization. The Church-Rosser Theorem states that a term has at most one β-normal form, which
is obtained by some sequence of β-reductions. Unfortunately, not every sequence of β-reductions
will lead to a β-normal form—it is possible to charge off to infinity performing reductions that do
not lead to a normal form, even though some other reductions would.

Put another way, how can one write a program to compute the β-normal form of a term, if it
has one? That is, the program should not reduce forever needlessly if there is a way to reduce to
a normal form. At first this may sound like a wildly underdetermined problem, but in fact there
is a quite simple way to achieve it. The main idea is that any β-reductions that can be performed
at the outermost level of a term must be performed if a normal form is to be reached. (Weak)
head reduction, written M 7−→β M′, is the process of performing one step of β-reduction at the
outermost level of a term. It is defined by the rules in Figure 1.

If N is in head normal form, then it has one of two forms:

1. λx.P where P is some λ-term, or

2. x M1 . . . Mk, where M1, . . . , Mk with k ≥ 0 are some λ-terms.

To normalize a term M, first compute its head normal form, N, and proceed by cases:

1. If N is λx.P, normalize P to P′, and yield λx.P′.

2. If N is x M1 . . . Mk, normalize each of M1, . . . , Mk to M′
1, . . . , M′

k, respectively, and yield
x M′

1 . . . M′
k.

The judgment M norm N, stating that the normal form of M is N, is defined in Figure 2. It makes
use of the hnorm judgment defined in Figure 1.

11

ap(λ(x.M) ; M2) 7−→β [M2/x]M (8a)

M1 7−→β N1

ap(M1 ; M2) 7−→β ap(N1 ; M2) (8b)

M ̸ 7−→β

M hnorm M (9a)

M 7−→β M′ M′ hnorm N′

M hnorm N′ (9b)

Figure 1: Head Reduction and Head Normalization

M hnorm x
M norm x (10a)

M hnorm ap(M1 ; M2) M1 norm N1 M2 norm N2

M norm ap(N1 ; N2) (10b)

M hnorm λ(x.M′) M′ norm N′

M norm λ(x.N′) (10c)

Figure 2: Normalization

12

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.

13

